13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "13/05/14. Conjuntos Ortogonales y mínimos cuadrados CONJUNTOS ORTOGONALES. ! n 6.2. iu j i j. CONJUNTOS ORTOGONALES (opcional) u 1"

Transcripción

1 6 6. Conjntos Ortogonales y mínimos cadrados Se dice qe n conjnto de vectores {,, } en es ortogonal si cada par distinto de vectores del conjnto es ortogonal, esto es, si i i j = 0 mientras i j. El sigiente conjnto es ortogonal (" % " 0 % " 10 %, * ' ' '* ) ', ', '- * ' ' '* +. n Slide 6.- Teorema : Si S ={,, } es n conjnto ortogonal de vectores diferentes de cero en n, entonces S es linealmente independientes y por lo tanto en na base para el sbespacio generado por S. Definición: Una base ortogonal para n sbespacio W de n es na base para W qe tambien es n conjnto ortogonal. Slide 6.- (opcional) Preba: si 0 = c 1 ++ c p para n conjnto de escalares c 1,,c p, entonces 0 = 0i = (c 1 + c ++ c p )i = (c 1 )i + (c )i ++ (c p )i = c 1 ( i ) + c ( i ) ++ c p ( i ) = c 1 ( i ) porqe es ortogonal a,,. Ya qe no es el vector cero, i no es cero, de manera qe c = 0. 1 De manera similar, c,,c p deben ser cero. Slide 6.- 1

2 CONJUNTOS ORTOGONAL Definición: Una base ortogonal para n sbespacio W de n es na base para W es tambien n conjnto ortogonal. Teorema 5: Si {,, } es na base ortogonal para n sbespacio W de n. Para cada vector y en W, los pesos en la combinación lineal y = c 1 ++ c p están definidos por c j = yi j para ( j =1,, p) j i j Slide Ejemplo 1: Considerar la base ortogonal (" % " %, * ' '* B = ) 5 ', '- para n sbespacio W de n. * ' 6 '* +. Expresar el vector v como na combinación lineal de los vectores de la base, si " 1 % ' v = 19 ' ' Slide Proof: The orthogonality of {,, } shows that yi = (c 1 + c ++ c p )i = c 1 ( i ) Since i is not zero, the eqation above can be solved for c 1. To find c j for j =,, p, compte yi j and solve for c j. Para n vector diferente de cero en n, considerar el problema de descomponer el vector y en n en la sma de dos vectores, no múltiplo escalar de y el otro ortogonal a. O sea, reqerimos qe la sigente ecación sea válida y = ŷ + z ----(1) donde ŷ = αara algún escalar α, y z es n vector ortogonal al vector. Ver la figra. Slide Slide 6.- 8

3 Dado caqier escalar α, y z = y α, de manera qe se cmpla (1). Entonces y ŷ es ortogonal a si y nicamente si 0 = (y α)i = yi (α)i = yi α(i) Esto es, (1) se cmple cando z es ortogonal a si y nicamente si α = yi y ŷ = yi. i i Se dice qe el vector ŷ es la proyección ortogonal de y sobre, y el vector z es la componente de y ortogonal a. Si c es calqier escalar diferente de cero y se reemplaza por c en la definición de ŷ, entonces la proyección ortogonal de y sobre c es exactamente la misma qe la proyección de y sobre. Esta proyección esta determinada por el sbespacio L generado por. Algnas veces ŷse escribe como proj L y y se conoce como la projección ortogonal de y sobre L. Esto es, ŷ = proj L y = yi ----() " i% Slide Slide Ejemplo : Para y = 7 y =. " 6 % " % Encontrar la proyección ortogonal de y onto. Lego escribir y como la sma de dos vectores ortogonales, no en Gen{} y otro ortogonal a. Solción: Calclar yi = 7 i = 0 " 6 % " % i = i = 0 " % " % Slide UNA PROYECCIÓN ORTOGONAL La proyección ortogonal de y sobre es ŷ = yi i = 0 0 = = 8 " % " % y la componente de y ortogonal a es La sma de estos dos vectores es y. " y ŷ = 7 % " ' 8 % " ' = 1 % ' 6 Slide 6.- 1

4 Esto es, = + y ŷ (y ŷ) La descomposición de y se ilstra en la figra Nota: Si los cálclos anteriores son correctos, entonces {ŷ,y ŷ} debe ser n connnto ortogonal. Verificando, calclar " ŷi(y ŷ) = 8 % " 'i 1 % ' = 8+8 = 0 El pnto qe identifica a ŷ es el pnto mas cercano de de la recta L al pnto qe identifica a y. Observar la figra de la lámina anterior. Slide Slide Un conjnto {,, } es n conjnto ortonormal si es n conjnto ortogonal de vectores nitarios. Si W es el sbespacio gnerado por este conjnto, entonces {,, } es na base ortonormal para W, ya qe este conjnto es linealmente independiente. El ejemplo mas simple de n conjnto ortonormal es la base estandar {e 1,,e n } para. n Un sbconjnto no vacío de {e 1,,e n } tambien es na base ortonormal. Ejemplo : Demostrar qe {v 1, v, v } es na base ortonormal de, donde " % " % / 11 1/ 6 ' 1/ 66 ' v 1 = 1/ 11, v, = / 6 ' v ' = / 66 ' ' 1/ 11 1/ 6 ' 7 / 66 ' " % Solción: Calclar v 1 iv = / 66 + / 66 +1/ 66 = 0 v 1 iv = / 76 / / 76 = 0 Slide Slide

5 v iv =1/ 96 8 / / 96 = 0 Entonces {v 1, v, v } es n conjnto ortogonal. Además, v 1 iv 1 = 9 /11+1/11+1/11=1 por lo qe v 1, v, y v son vectores nitarios. Entonces {v 1, v, v } es n conjnto ortonormal. Ya qe el conjnto es linealmente independiente, estos tres vectores forman na base para. Ver la interpretación geométrica. v iv =1/ 6 + / 6 +1/ 6 =1 v iv =1/ / / 66 =1 Slide Slide Y MATRICES Cando los vectores en n conjnto ortogonal se normalizan para qe tengan longitd nitaria, los nevos vectores continan siendo n conjnto ortogonal, al nevo conjnto se le llama conjnto ortonormal. Teorema 6: Una matriz U de mxn tiene colmnas ortonormales si y nicamente si U T U = I n. Aplicado a na matriz A de nxn (cadrada), entonces A 1 A = I n, y se dice qe A es na matriz ortogonal. Slide Slide

6 Preba: Para simplificar la notación, sponemos qe U tiene tres colmnas, cada na n vector en m. Donde U = y calclamos " % U T U = " T T T 1T T T " % = T T T % T T T " % Las entradas de la matriz prodcto son prodctos internos, The entries in the matrix at the right are inner prodcts. Las colmnas de U son ortogonales si y nicamente si T = T = 0, T = T = 0, T = T = () las colmnas de U tiene longitd nitaria si y nicamente si T =1, T =1, T =1 ----(5) Entonces U T U es la matriz identidad. Slide Slide 6.- Ejemplo : Considerar la matriz " % ' 19 ' B = ' 8 1 ' ' 8 1 ' 8 1 ' Demostrar qe es na matriz ortogonal Slide 6.- 6

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-0 I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones con sbespacios vectoriales

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio

Más detalles

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES

GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES GEOMETRÍA: VECTORES 1 Definición de ector: TEMA 7: VECTORES Un ector es n segmento orientado qe qeda determinado por dos pntos, A y B, el primero de los pntos se denomina origen y el segndo es el extremo,

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general.

; implícitas: x = 0. z. ; implícitas: -x+3y+2z = 0. z. , en general. Solciones de la hoja Espacio Vectorial Crso 9- - En cada caso, determinar si F es n sbespacio ectorial de R En caso afirmatio, bscar na base nas ecaciones implícitas paramétricas de F F,, R /, R a) b)

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

actividades propuestas en la unidad vectores

actividades propuestas en la unidad vectores actiidades propestas en la nidad ectores Las respestas feron elaboradas por las Profesoras Lciana Calderón y María de los Ángeles Fernandez qienes realizan na adscripción en la Cátedra. Propesta.3: 1)

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano

BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano BLOQUE 4: GEOMETRÍA Vectores La recta en el plano 63 VECTORES Hay magnitdes qe no qedan bien definidas mediante n número; necesitamos conocer además s dirección y s sentido. A estas magnitdes se les llama

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

VECTORES - PRODUCTO ESCALAR - 1 -

VECTORES - PRODUCTO ESCALAR - 1 - VECTORES - PRODUCTO ESCALAR - - Observa el rombo de la figra y calcla: B a) AB + BC b) OB + OC c) OA + OD d) AB + CD A O C e) AB + AD f) DB CA Expresa los resltados tilizando los vértices del rombo. D

Más detalles

Práctico Nº 4 : Vectores

Práctico Nº 4 : Vectores Práctico Nº 4 : Vectores Nota: Cando en el presente práctico los ectores estén dados por coordenadas salo qe se aclare lo contrario deberá entenderse qe éstas se refieren a la base canónica del espacio

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

12/05/14. Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES 4.3 CONJUNTOS LINEALMENTE INDEPENDIENTES CONJUNTOS LINEALMENTE INDEPENDIENTES

12/05/14. Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES 4.3 CONJUNTOS LINEALMENTE INDEPENDIENTES CONJUNTOS LINEALMENTE INDEPENDIENTES /5/.3 Espacios Vectoriales CONJUNTOS LINEALMENTE INDEPENDIENTES; BASES Se dice que un conjunto indexado de vectores {v,, v p } en V es linealmente independiente si la ecuación vectorial cv + c v +... +

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTELAR ADAJOZ A Mengiano PRUEA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTARIA JUNIO - 9 (RESUELTOS por Antonio Mengiano) MATEMÁTICAS II Tiempo máimo: horas y mintos - Debe escogerse na sola de las opciones

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

.. A x 1 lo llamamos primera componente, a x 2 segunda

.. A x 1 lo llamamos primera componente, a x 2 segunda Capítlo VECTORES DE IR n.. Introdcción Una vez tenemos claro lo qe es n sistema de ecaciones lineales y s representación matricial, el significado de s solción, el tipo de conjnto solción y n método para

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Vector director de una recta

Vector director de una recta Vector director de na recta En la figra se observa n vector libre aplicado en distintos pntos. Cada na de las flechas resltantes proporciona na recta. Se tienen así las rectas r, r y r3 qe son paralelas

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres

Más detalles

EL MODELO DE REGRESIÓN LINEAL MÚLTIPLE

EL MODELO DE REGRESIÓN LINEAL MÚLTIPLE EL MODELO DE REGRESIÓN LINEAL MÚLTIPLE Ajste mínimo-cadrático del hiperplano de regresión En el modelo de regresión múltiple qe vamos a presentar se considera qe el regresando es na fnción lineal de k-

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat Problemas

Concurso Nacional de Matemáticas Pierre Fermat Problemas Concrso Nacional de Matemáticas Pierre Fermat 014 Examen para Nivel Secndaria Etapa Eliminatoria Instrcciones: No tilizar cellar (éste deberá de estar apagado), ipod, notebook, calcladora ó calqier otro

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

Estructura de Computadores. 1. Ejercicios Resueltos 1.1.

Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Estrctra de Comptadores Tema. La nidad de memoria II. La memoria virtal Localidad de referencia. Definición de memoria cache. Estrategias de mapeado: directo, asociativo y asociativo por conjntos. Algoritmos

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3

EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3 GEOMETRÍA Ejercicios reseltos del tema Geometría en R Jan S. Herrera Lpión EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R Ejercicio Halla n vector perteneciente a R qe sea perpendiclar a (,8,-) y cyo prodcto

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

4 # Vectores en el espacio (I) { } son linealmente independientes { } = 1. En contexto (pág. 107) Amplía (pág. 114) Amplía (pág.

4 # Vectores en el espacio (I) { } son linealmente independientes { } = 1. En contexto (pág. 107) Amplía (pág. 114) Amplía (pág. BLOQUE. Geometría 4 # Vectores en el espacio (I) En contexto (pág. 07) a) Respesta abierta a modo de reflexión indiidal. b) Respestas sgeridas: Las imágenes mestran flechas qe indican la dirección y los

Más detalles

1. Transformaciones geométricas. Isometrías o movimientos

1. Transformaciones geométricas. Isometrías o movimientos Transformaciones geométricas Isometrías o movimientos CAPÍTULO PRIMERO Transformaciones geométricas Isometrías o movimientos Definiciones Sea E n n espacio afín eclídeo de dimensión n Llamaremos transformación

Más detalles

Vectores en el espacio

Vectores en el espacio 1. El concepto, características y operaciones de los vectores en el espacio son una generalización de los vectores del plano, que ya se conocen de cursos pasados. Es conveniente por tanto repasar conceptos

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 2009

CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 2009 CADENAS DE MARKOV DE PARÁMETRO CONTINUO Rosario Romera Febrero 29. Nociones básicas Para las cadenas de Markov con parámetro de tiempo discreto hemos visto qe la matriz de transición en n etapas pede ser

Más detalles

TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS DEL ESPACIO AFIN

TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS DEL ESPACIO AFIN TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS..D - Sistema de referencia DEL ESPACIO AFIN En el Sistema Diédrico se tilian tres lanos ortogonales (XY, XZ ZY), denominados PH, PV PP) sobre los qe se

Más detalles

Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002

Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002 Cálclo Diferencial 1. Gráficas y modelos Teoría: Ver páginas y 5 del capítlo P del libro: Preparación para el Cálclo del libro Cálclo I de los atores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 3.- Espacios Vectoriales 1 Espacio Vectorial Un espacio vectorial sobre K es una conjunto V que cumple:

Más detalles

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Unidad La Integral Definida 08/0/06 Prof. José G. Rodrígez Ahmada de 0 Actividades. Referencia del Teto: Sección 4. Área Ver ejemplos 4. Ejercicios de práctica: Impares del 9. Sección 4. La Sma de Riemann

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Lección 1: Tensiones verticales en los suelos.

Lección 1: Tensiones verticales en los suelos. Lección : Tensiones verticales en los selos. Tensión vertical en n pnto del terreno. La tensión vertical en n pnto calqiera de n selo a na profndidad es el peso de la colmna de terreno existente por encima

Más detalles

VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas

VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Magnitdes Vectoriales: Un ector es n segmento orientado qe, para ser definido, precisa

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 13. Mínimos cuadrados. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 3. Mínimos cuadrados Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

Introducción al método de los

Introducción al método de los Introdcción al método de los Elementos Finitos en D Lección 0: Prelim Matem Ecaciones diferenciales formlación débil Adaptado por Jaime Pig-Pe UC) de:. Zabaras, N. Crso FE Analsis for Mech&Aerospace Design.

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

VECTORES. Copia nun papel cuadriculado os catro vectores seguintes: Expresa o vector b como produto dun dos vectores a, b ou c por un número.

VECTORES. Copia nun papel cuadriculado os catro vectores seguintes: Expresa o vector b como produto dun dos vectores a, b ou c por un número. a c VECTORES Páxina REFLEXIONA E RESOLVE Mltiplica vectores por números Copia nn papel cadriclado os catro vectores segintes: d Representa: a a c Expresa o vector como prodto dn dos vectores a, o c por

Más detalles

José Boza Chirino Análsis Múltivariante ( )

José Boza Chirino Análsis Múltivariante ( ) José Boza Chirino Análsis Múltivariante (007-08) TEMA I. INTRODUCCIÓN AL ANÁLISIS MULTIVARIANTE. I.1 Introdcción. En los estdios de economía y empresa cada vez es sal representar los conceptos mediante

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

VECTORS. Copia en un paper quadriculat els quatre vectors següents: Expressa el vector d com a producte d un dels vectors a, b o c per un nombre.

VECTORS. Copia en un paper quadriculat els quatre vectors següents: Expressa el vector d com a producte d un dels vectors a, b o c per un nombre. a c VECTORS Pàgina REFLEXIONA I RESOL Mltiplica vectors per nomres Copia en n paper qadriclat els qatre vectors següents: d Representa: a a c Expressa el vector d com a prodcte d n dels vectors a, o c

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a.

23/10/14. Algebra Matricial $ $ ' ' ' $ & & & # # I 3 I 2 = 1 0 $ DEFINICION DE MATRIZ 2.1 CONCEPTOS DE MATRICES CONCEPTOS DE MATRICES. $ n. ! a. /0/ Algebra Matricial. OPERACIONES DE DEFINICION DE MATRIZ Si A es una matriz de m x n (esto es una matriz con m filas y n columnas) la entrada escalar en la i-ésima fila y la j-ésima columna de A se denota

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

VECTORES MATEMÁTICAS I 1º

VECTORES MATEMÁTICAS I 1º VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas Matemáticas I VECTORES I. DEFINICIONES Magnitdes Vectoriales: Un vector es n segmento orientado qe,

Más detalles

A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros

A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros r A X OX=OA+t, t R O 1 Emilio Martínez Ros del plano 1. Vectores y pntos... 1 1.1 Vectores fijos 1. Vectores libres 1.3 Operaciones con vectores - Sma de vectores - Prodcto de n número real por n vector

Más detalles

Tema 4: Vectores en el espacio.

Tema 4: Vectores en el espacio. Tema 4: Vectores en el espacio. Producto escalar, vectorial y mixto January 9, 2017 1 Vectores en el espacio Un vector jo en el espacio, AB, es un segmento orientado de origen A, y extremo B. Los vectores

Más detalles

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa Introdcción a la Lógica Difsa c M. Valenzela 1996 1998, 2006 (24 de febrero de 2006) Este apnte está basado en (Driankov, Hellendoorn, y Reinfrank, 1996, secciones 2.1 y 2.2) y (Klir y Yan, 1995). 1. Teoría

Más detalles

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Bases ortogonales Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 9 Definición Sea V un espacio vectorial y {v,..., v n} una base para V. decimos que {v,..., v n} es una base ortogonal

Más detalles

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero.

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero. En el cálclo de los límtes se tilizarán los sigientes resltados: I) II) III) IV) sin 1 sina a a a sin a a 1 sink a k a 1,siendoa na constante real distinta de cero. 1, siendo k na constante real distinta

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Ejercicios de ALN (1)

Ejercicios de ALN (1) Ejercicios de ALN (1) 11 de febreo de 2015. Estos ejercicios son muy fáciles. Hacerles para el día 13. Devolver solamente la ficha de autoevaluación (al final). Repasos de geometría Consideramos el plano

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

1 Parametrización de super cies

1 Parametrización de super cies Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

UNIDAD 6 ESPACIO TRIDIMENSIONAL: EL PLANO

UNIDAD 6 ESPACIO TRIDIMENSIONAL: EL PLANO UIDAD 6 ESPACIO TRIDIMESIOAL: EL PLAO Objetivos Geometría analítica Introducción x 1, x 2, x 3 x 1, x 2 y x 3, x 1, x 2 x 3 Vector dirigido. segmento A dirección A B B B A u v w u u u = (u 1,u 2 u u u

Más detalles