Lección 1: Tensiones verticales en los suelos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección 1: Tensiones verticales en los suelos."

Transcripción

1 Lección : Tensiones verticales en los selos. Tensión vertical en n pnto del terreno. La tensión vertical en n pnto calqiera de n selo a na profndidad es el peso de la colmna de terreno existente por encima de ese pnto. Considerando n entorno cadrado del pnto de valor nidad. Denominando el peso específico del selo en estado natral: v * v v v *(** ) (*) * Con lo cal se tiene qe la tensión vertical en n pnto de n selo es igal al peso específico del mismo por la profndidad del pnto. La ley de presiones verticales para na profndidad z es lineal: v * z Tensión vertical con terrenos estratificados. Normalmente, en la natraleza los terreno no son omogéneos sino qe se encentran estratificados, variando los pesos específicos de cada estrato. El valor de las tensiones verticales en los pntos: 0,,3. 0 v 0 0 v 0 ( * ) v v ( * ) ( * ) ( * ) ( * ) ( * ) Como se pede observar la ecación de las tensiones verticales ya no es na recta de pendiente constante sino qe la pendiente va variando, al pasar por los distintos estratos en fnción de s peso específico. Tomás Cabrera (U..M.)

2 Torre Espacio ( ) paseo de la Castellana nº 59 D Madrid. 4, m. (56 plantas) Losa cimentación, espesor 4 m (asiento máximo previsto 6 cm.) 8,4 m. (6 plantas) Arq: Henry N. Cobb (ei Cobb Freed & artners) constrye OHL Tomás Cabrera (U..M.)

3 rincipio de las tensiones efectivas rincipio de las tensiones efectivas. Ley de Terzagi. Los selos son n sistema trifásico: tierra, aire, aga, en eqilibrio. Existen partíclas sólidas con ecos qe peden estar o no rellenos total o parcialmente de aga.. El peso específico de na mestra de terreno varia en fnción de la medad: Terreno seco.( pierde prácticamente toda medad) Terreno con medad natral. Terreno satrado. (todos ss ecos están rellenos de aga). Terreno satrado y smergido.( terreno por debajo del nivel freático. Estdiemos el caso de n selo satrado. ara n pnto dando n corte vertical en s estrctra interna del selo, tendremos na sitación como la de la figra: N A N I N I A 0 lanteando el eqilibrio de ferzas verticales: La ferza total normal N qe actúa sobre la sperficie A, será igal a la sma de las ferzas intersticiales del aga qe satra el selo y la ferza normal qe se transmite en el contacto entre los granos: N N N A *( A ) 0 Tensión Intersticial = Dividiendo por el área A para pasar a tensiones: N N A 0 A A A or la diferencia de tamaños, introdcimos la simplificación: Entonces la Tensión Total (brta) es: N A A 0 0 A Y la Tensión Efectiva (brta) es: N ede escribirse: y también: A Qe es la Ley de Terzagi Tomás Cabrera (U..M.)

4 resiones en C.T.E. CTE sige tilizando los conceptos clásicos de tensiones totales y efectivas. En el estdio de la cimentación de n edificio la presión inicial en el terreno a la profndidad del plano de cimentación se denomina (q o). Se diferencia, aora, entre tensiones o presiones brtas y netas como sige: resión total brta = q b resión total neta = q neta = q b q o resión efectiva brta = (q I b) = q b resión efectiva neta = q neta = q b q o q neta = (qb) qo = (q b +) qo =(q neta + qo )+ qo= q neta +( qo ) + qo (q neta) = resión total neta =..= resión efectiva neta = (q I neta) ara mayor claridad se reprodce a continación el apartado Definiciones del CTE (009) IMORTANTE : Sólo las presiones NETAS asientos q neta = q b q 0 Con qb = qo q neta = 0 q neta = q b q 0 Tomás Cabrera (U..M.) 3

5 Tensiones en n selo con aga en reposo En ocasiones el terreno presenta n nivel freático sperficial qe afecta a nestra excavación. Tensiones verticales en n selo con nivel freático intermedio. En la figra sigiente aparece n nivel freático intermedio, a na determinada profndidad. eso específico mestra: natral NF selo medad natral eso específico mestra: sm selo satrado y smergido El cálclo de las tensiones verticales es distinto por encima y por debajo del nivel freático (NF). º or encima del (NF), se calclará la tensión vertical en fnción del peso específico aparente del selo, bien sea seco, con medad natral, o en s caso satrado por capilaridad. (recordar qe la densidad aparente de n selo toma salmente valores entre,50 y,5 kg dm 3 ). Además la presión del aga será nla: = 0 Las tensiones total y efectiva se igalan en este caso: v v * z º or debajo del (NF), para n pnto se calcla la tensión efectiva aplicando el principio de las tensiones efectivas, es decir, por diferencia entre la tensión total y la presión del aga: La presión del aga es: La tensión efectiva por diferencia: v ( * ) ( * sat) * v v sat ( * ) ( * ) ( * ) ( * ) ( sat ) ( * ) ( sm) Aora en este otro caso: v v ( * ) ( sm) Tomás Cabrera (U..M.) 4

6 Tensiones en n terreno smergido con aga en reposo El nivel freático está por encima del terreno natral. Tensiones verticales en n terreno smergido. En la figra sigiente aparece n selo inndado por na altra de aga. NF Aga resiones totales Selo satrado y smergido En el pnto del terreno la tensión total vertical es: σvp sm v ( * ) ( * sat) resiones intersticiales resiones efectivas La presión del aga o presión intersticial es: ( )* Aplicando el principio de las tensiones efectivas: v ( * ) ( * sat) ( )* v sat ( * ) ( * ) ( * ) ( * ) Finalmente, en tensiones efectivas: *( ) * v sat sm En tensiones totales: *( t ) ( * sm) v v sa Tomás Cabrera (U..M.) 5

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI Capítlo FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZGHI Problemas de Geotecnia y Cimientos 34 Capítlo - Fljo en Medios Porosos Principio de Teraghi PROLEM.1 El permeámetro de carga constante, cyo esqema se

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Efectuado un sondeo en un terreno se han encontrado las siguientes capas:

Efectuado un sondeo en un terreno se han encontrado las siguientes capas: PIV-1 EJERCICIO 1 Efectuado un sondeo en un terreno se han encontrado las siguientes capas: A) Desde la superficie hasta una profundidad de 4 m, un estrato de grava de peso específico seco, γ d = 20 kn/m

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

Estructura de Computadores. 1. Ejercicios Resueltos 1.1.

Estructura de Computadores. 1. Ejercicios Resueltos 1.1. Estrctra de Comptadores Tema. La nidad de memoria II. La memoria virtal Localidad de referencia. Definición de memoria cache. Estrategias de mapeado: directo, asociativo y asociativo por conjntos. Algoritmos

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma.

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma. º COGRESO EMIE 8-9 Jlio ETSIE, Universidad Politécnica de Valencia Aproimación al MEF en el cálclo de estrctras: Resolción paso a paso de na estrctra sencilla desde las fnciones de forma. Enriqe David

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

Apéndice I Capa límite

Apéndice I Capa límite Apéndice I Capa límite Capa límite. Aproimadamente hasta antes de 860, el interés de la ingeniería por la mecánica de flidos se limitaba casi eclsivamente al fljo del aga. La complejidad de los fljos viscosos,

Más detalles

La Oferta Agregada. La Oferta Agregada creciente. Modelo de los salarios rígidos. Modelo de los salarios rígidos (cont)

La Oferta Agregada. La Oferta Agregada creciente. Modelo de los salarios rígidos. Modelo de los salarios rígidos (cont) La Oferta gregada Los capítlos anteriores han estdiado la Demanda gregada, los efectos qe sobre la misma tienen las políticas fiscales y las pertrbaciones de ss componentes ara complementar ese análisis

Más detalles

Método de identificación de modelos de orden reducido de tres puntos 123c

Método de identificación de modelos de orden reducido de tres puntos 123c Método de identificación de modelos de orden redcido de tres pntos 123c Víctor M. Alfaro, M.Sc. Departamento de Atomática Escela de Ingeniería Eléctrica Universidad de Costa Rica valfaro@eie.cr.ac.cr Rev:

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Los datos para éste análisis consisten de m muestras de una población que se detalla a continuación:

Los datos para éste análisis consisten de m muestras de una población que se detalla a continuación: Gráfico U Resmen El procedimiento del Gráfico U crea n cadro de control para datos qe describe el número de desarreglos registrados por nidad como resltado de inspeccionar m mestras. Las mestras podrían

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

CAPITULO 2 MARCO TEÓRICO

CAPITULO 2 MARCO TEÓRICO CAPITULO 2 MARCO TEÓRICO 1 CAPITULO 2 MARCO TEÓRICO El análisis del proyecto detallado en el capítlo 1 se hará con respecto a factores importantes qe se detallan a continación y se complementará con cálclos

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

ESTADO DE TENSIONES Y DE DEFORMACIONES

ESTADO DE TENSIONES Y DE DEFORMACIONES ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales

Más detalles

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 3. La Integral Definida. 08/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Unidad La Integral Definida 08/0/06 Prof. José G. Rodrígez Ahmada de 0 Actividades. Referencia del Teto: Sección 4. Área Ver ejemplos 4. Ejercicios de práctica: Impares del 9. Sección 4. La Sma de Riemann

Más detalles

Los datos del sistema están dados en valores por unidad sobre las mismas bases.

Los datos del sistema están dados en valores por unidad sobre las mismas bases. Ejemplo. Malio Rodrígez. Ejemplo, Malio Rodrígez En el sigiente sistema de potencia ocrre n cortocircito trifásico sólido en el pnto, el cal esta bicado exactamente en la mita de la línea -. Los interrptores

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

Zapatas. Distribución de presiones de contacto Distribución real vs. Modelo (carga axial concéntrica) Modelo Real Real suelo granular cohesivo

Zapatas. Distribución de presiones de contacto Distribución real vs. Modelo (carga axial concéntrica) Modelo Real Real suelo granular cohesivo profndas Selo sperficial de aja calidad Ej. pilotes sperficiales para mro para colmnas Districión de presiones de contacto Districión real vs. Modelo (carga axial concéntrica) Modelo Real Real selo granlar

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

1 Composición de funciones

1 Composición de funciones Composición de fnciones La composición de fnciones o la fnción de fnción es na operación qe aparece natralmente en varias sitaciones. En esta nota, presentaremos (sin demostración) algnos de los resltados

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

Áreas de Regiones Cuadrangulares

Áreas de Regiones Cuadrangulares Geoetría ÍTUL XIII Áreas de egiones adranglares 01. ado n triánglo, en la prolongación de y en se bican los pntos y Q respectivaente, se trazan H y Q ; ( H) ; calcle el área de la región QH si = H = H;

Más detalles

22 Zapatas y Cabezales de Pilotes

22 Zapatas y Cabezales de Pilotes Zapatas y Cabezales de Pilotes ACTUALIZACIÓN PARA EL CÓDIGO 00 El artíclo 11.1.3 presenta reqisitos revisados para la armadra de corte de las zapatas, cyo objetivo es mejorar la segridad contra la falla

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

Series aritméticas. ó 4 6 8 10 La suma de los primeros n términos en una serie se representa por S n. .Por ejemplo, S 6

Series aritméticas. ó 4 6 8 10 La suma de los primeros n términos en una serie se representa por S n. .Por ejemplo, S 6 LECCIÓN CONDENSADA 11.1 Series aritméticas En esta lección Aprenderás la terminología y la notación asociada con las series Descbrirás dos fórmlas para la sma parcial de na serie aritmética Una serie es

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

Introducción a la simulación de fluidos (II) Animación Avanzada

Introducción a la simulación de fluidos (II) Animación Avanzada Introdcción a la simlación de flidos (II) Animación Avanzada Iván Aldán Íñigez 7 de Marzo de 014 Índice Flidos en el contino Leyes de conservación Método de paso fraccionado Advección Viscosidad Ferzas

Más detalles

TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO

TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO Laboratorio Virtual de Ingeniería Geotécnica www.utpl.edu.ec/vleg Universidad Técnica Particular de Loja Ecuador - 2010

Más detalles

Dinámica de los Fluidos

Dinámica de los Fluidos CI3A Mecánica de lidos Prof. Aldo Tambrrino Tavantzis Dinámica de los lidos Aplicación de la Segnda Ley de Newton al Movimiento de los lidos: Teorema de la Cantidad de Movimiento SEGUNDA LEY DE NEWTON

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U CONVECCION Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U U está formado por resistencias conectias condctias. Las conectias dependen del coeficiente

Más detalles

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas DEPARTAMENTO DE MATEMÁTICA DIBUJO Y SISTEMAS DE REPRESENTACIÓN Agrimensra Civil Mecánica Metalrgia Extractiva Minas Unidad X: Sistema de Proyección Acotada Dibjo y Sistemas de Representación UNIDAD X -

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio

Más detalles

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171

Resuelve. Unidad 7. Vectores. BACHILLERATO Matemáticas I. Descomposición de una fuerza. Página 171 Resele Página 171 Descomposición de na ferza I. Una cerda de 10 m de larga celga de dos escarpias, A y B, sitadas a la misma altra y a m de distancia entre sí. De ella se celga na pesa de 0 kg de masa

Más detalles

Jorge Pontt O. Adolfo Paredes P.

Jorge Pontt O. Adolfo Paredes P. Capítlo 2: EL TRANSFORMADOR niversidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P. 1 2.4 Transformadores Trifásicoss 2.4.1 Principio de fncionamiento.

Más detalles

3. Sistema Por Unidad Ejemplos

3. Sistema Por Unidad Ejemplos Anexo. istema Por Unidad Ejemplos Ejemplo.1 Dos generadores conectados en paralelo a la misma barra poseen reactancias sbtransitoria de 10%. El generador número no posee na capacidad de 500 KA, y el número

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Crso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Comptación IIMAS UNAM cbíclo 408 http://tring.iimas.nam.mx/~elena/teaching/pdi-mast.html elena.martinez@iimas.nam.mx

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN SCUL D FÍSIC UNIVRSIDD NCIONL D COLOMI SD MDLLÍN PRÁCTIC N LORTORIO D FÍSIC MCÁNIC TM : CONSRVCIÓN D L NRGÍ OJTIVO GNRL Determinar la cantidad de energía mecánica de n sistema aislado. OJTIVOS SPCÍFICOS

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

Tema 5: Ecuaciones diferenciales de primer orden homogéneas

Tema 5: Ecuaciones diferenciales de primer orden homogéneas Tema 5: Ecaciones diferenciales de primer orden homogéneas 5.1 Primer método de solción En la e.d. homogénea d (1) f (, ) d donde, de acerdo con lo visto en (.), f(t, t) f(, ), se sstite () v s correspondiente

Más detalles

426 CAPÍTULO 6 LAS FUNCIONES TRIGONOMÉTRICAS

426 CAPÍTULO 6 LAS FUNCIONES TRIGONOMÉTRICAS 426 CAPÍTULO 6 LAS FUNCIONES TRIGONOMÉTRICAS Ejer. 11-16: Encentre los valores eactos de. 11 12 30 13 14 45 223; 23 722; 7 5; 523 15 16 8 60 423; 4 Ejer. 17-22: Encentre los valores eactos de las fnciones

Más detalles

Cimentación por sustitución de pesos o compensadas - (Cajones de cimentación) Cuando el edificio vaya a disponer de sótanos y se vaya a cimentar por medio de losa, es posible que el peso de las tierras

Más detalles

CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO AUTOR JULIO MELÉNDEZ PULIDO

CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO AUTOR JULIO MELÉNDEZ PULIDO CENTRO DE BACHILLERATO TECNOLÓGICO INDUSTRIAL Y SERVICIOS NO. 50 CURSO CÁLCULO INTEGRAL PERIODO 0- AUTOR JULIO MELÉNDEZ PULIDO Cálclo Integral 0- CBTIS No. 50 CONCEPTO FUNDAMENTAL:. INTEGRALES ELEMENTALES

Más detalles

límite Esquema de cálculoc en una placa plana Las soluciones que brinda el flujo potencial tienen asociada una condición de deslizamiento en la pared

límite Esquema de cálculoc en una placa plana Las soluciones que brinda el flujo potencial tienen asociada una condición de deslizamiento en la pared Capa ímite as solciones qe brinda el fljo potencial tienen asociada na condición de deslizamiento en la pared A' A' as solciones del fljo potencial son aproimadas a altos números de nolds pero dejan de

Más detalles

63 Polilóbulos y competencias básicas

63 Polilóbulos y competencias básicas Febrero 010, pp. 1-8 63 Polilóblos y competencias básicas Se presenta n ejemplo de desarrollo de las competencias básicas en el almnado de edcación secndaria a través del estdio geométrico de polilóblos.

Más detalles

TEMA 11 DISTRIBUCIONES DE VARIABLE CONTINUA. LA NORMAL

TEMA 11 DISTRIBUCIONES DE VARIABLE CONTINUA. LA NORMAL Tema Distribciones de variable contina. La normal Mate CCSSI º Bach. TEMA DISTRIBUCIONES DE VARIABLE CONTINUA. LA NORMAL FUNCIONES DE PROBABILIDAD DE VARIABLES CONTINUAS EJERCICIO : La sigiente gráfica

Más detalles

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3 Ejercicios para practicar. Dado los conjntos A = {, 4, 6, 8,0,,4} B = {,, 5, 7, 9,,,5}; Constra la sigiente relación de A en B R = {(, ) / = + }. Adicionalmente determine el dominio el rango de cada na

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República PROBLEMA 1

Instituto de Física Facultad de Ingeniería Universidad de la República PROBLEMA 1 EXEN - Física General 30 de jlio de 004 VERSIÓN Considere: g = 9,8 m/s R = 8,345 J / mol K PROBLE Una mestra de n mol de gas ideal encerrado en na cámara experimenta el ciclo mostrado en la figra, donde

Más detalles

DISEÑO Y CONSTRUCCIÓN DE UNA TURBINA PELTON PARA GENERACIÓN ELÉCTRICA, CAPACIDAD 2 KW.

DISEÑO Y CONSTRUCCIÓN DE UNA TURBINA PELTON PARA GENERACIÓN ELÉCTRICA, CAPACIDAD 2 KW. DISEÑO Y CONSTRUCCIÓN DE UNA TURBINA PELTON PARA GENERACIÓN ELÉCTRICA, CAPACIDAD KW. ANALISIS DEL COMPORTAMIENTO IDRÁULICO Y MECÁNICO DE LA TURBINA, MEDIANTE MODELOS.. INTRODUCCIÓN Las consieraciones generales

Más detalles

MMII_L1_c3: Método de Lagrange.

MMII_L1_c3: Método de Lagrange. MMII_L_c3: Método de Lagrange. Gión de la clase: Esta clase está centrada en plantearse la resolción de las ecaciones casi lineales de primer orden mediante el Método de Lagrange. El método eqivale a plantearse

Más detalles

TEMA 7. ESTADO LIMITE ULTIMO DE HUNDIMIENTO.

TEMA 7. ESTADO LIMITE ULTIMO DE HUNDIMIENTO. -1- último de undimiento (I) Sea una carga vertical aplicada sobre una cimentación. Con valores peueños, esta carga producirá asientos. Pero si sigue aumentando, se producirá el agotamiento del terreno

Más detalles

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa

Tecnologías de Sistemas Inteligentes (IA95 022) Introducción a la Lógica Difusa Introdcción a la Lógica Difsa c M. Valenzela 1996 1998, 2006 (24 de febrero de 2006) Este apnte está basado en (Driankov, Hellendoorn, y Reinfrank, 1996, secciones 2.1 y 2.2) y (Klir y Yan, 1995). 1. Teoría

Más detalles

14 Corte por Fricción

14 Corte por Fricción 14 Corte por Fricción CONSIDERCIONES GENERLES Cando se pblicó el docmento CI 318-83, el artíclo 11.7 fe rescrito completamente para ampliar el concepto de corte por fricción de manera qe inclyera aplicaciones

Más detalles

.. A x 1 lo llamamos primera componente, a x 2 segunda

.. A x 1 lo llamamos primera componente, a x 2 segunda Capítlo VECTORES DE IR n.. Introdcción Una vez tenemos claro lo qe es n sistema de ecaciones lineales y s representación matricial, el significado de s solción, el tipo de conjnto solción y n método para

Más detalles

Metrología Eléctrica

Metrología Eléctrica GRADO EN INGENIERÍA ELÉCTRICA Determinación de las incertidmbres de medida Adenda tema 6) 01-013 Metrología Eléctrica Dr. Manel Valcárcel Fontao UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Crso 01/013

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial

2.3. Plano tangente a una superficie paramétrica. Sea la superficie paramétrica S determinada por la función vectorial .3. Plano tanente a na sperficie paramétrica. Sea la sperficie paramétrica S determinada por la fnción ectorial ( ) R R en el pnto P, cyo ector posición 3 : /, x,, y,, z, es (, ). Si se mantiene a constante

Más detalles

MÉTODO MATRICIAL. La expresión que relaciona las fuerzas con los desplazamientos es de la forma: F=KU

MÉTODO MATRICIAL. La expresión que relaciona las fuerzas con los desplazamientos es de la forma: F=KU MÉTODO MATRICIA Introdcción Utiliaremos el ejemplo de la figra como referencia para la exposición del Método Matricial. Anqe se trata de n caso bidimensional (D), es sficiente para la explicación de los

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

Tema 2: Control de sistemas SISO

Tema 2: Control de sistemas SISO Tema : Control de sistemas SISO Control Atomático º Crso. Ing. Indstrial Escela Técnica Sperior de Ingenieros Universidad de Sevilla Crso Índice. Descripción de sistemas dinámicos. Sistemas SISO. Identificación

Más detalles

Anexo 3.1 Sistema Por Unidad

Anexo 3.1 Sistema Por Unidad ELC-30514 Sistemas de Potencia I Anexo 3.1 Prof. Francisco M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm Ejemplo Considere el sistema de potencia de la Figra sigiente.

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

TEMA 1: VECTORES EN EL PLANO

TEMA 1: VECTORES EN EL PLANO Profesora: María José Sánchez Qeedo TEMA 1: VECTORES EN EL PLANO El estdio del Análisis Vectorial se remonta al siglo XVII, cando el ingeniero holandés Steen (1548-160), formló el principio del paralelogramo

Más detalles

3. Control de procesos con lógica difusa (CLD)

3. Control de procesos con lógica difusa (CLD) 3. Control de procesos con lógica difsa (CLD) 3.1. Presentación El Control por Lógica Difsa (CLD) es n tipo de control salmente de tipo realimentado qe está basado en reglas. Se orienta al mejoramiento

Más detalles

Métodos y técnicas de integración

Métodos y técnicas de integración Métodos y técnicas de integración (º) Integración por sstitción o cambio de variable En mchas ocasiones, cando la integración directa no es tan obvia, es posible resolver la integral simplemente con hacer

Más detalles

ANEJO II: INSTALACION ELECTRICA INDICE

ANEJO II: INSTALACION ELECTRICA INDICE ANEJO II: INSTALACION ELECTRICA INDICE PAGINA 1.- CALCULO DE LA ILUMINACION 192 1.1. Naves de Recepción. 192 1.2. Naves de Recría. 194 1.3. Naves de Cebo. 195 1.4. Oficina y vestario. 196 1.5. Almacén.

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

IMAGENOLOGÍA EN RESONANCIA MAGNÉTICA

IMAGENOLOGÍA EN RESONANCIA MAGNÉTICA El ININ hoy IMAGENOLOGÍA EN RESONANCIA MAGNÉTICA Por: Ricardo Rojas Martínez, Depto. de Protección Radiológica (rrm@nclear.inin.mx) La imagen por resonancia magnética (RM) se ha convertido en la gran revolción

Más detalles

El reaseguro proporcional de umbral y la probabilidad de supervivencia como criterio de elección de estrategias(*)

El reaseguro proporcional de umbral y la probabilidad de supervivencia como criterio de elección de estrategias(*) ESTADÍSTICA ESPAÑOLA Vol. 51, núm. 171, 2009, págs. 237 a 256 El reasegro proporcional de mbral y la probabilidad de spervivencia como criterio de elección de estrategias(*) por M. MERCÈ CLARAMUNT MAITE

Más detalles

RECORDANDO ALGUNOS CONCEPTOS RELATIVOS AL AGUA EN MOVIMIENTO, MOVIMIENTO AL AGUA QUIETA Y A TERZAGHI, ENTRE OTROS

RECORDANDO ALGUNOS CONCEPTOS RELATIVOS AL AGUA EN MOVIMIENTO, MOVIMIENTO AL AGUA QUIETA Y A TERZAGHI, ENTRE OTROS REORDNDO LGUNOS ONEPTOS RELTIVOS L GU EN MOVIMIENTO, L GU QUIET Y TERZGHI, ENTRE OTROS El aga, la altra piezométrica, el fljo y la permeabilidad En nestro mndo, calqier evento físico implica na conversión

Más detalles

TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS DEL ESPACIO AFIN

TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS DEL ESPACIO AFIN TEMA I: DEFINICIÓN Y REPRESENTACIÓN DE ELEMENTOS..D - Sistema de referencia DEL ESPACIO AFIN En el Sistema Diédrico se tilian tres lanos ortogonales (XY, XZ ZY), denominados PH, PV PP) sobre los qe se

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 2: OSCILACIONES Y ONDAS

SOLUCIONES PROBLEMAS FÍSICA. TEMA 2: OSCILACIONES Y ONDAS Facltad de Ciencias Crso 00-0 Grado de Óptica y Optoetría SOLUCIONES PROBLEMAS FÍSICA. TEMA : OSCILACIONES Y ONDAS. Una onda sonora plana y de recencia,00 khz se propaga en n edio gaseoso de densidad,4

Más detalles

Diseño y cálculo de uniones con tornillos pretensados

Diseño y cálculo de uniones con tornillos pretensados Diseño y cálclo de niones con tornillos pretensados Apellidos nombre Arianna Gardiola Víllora (agardio@mes.pv.es) Departamento Centro Mecánica del Medio Contino y Teoría de Estrctras Escela Técnica Sperior

Más detalles

TEMA 1. MAGNITUDES FÍSICAS

TEMA 1. MAGNITUDES FÍSICAS TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS INODUCCIÓN AL MÉODO DE LOS ELEMENOS FINIOS. INODUCCIÓN El método de los elementos finitos (MEF) ha adqirido na gran importancia en la solción de problemas ingenieriles, físicos, etc., a qe permite resoler

Más detalles

Figura 4.1. Representación esquemática del modelo tensión-deformación utilizada en el modelo lineal equivalente

Figura 4.1. Representación esquemática del modelo tensión-deformación utilizada en el modelo lineal equivalente 4. 4.. Introdcción La respesta sísica del selo frente a n oviiento sísico se ha silado tilizando prograas inforáticos qe tilizan varias hipótesis siplificadoras. Unos de los prieros prograas fe SHAKE [7].

Más detalles

Análisis comparativo del uso de la ecuación de Euler y el estudio aerodinámico en máquinas axiales

Análisis comparativo del uso de la ecuación de Euler y el estudio aerodinámico en máquinas axiales Asociación Española de Ingeniería Mecánica XVIII CONGRESO NACIONA DE INGENIERÍA MECÁNICA Análisis comparativo del so de la ecación de Eler y el estdio aerodinámico en máqinas axiales A. Cantizano, E. Arenas,.

Más detalles