PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos"

Transcripción

1 IES CASTELAR ADAJOZ A Mengiano PRUEA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTARIA JUNIO - 9 (RESUELTOS por Antonio Mengiano) MATEMÁTICAS II Tiempo máimo: horas y mintos - Debe escogerse na sola de las opciones - Debe eponerse con claridad el planteamiento de la respesta o el método tilizado para s resolción Todas las respestas deben ser razonadas - No se permite el so de calcladoras gráicas ni programables LOQUE º) Jstiica si cada na de las sigientes airmaciones es erdadera o alsa En caso de qe consideres qe la airmación es alsa pon n ejemplo ilstratio Si A y son dos matrices cadradas calesqiera, entonces A A b ) Si es na matriz cadrada, entonces ( ) I I c ) La sma de matrices reglares (inersibles) es na matriz reglar (inersible) En general, es also Sin embargo, eisten matrices qe cmplen la propiedad conmtatia Ejemplo: Las matrices A y cmplen qe A A A A A A En particlar se cmple siempre qe A A - A - A I

2 b ) Es erdadera ( I ) ( I ) ( I ) I I I I I c ) En general, es also Por ejemplo, la matriz identidad y s opesta son inersibles y s sma, qe es la matriz nla, no es inersible

3 º) De n sistema de ecaciones lineales con tres incógnitas se sabe qe tiene n parámetro m R tal qe: -- Si se mltiplica por la primera incógnita se obtiene el resltado de restar al número la sma de las otras dos incógnitas -- Si se mltiplica por la segnda incógnita se obtiene el resltado de restar al parámetro m la sma de las otras dos incógnitas -- Si se mltiplica por la tercera incógnita se obtiene el resltado de restar al cadrado de m la sma de las otras dos incógnitas Formla el sistema de ecaciones lineales descrito b ) Determina para qé alores de m el sistema es compatible determinado c ) Determina para qé alores de m el sistema es compatible indeterminado y calcla todas las solciones El sistema reslta: m y z my m z mz m y eqialente a m y z my z m y mz m b ) Para qe el sistema sea compatible determinado es necesario qe la matriz de coeicientes tenga rango tres, o sea, qe s determinante sea distinto de cero La matriz de coeicientes es M m m m M m m m m m m m m m Resoliendo por Rini:

4 Las raíces dierentes son m y m - m Para Rango m M nº incóg Compatible det er min ado c ) Para m la matriz ampliada es, en cyo caso la matriz de coeicientes y la matriz ampliada tienen rango M ' Para m Rango M Rango M ' < nº incóg Compatible (con dos grados de libertad) indet er min ado El sistema se transorma en la ecación y z, cyas solciones son: Solción : λ µ y λ, z µ λ, µ R Para m es M ', cyo rango es por ser: 9 9 Para m Rango M ;; Rango M ' Incompatible

5 LOQUE º) Considera la nción : R R deinida por ( ) si < si < si Determina si la nción es contina en los pntos - y b ) En el interalo (-, ) estdia si crece o decrece, s cratra y si tiene asíntotas c ) Razona si la nción es deriable en - y dibja s gráica para [, ] La nción () es contina para todo R, ecepto para los alores - y, qe es ddosa s continidad Para qe la nción sea contina para - tiene qe cmplirse qe los ites por la izqierda y por la derecha sean igales, e igales al alor de la nción en ese pnto: Para ( ) ( ) ( ) ( ) ( ) ( ) ( ) La nción es contina para - Para qe la nción sea contina para tiene qe cmplirse qe los ites por la izqierda y por la derecha sean igales, e igales al alor de la nción en ese pnto: Para ( ) ( ) ( ) ( ) ( ) ( ) La nción no es contina para

6 b ) En el interalo (-, ) la nción es ( ) '( ) >, (, ) La nción () es monótona creciente en (-, ) ''( ) >, (, ) La nción es conea (U) en s dominio ( ) La recta (eje Y) es asíntota ertical de la nción c ) Para qe la nción () sea deriable en - es necesario qe sea contina para -, cosa qe hemos comprobado en el apartado Y Para qe la nción sea deriable para tiene qe ser deriable por la izqierda y por la derecha y ser ambas deriadas igales () ' si < ( ) si si < '( ) si - - O X La gráica de () para [, ] La nción () es deriable en - es la qe aparece en el dibjo adjnto

7 º) Considera la nción g ( ) p q Determina las constantes p y q sabiendo qe, en, g alcanza n alor mínimo: b ) Halla na nción por el pnto A(, ) : R R qe sea na primitia de ( ) y qe s gráica pase c ) Jstiica si en erdadera o alsa la airmación sigiente: Una nción polinómica de segndo grado no tiene pntos de inleión Si la consideras alsa pon n ejemplo ilstratio g' ( ) p g' ( ) p ;; p ;; p p g ( ) q ;; 8 q ;; q q b ) Una primitia de ( ) es F ( ) d C F( ) Teniendo en centa qe ( ) F C ;; C La nción pedida es ( ) ( ) F c ) Es cierto Para qe na nción tenga n pnto de inleión es necesario qe s segnda deriada sea cero y s tercera deriada sea distinta de cero Si la nción polinómica es de segndo grado, la tercera deriada es siempre cero, por lo cal no pede tener pntos de inleión

8 LOQUE º) Sean y dos ectores tales qe ( ) ( ) 7 Calcla el módlo del ector y 9 b ) Considera los ectores a (,, ) y b (,, m) con m R Hallar el alor de m para qe a y b sean ortogonales Para m calcla el área del paralelogramo qe tiene por lados los ectores a y b ( ) ( ) 7 ;; cos cos α cos ( α ) cos cos α cos α 7 ;; 9 7 ;; 87 ;; 8 b ) Dos ectores son ortogonales (perpendiclares) cando s prodcto escalar es a (,, ) (,, m) b ;; m ;; m m Para m es (,, ) b El área de n paralelogramo es el módlo del prodcto ectorial de los ectores qe lo determinan: i j k S a b k j j k ( ) 5 S

9 º) Considera los planos π y z, la recta y z r y el pnto A(,, -) Halla na ecación general del plano qe pasa por el pnto A, es perpendiclar a π y además es paralelo a la recta r b ) Se desea constrir n cadrado qe tenga n értice en el pnto A y n lado sobre la recta s Determina la longitd de n lado del cadrado y las coordenadas del értice qe está en la recta r y es consectio al értice A Un ector director de r pede ser calqiera qe sea linealmente dependiente del prodcto ectorial de los ectores normales de los planos qe la determinan, qe son los sigientes: n (,, ) y n (,, ) i j k ' i j r r (,, ) El ector normal de π y z es (,, ) n La ecación general del plano pedido es la sigiente: π ( A; r, n ) ;; ( ) ( z ) ( z ) y ;; y z ( ) ( z ) y ;; z y π y z 5 b ) El haz de planos γ perpendiclares a la recta r tiene por ecación general la sigiente: γ y D De los ininitos planos del haz γ, el qe contiene al pnto A(,, -) es el qe satisace s ecación: γ y D A(,, ) D ;; D β y El pnto intersección de la recta r con el plano β es el értice bscado:

10 ,, ;; ;; ;; y y z y z y r β La longitd del lado del cadrado el la longitd del segmento A : ( ) A nid A

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES GEOMETRÍA: VECTORES 1 Definición de ector: TEMA 7: VECTORES Un ector es n segmento orientado qe qeda determinado por dos pntos, A y B, el primero de los pntos se denomina origen y el segndo es el extremo,

Más detalles

actividades propuestas en la unidad vectores

actividades propuestas en la unidad vectores actiidades propestas en la nidad ectores Las respestas feron elaboradas por las Profesoras Lciana Calderón y María de los Ángeles Fernandez qienes realizan na adscripción en la Cátedra. Propesta.3: 1)

Más detalles

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3 GEOMETRÍA Ejercicios reseltos del tema Geometría en R Jan S. Herrera Lpión EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R Ejercicio Halla n vector perteneciente a R qe sea perpendiclar a (,8,-) y cyo prodcto

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

Práctico Nº 4 : Vectores

Práctico Nº 4 : Vectores Práctico Nº 4 : Vectores Nota: Cando en el presente práctico los ectores estén dados por coordenadas salo qe se aclare lo contrario deberá entenderse qe éstas se refieren a la base canónica del espacio

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general.

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general. Solciones de la hoja Espacio Vectorial Crso 9- - En cada caso, determinar si F es n sbespacio ectorial de R En caso afirmatio, bscar na base nas ecaciones implícitas paramétricas de F F,, R /, R a) b)

Más detalles

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano BLOQUE 4: GEOMETRÍA Vectores La recta en el plano 63 VECTORES Hay magnitdes qe no qedan bien definidas mediante n número; necesitamos conocer además s dirección y s sentido. A estas magnitdes se les llama

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

VECTORES - PRODUCTO ESCALAR - 1 -

VECTORES - PRODUCTO ESCALAR - 1 - VECTORES - PRODUCTO ESCALAR - - Observa el rombo de la figra y calcla: B a) AB + BC b) OB + OC c) OA + OD d) AB + CD A O C e) AB + AD f) DB CA Expresa los resltados tilizando los vértices del rombo. D

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

Consideremos el siguiente problema de valores iniciales y de contorno: = M(w(x, t)), 0 < x < L, t > 0

Consideremos el siguiente problema de valores iniciales y de contorno: = M(w(x, t)), 0 < x < L, t > 0 EJEMPLOS DE RESOLUCIÓN DE PROBLEMAS NO HOMOGÉNEO POR DESARROLLO EN FUNCIONES PROPIAS 1. PROBLEMA NO-HOMOGÉNERO CON CONDICIONES DE CONTORNO HO- MOGÉNEAS Consideremos el sigiente problema de valores iniciales

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Magnitdes Vectoriales: Un ector es n segmento orientado qe, para ser definido, precisa

Más detalles

Vector director de una recta

Vector director de una recta Vector director de na recta En la figra se observa n vector libre aplicado en distintos pntos. Cada na de las flechas resltantes proporciona na recta. Se tienen así las rectas r, r y r3 qe son paralelas

Más detalles

Departamento de matemáticas

Departamento de matemáticas Geometría con solución Problema 1: Sea r y s las rectas dadas por: a) Hállese el valor de m para que ambas rectas se corten. b) Para m = 1, hállese la ecuación del plano que contiene a r y s Problema 2:

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas DEPARTAMENTO DE MATEMÁTICA DIBUJO Y SISTEMAS DE REPRESENTACIÓN Agrimensra Civil Mecánica Metalrgia Extractiva Minas Unidad X: Sistema de Proyección Acotada Dibjo y Sistemas de Representación UNIDAD X -

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO 013-014 1 0 Ejercicio 1º.- Dada la matriz: A 1 1 a) (1,5 puntos) Determina los valores de λ para los

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Problemas

Concurso Nacional de Matemáticas Pierre Fermat Problemas Concrso Nacional de Matemáticas Pierre Fermat 014 Examen para Nivel Secndaria Etapa Eliminatoria Instrcciones: No tilizar cellar (éste deberá de estar apagado), ipod, notebook, calcladora ó calqier otro

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

MATEMÁTICAS II 2005 OPCIÓN A

MATEMÁTICAS II 2005 OPCIÓN A MATEMÁTICAS II 2005 OPCIÓN A Ejercicio 1: De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa

Más detalles

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial .3. Plano tanente a na sperficie paramétrica. Sea la sperficie paramétrica S determinada por la fnción ectorial ( ) R R en el pnto P, cyo ector posición 3 : /, x,, y,, z, es (, ). Si se mantiene a constante

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO 2011 (GENERAL) Solución

UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO 2011 (GENERAL) Solución IES CASTELAR BADAJOZ Junio de (General) Soluciones Antonio Mengiano Corbacho UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas minutos El

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

Opción A Ejercicio 1

Opción A Ejercicio 1 Opción A Ejercicio [ 5 puntos] Se sabe que la función f:r R definida por f = - +b+ si, es deriable. a -5+a si > Determina los alores de a y b Para ser deriable debe de ser, primeramente, función continua,

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

F F / 3 0 A 1 =

F F / 3 0 A 1 = EXAMEN: ALGEBRA Y GEOMETRÍA (A) 8/05/0. De un paralelogramo ABCD se sabe que A = 3,4, B = 4,3, que las dos coordenadas del vértice C son positivas que la diagonal AC el lado BC miden ambos 5. Hallar las

Más detalles

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z San Blas, 4, entreplanta. 98 0 70 54 OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva,

Más detalles

Geometría 1. Ejercicio 2.

Geometría 1. Ejercicio 2. Geometría 1 1 3 7 A = 2 a b Ejercicio 1. Dada la matriz c a d halla a, b, c d sabiendo que Ejercicio 2. i.el ector cuas coordenadas son las que aparecen en la primera columna de A es ortogonal al ector

Más detalles

4 # Vectores en el espacio (I) { } son linealmente independientes { } = 1. En contexto (pág. 107) Amplía (pág. 114) Amplía (pág.

4 # Vectores en el espacio (I) { } son linealmente independientes { } = 1. En contexto (pág. 107) Amplía (pág. 114) Amplía (pág. BLOQUE. Geometría 4 # Vectores en el espacio (I) En contexto (pág. 07) a) Respesta abierta a modo de reflexión indiidal. b) Respestas sgeridas: Las imágenes mestran flechas qe indican la dirección y los

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ÁLGEBRA Y GEOMETRÍA CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ÁLGEBRA Y GEOMETRÍA CURSO SOLUCIONES LOS EJERCICIOS DE LOS EXÁMENES DE ÁLGEBR Y GEOMETRÍ CURSO - º.- (,5 puntos) Dadas las matrices: B C Calcula la matri X que erifica: T C B X SOLUC: X º.- Considera el sistema de ecuaciones (

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros

A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros r A X OX=OA+t, t R O 1 Emilio Martínez Ros del plano 1. Vectores y pntos... 1 1.1 Vectores fijos 1. Vectores libres 1.3 Operaciones con vectores - Sma de vectores - Prodcto de n número real por n vector

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2012 (GENERAL) Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES CSTER DJOZ PRUE DE CCESO (OGSE) UNIVERSIDD DE EXTREMDUR JUNIO (GENER) MTEMÁTICS II Tiempo máimo: hora y minutos Instrucciones: El alumno elegirá una de las dos opciones propuestas Cada una de las cuatro

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicente Adsuara Ucedo TEMA 4: LA RECTA 4. Ecuación ectorial de la recta Una recta queda determinada por un punto A y un ector libre no nulo paralelo a ella

Más detalles

Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002

Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002 Cálclo Diferencial 1. Gráficas y modelos Teoría: Ver páginas y 5 del capítlo P del libro: Preparación para el Cálclo del libro Cálclo I de los atores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones

Más detalles

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Eamen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Problema 1 (2 puntos) Hallar una ecuación cartesiana del plano que contiene a la recta r: y es perpendicular

Más detalles

13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1

13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1 6 6. Conjntos Ortogonales y mínimos cadrados Se dice qe n conjnto de vectores {,, } en es ortogonal si cada par distinto de vectores del conjnto es ortogonal, esto es, si i i j = 0 mientras i j. El sigiente

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas

Más detalles

MATEMÁTICAS II SEPTIEMBRE 2016 OPCIÓN A

MATEMÁTICAS II SEPTIEMBRE 2016 OPCIÓN A Ejercicio. (Calificación máxima: puntos) Dada la función f(x) = (6 x)e x, se pide: MATEMÁTICAS II SEPTIEMBRE 6 OPCIÓN A a) ( punto) Determinar su dominio, asíntotas y cortes con los ejes. b) (punto) Calcular

Más detalles

NO TIENE TRAZA HORIZONTAL PORQUE ES PARALELA AL PH

NO TIENE TRAZA HORIZONTAL PORQUE ES PARALELA AL PH EJERCICIO 1 Determinar las trazas de las rectas r y s. r" H''=H'=V''=V' r' s" V'' s' V' NO TIENE TRAZA HORIZONTAL PORQUE ES PARALELA AL PH EJERCICIO 1 x + 3y = 13 Determinar la intersección de las rectas

Más detalles

IES Mediterráneo de Málaga Septiembre Reserva Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Septiembre Reserva Juan Carlos Alonso Gianonatti ES Mediterráneo de Málaga Septiembre.-Resera Juan Carlos lonso Gianonatti PRMER LOQUE. Condera la unción guiente ( ) a b > a) Determina los alores de a b para que sea deriable en todos los puntos. b) Esboa

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES RESUMEN DE GEOMETRÍA MATEMÁTICAS II A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES Un vector fijo de origen A y extremo B, siendo A y B puntos del espacio, es un segmento orientado caracterizado por:

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos Fundamentos Matemáticos de la informática (G. en Ing. Informática) Prueba de nivelación correspondiente a los contenidos de prerrequisitos Nombre apellidos: Instrucciones: El alumno debe resolver la prueba

Más detalles

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016 GEOMETRÍA (Selectividad 6) ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 ( puntos) a) ( punto) a) (,5 puntos) Si los vectores w y s verifican que w = s =,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

1 Parametrización de super cies

1 Parametrización de super cies Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio. 2.1 SISTEMA DE REFERENCIA. COORDENADAS DE UN PUNTO Elegimos un punto del espacio que llamamos origen

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-0 I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones con sbespacios vectoriales

Más detalles

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II. º BACHILLERATO EJERCICIOS DE GEOMETRÍA REAL COLEGIO NTRA. SRA. DE LORETO FUNCACIÓN SPÍNOLA.- Halla la ecuación del plano, a. que pasa por A(,, 0) es perpendicular a w, 0 b. que pasa por

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del

β = 0,0012 m. A) Usando la figura 2, determine el umbral de audición para la frecuencia del Dos pastores de La Gomera ntrodcción Silbar es na forma de transmitir información a grandes distancias en espacios abiertos. Los lgares donde se tilizan estos lengajes silbados tienen nas características

Más detalles

BLOQUE 1 [2.5 PUNTOS]

BLOQUE 1 [2.5 PUNTOS] LOQUE [. PUNTOS] CUESTIÓN.- a) Enuncie el teorema de Rouche-Fröbenius [. puntos] b) Discuta, en unción de los valores del parámetro a, el siguiente sistema de ecuaciones ay z a lineales: ay az [ puntos]

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles