Álgebra Manuel Hervás Curso
|
|
|
- Marta Ramírez Arroyo
- hace 8 años
- Vistas:
Transcripción
1 Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio ectorial. Este estdio se completa definiendo el prodcto escalar qe conierte n espacio ectorial en Eclídeo, en el qe se peden definir longitdes, distancias y ánglos. Prodcto escalar en R 3 En el espacio ectorial 3 se da la base B e, e, e 3 Dados dos ectores e e e e e 3e3 3 3 e e 3e3 e e 3e3 e e e e 3e e3 + e e e e e e e e e e e e Qe se pede expresar matricialmente ( e e ) ( e e ) ( e e3) 3 ( e e ) ( e e ) ( e e3) ( e e ) ( e e ) ( e e ) G ; t A la matriz G de prodctos escalares de los ectores de la base se denomina Matriz de Gram, siendo el prodcto escalar g ( e e ) ; g ( e e ). ij i j ii i i ( e e ) ( e e ) ( e e3) g g g3 G ( e e ) ( e e ) ( e e ) g g g 3 3 ( e e3) ( e e3) ( e3 e3) g3 g3 g 33 La matriz de Gram es simétrica ya qe ( e e ) ( e e ) g g i j j i ij ji Si la base es normal (ectores de la base nitarios): Aparecen nos en la diagonal. ( e e ) ( e e ) ( e e ) 3 3
2 Álgebra Manel Herás Crso 0-0 g g G g g g3 g3 3 3 ( e e ) ( e e ) ( e e ) 0 Si la base es ortogonal: 3 3 g 0 0 G 0 g g 33 Todos los elementos qe no están en la diagonal son nlos. Si la base es ortonormal (ectores de la base nitarios y ortogonales: ( e e ) ( e e) ( e3 e3) ; ( e e) ( e e3) ( e e3) 0. La matriz de Gram, en este caso es la MATRIZ IDENTIDAD y entonces el prodcto escalar se realiza coordenada a coordenada. 0 0 G I ( ) I Otra forma de definir el prodcto escalar: Sean dos ectores no nlos, E ( ) cos El prodcto escalar será positio o negatio según qe sea agdo obtso. El prodcto escalar es nlo si los ectores son ortogonales ya qe cos 0. Ejemplo Físico: Trabajo de na ferza es el prodcto escalar de la ferza por el desplazamiento. ( ) cos W F d F d Siendo el ánglo qe forma la ferza F con el desplazamiento.
3 Álgebra Manel Herás Crso 0-0 Ánglo de dos ectores Sean dos ectores no nlos, E cos PRODUCTO ESCALAR (General) Sea E n espacio ectorial sobre se denomina PRODUCTO ESCALAR a la x, y E se hace forma bilineal : EE qe al par de ectores corresponder n escalar xy qe cmple los axiomas:. Positiidad: x E x x 0. Sólo 0 si x 0. Simetría (Conmtatia): x E x y y x 3. Homogénea (Asociatio el escalar): ( x y) ( x) y x ( y) 4. Distribtia respecto a la sma de ectores: x, yv ; x y z x z y z Un espacio ectorial sobre E;( ) en el qe se ha definido n prodcto escalar es n espacio Prehilbertiano. En el caso de ser finito dicho espacio ectorial se denomina EUCLÍDEO. Expresión del prodcto escalar Sea E n espacio ectorial Eclídeo sobre referido a la base e e nen B e, e,, en. Sean los ectores, E e e nen g g g n g g g G g n n t n ij i j i, j g g g n n nn n G es la matriz de Gram o métrica del prodcto escalar qe es simétrica y definida positia. En la qe g ( e e ) ; g ( e e ) ij i j ii i i 3
4 Álgebra Manel Herás Crso 0-0 En otra base del espacio Eclídeo existe otra matriz de Gram: t G' P G P en la qe P es la matriz de cambio de base ó de paso. Es deseable encontrar na base en la qe la matriz de Gram reslta la matriz identidad. Propiedades: G es Matriz simétrica: ij ji g g g ( e e ) Prodctos Escalares de los ectores de la base. ij i j En la diagonal, las normas al cadrado: g ( e e ) e ii i i i G : definida positia ( ) t G 0, 0 Norma de : ( ) Volmen del paralelepípedo formado por los ectores de na base: V det( G) Norma Sea E n espacio ectorial sobre aplicación : E Se denomina NORMA sobre E a la tal qe x E se le asocia n número real no negatio x qe cmple las condiciones:. x 0 Sólo 0 si x 0. x E x x 3. x, ye x y x y Al espacio ectorial sobre :E; se denomina Espacio ectorial normado. Norma Eclídea Es na generalización del módlo de n ector geométrico qe representa s longitd. La norma: :V tal qe x V se asocia x ( x t Gx) se denomina Norma asociada al prodcto escalar o norma eclídea. En el caso particlar qe la matriz de Gram sea la matriz identidad: 4
5 Álgebra Manel Herás Crso 0-0 Desigaldad de Schwartz x x x x n Se demestra qe el alor absolto del prodcto escalar de dos ectores es menor o igal qe el prodcto de ss normas. Sean, x y E x y x y A partir de la desigaldad de Schwartz es posible definir el ánglo qe forman dos ectores x y x y x y x y x y diidiendo por x y reslta x y x y cos ya qe es el caso qe se erifica si 0 x y x y Desigaldad de Minowsi Esta desigaldad indica qe la norma de na sma de ectores es menor o igal qe la sma de ss normas. Sean, x y E x y x y DISTANCIA Sea E n conjnto calqiera. Se denomina DISTANCIA d definida sobre E a toda aplicación : xy, de E d E E tal qe a la pareja de elementos se le asocia n número real no negatio qe erifica las condiciones x, y, z E. d( x, y) 0 x y Axioma de Separación. d( x, y) d( y, x) Axioma de Simetría 3. d( x, y) d( x, z) d( z, y) Desigaldad Trianglar Ejemplos: En R: d f ( x, y) x y Distancia fndamental 5
6 Álgebra Manel Herás Crso 0-0 En R : d( x, y) x y x y x ( x, x) d( x, y) ( x y) ( x y) eclídea y ( y, y) d 3( x, y) max x y, x y Todo conjnto (E,d) dotado de na distancia es n Espacio métrico. El conjnto (R,d f ) es la Recta Real. Todo esto se generaliza para R n. En el espacio Eclídeo R n ortonormal se erifica: con prodcto escalar y referido a na base. Norma o Longitd de : ( ) n. Distancia entre y : d(, ) ( ) ( ) d(, ) ( ) ( ) ( ) n n 3. Dos ectores son ortogonales si ( ) 0 4. Si tres ectores son coplanarios el prodcto mixto es 0. ORTONORMALIZACIÓN DE GRAM-SCHMIDT Dos ectores son ortogonales si ( ) 0 y n Sistema es ortogonal si cada i j. dos ectores del Sistema son ortogonales: 0, i j El teorema de Pitágoras para dos ectores ortogonales: Si el Sistema:,, es ortogonal se erifica qe es Libre. Un sistema de ectores ortogonales nitarios, es decir con norma, es sistema ortonormal: i j 0, i j i, i En el sbespacio ectorial eclídeo n W referido a B,,, qe es na base arbitraria. Se desea obtener na base ortonormal. Para lo cal se sige el procedimiento de Gram-Schmidt 6
7 Álgebra Manel Herás Crso 0-0 Paso Paso Así scesiamente. Spesto obtenido Paso Finalmente e, e,, e Los ectores obtenidos B e e e ortonormal PROYECCIÓN ORTOGONAL A C B B ',,, forman na base de W qe es Sean los ectores AB ; AC. AB ' w proy ( ) La proyección ortogonal de sobre es el segmento AB = ector proyección tiene de módlo cos cos. El en la dirección del ector nitario. Es decir se pede descomponer w w ; w proy ( ) Se dice qe para proyectar ortogonalmente n ector sobre otro se mltiplica escalarmente por el nitario en la dirección, resltando el segmento AB = cos. w proy ( ) ( ) w 7
8 Álgebra Manel Herás Crso 0-0 ( ) w cos w Proyección ortogonal sobre n sbespacio Proyección ortogonal de n ector sobre n sbespacio W referido a B,,, Base ortogonal proyw( ) perp ( ) proy ( ) W W La mejor aproximación de mediante ectores de W reslta ser la proyección ortogonal de sobre W Sbespacios ortogonales Sean U, U W dos sbespacios de n espacio ectorial eclídeo. Se dice qe son ortogonales si U U, 0. Se erifica qe si dos sbespacios son ortogonales s intersección es el ector cero y por tanto s sma es directa. Sbespacio ortogonal a no dado Sea U n sbespacio del espacio ectorial eclídeo W. Se llama sbespacio ortogonal de U al mayor sbespacio de W qe es ortogonal a U. U x W / x 0, U 8
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.
Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS
TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u
DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente
SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169
TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a
TEMA 7 VECTORES MATEMÁTICAS 1
TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de
TEMA 5. VECTORES EN EL ESPACIO
TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3
ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3
ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector
VECTORES EN EL PLANO.
VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas
VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:
VECTORES EN EL PLANO
VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B
el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES
el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto
IDENTIFICAR LOS ELEMENTOS DE UN VECTOR
8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas
ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido
ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones
4. Espacios Vectoriales
4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres
Tercera Parte: Producto Vectorial y Producto Mixto entre vectores
Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica
Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010
Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................
TEMA 1: VECTORES EN EL PLANO
Profesora: María José Sánchez Qeedo TEMA 1: VECTORES EN EL PLANO El estdio del Análisis Vectorial se remonta al siglo XVII, cando el ingeniero holandés Steen (1548-160), formló el principio del paralelogramo
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha
12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por
. Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,
Segunda Parte: Producto escalar de vectores
Segnda Parte: Prodcto escalar de ectores Constrcciones ectores En el diseño del techo de na galería se emlea n semicílindro, qe se sostiene a traés de igas qe se cran en distintos ntos sobre el techo.
12.3. El producto punto. 674 Capítulo 12: Los vectores y la geometría del espacio. Ángulo entre vectores
674 Capítlo 1: Los ectores la geometría del espacio c. Obtenga las coordenadas del pnto donde se cortan las medianas del DABC. De acerdo con el ejercicio 17 de la sección 6.6, este pnto es el centro de
GEOMETRÍA ANALÍTICA AB CD CD AB CD
GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;
ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS
Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)
Tema 3: Espacios eucĺıdeos
Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: [email protected] Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Módlo: Indica la intensidad, iene dado por la longitd de la flecha
NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa
NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los
en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:
TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.
ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO
ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA
3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2
34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando
El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:
Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n
TEMA 1. MAGNITUDES FÍSICAS
TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.
Lección 3. Cálculo vectorial. 4. Integrales de superficie.
GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,
Problemas de exámenes de Formas Bilineales y Determinantes
1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO DEF.- Se llama vector fijo de extremos A y B al segmento orientado AB, y se representa por Todo vector fijo queda caracterizado por { Dos vectores fijos se dice que son equivalentes,
VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:
a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores
Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez
Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,
Espacios vectoriales con producto escalar
147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en
Para poder desarrollar este tema, vamos a exponer inicialmente la teoría Recordaremos el Producto Escalar, Vectorial y Mixto. u, v, w V.
1. Introducción. 1.1. Producto Escalar. 1.. Norma de un Vector. 1.3. Ángulos. 1.4. Ortogonalidad. 1.5. Particularización del Producto Escalar a V 3. 1.6. Producto Vectorial de dos Vectores de V 3. 1.7.
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
R 3 = { ( x, y, z ) / x R, y R, z R }
El conjunto R 3 Es un conjunto de ternas ordenadas de números reales R 3 = { ( x, y, z ) / x R, y R, z R } Primera componente Segunda componente Tercera componente Igualdad de ternas: (x, y, z) = (x',
ESPACIO VECTORIAL EUCLÍDEO
ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar
RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:
EL ESPACIO VECTORIAL EUCLIDEO
EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por
ESTADO DE TENSIONES Y DE DEFORMACIONES
ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales
GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS)
GEOMETRÍA ANALÍTICA EN EL ESPACIO (ÁNGULOS, DISTANCIAS Y SIMETRÍAS ÁNGULOS EN EL ESPACIO ÁNGULO ENTRE DOS RECTAS El ángulo formado por dos rectas que se cortan en un punto, o bien por dos rectas que se
A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros
r A X OX=OA+t, t R O 1 Emilio Martínez Ros del plano 1. Vectores y pntos... 1 1.1 Vectores fijos 1. Vectores libres 1.3 Operaciones con vectores - Sma de vectores - Prodcto de n número real por n vector
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 s de Vectores y Matrices es Departamento de Matemáticas ITESM s de Vectores y Matrices es Álgebra Lineal - p. 1/44 En esta lectura veremos conjuntos y matrices ortogonales. Primero
Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x
Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción
4.2 Producto escalar.
Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio euclídeo Determinación de ángulos
Espacio euclídeo 5.1. Determinación de ángulos.... - 2-5.1.1. Ángulo determinado por dos rectas secantes.... - 2-5.1.2. Ángulo determinado por planos secantes.... - 2-5.1.3. Ángulo determinado por una
RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.
1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará
1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.
. Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión
vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv
CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan
Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4
Problemas de geometría afín
Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema
1. Transformaciones geométricas. Isometrías o movimientos
Transformaciones geométricas Isometrías o movimientos CAPÍTULO PRIMERO Transformaciones geométricas Isometrías o movimientos Definiciones Sea E n n espacio afín eclídeo de dimensión n Llamaremos transformación
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
E-Book ISBN Fecha de catalogación: 19/12/2014.
E-Book ISBN 978-987-676-5-4 Fecha de catalogación: 9//04. Facltad de Ciencias Forestales. Cátedra de Algebra Geometría Analítica. Año 0 INTERPRETACIÓN DE LA PORTADA DE LA SERIE DIDACTICA Nº 7 El fondo
a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.
Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número
6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...
Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
ALGEBRA. Escuela Politécnica Superior de Málaga
ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.
Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica
Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
Conjuntos de Vectores y Matrices Ortogonales
Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................
1.3 Estudio de los tensores de segundo orden
1.3 Estudio de los tensores de segundo orden Inariantes tensoriales: determinante y traza olumen deformado Tg 1,Tg 2,Tg 3 dett :=, "{g i }= base de (no depende de la base) olumen sin deformar g,g,g 1 2
TEMA 11: VECTORES EN EL ESPACIO
Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES
VECTORES EN EL ESPACIO
UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
UNIDAD 1 Ecuaciones Diferenciales de Primer Orden
UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables
Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.
+34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos
Curso de Procesamiento Digital de Imágenes
Crso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Comptación IIMAS UNAM cbíclo 408 http://tring.iimas.nam.mx/~elena/teaching/pdi-mast.html [email protected]
GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.
PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
TEMA 7 VECTORES MATEMÁTICAS I 1º Bach. 1
TEMA 7 VECTORES MATEMÁTICAS I º Bach. TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es un segmento orientado. Un ector AB queda determinado por dos puntos, origen A y extremo B.
Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31
Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular
1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.
EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {
Matrices. Operaciones con matrices.
Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:
BLOQUE. Geometría. 5. Vectores en el espacio 6. Espacio afín 7. Espacio métrico 8. La esfera
LOQUE II Geometría 5. Vectores en el espacio. Espacio afín 7. Espacio métrico. La esfera 5 Vectores en el espacio. Operaciones con ectores Piensa y calcula Z alcula mentalmente la longitud de la diagonal
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio
Algebra Lineal Xa: Álgebra Vectorial en R3
Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
