DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos."

Transcripción

1 DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal y rqímedes. Cinemática de flidos. Descripciones Eleriana y Lagrangiana. Definiciones cinemáticas. Deformación de n flido. Divergencia, cizalla y rotación. Vorticidad y teorema de Stokes. Fnción de corriente. Leyes de conservación Ecación de continidad. Ferzas en flidos. Tensión en n pnto. Conservación de momento. Ecación constittiva para flidos newtonianos. Ecación de Navier-Stokes. Solciones particlares de la Ec. N-S. Ecación de energía. Ecación de Bernoilli. plicaciones. Fljo Potencial. Potencial de velocidades. Fnción de corriente. Ejemplos. Semejanza dinámica. Fljo laminar y trblento. Número de Reynolds. Idea de capa límite. Leyes de semejanza.

2 Concepto de Flido: Se conoce como flido a todo cerpo qe carece de elasticidad de forma. Es decir no tiene na forma propia y se pede adaptar al recipiente qe lo contiene. No presenta ferzas internas tangenciales o éstas son my peqeñas. Los movimientos relativos entre partíclas flidas no realizan trabajo. Flidos ideales: a) no responden a tensiones tangenciales. b) Son continos. La propiedad a) implica qe sólo eisten ferzas normales entre dos parcelas de flido. La hipótesis de continidad del flido permite hablar de densidad como fnción de pnto. ρ ρ Incertidmbre microscópica Incertidmbre macroscópica δv ρ ρ lim δ v δv* δm δv δv* δv

3 Viscosidad. Eisten ferzas tangenciales: Flidos Reales. δy δδt δθ τ δ La tensión es proporcional a la deformación: δθ τ δt Se pede hacer la sigiente aproimación para deformaciones peqeñas: δθ δδt dθ d tanδθ δ y dt dy con esto se tiene qe: y dθ d τ µ µ Flido Newtoniano. dt dy d τ µ dy µ coeficiente de viscosidad (viscosidad). FT M [ µ ] L LT µ ρ ν Viscosidad cinemática. [ ν ] L T

4 Tensión sperficial. Las partíclas flidas están sometidas a ferzas de cohesión lo qe da lgar al fenómeno de tensión sperficial en la separación de dos flidos inmiscibles. aire aga ρ a ρ w F p F σ Si na sperficie libre se limita por n contorno, se pede medir la ferza debida a la tensión sperficial. Y dicha ferza por nidad de longitd da el coeficiente de tensión sperficial. Para sperficies con crvatra la tensión sperficial se eqilibra con las ferzas debidas a la diferencias de presión. En el caso de na sperficie alabeada, en general la diferencia de presión entre los lados de la interface depende de dos radios de crvatra. Ejemplos: F p F p R F LR p ; F Lσ p L>>R σ p L F σ σ F σ Fp πr p ; Fσ R σ p R π σ dl dl R p σ R R

5 Estática. Presión. La presión es na magnitd escalar qe se pede definir como la relación entre el módlo de na ferza normal a na sperficie y el área de la misma. Se cmple, para ferzas normales: F ps La presión es fnción de la posición por lo qe se pede hablar de campo escalar de presiones en le interior de n flido. S α S S α S S α S F F p S F S S F S S F F p S p α S F p S p α S F p S p α S Por eqilibrio: F α F F α F F α F F α p S α p α S F α p S α p α S p p p p F α p S α p α S Presión independiente de la orientación: escalar

6 Distribción espacial de la presión: Ley de Pascal. dz dy p p dz z d p En las caras y la tensión normal es la presión en cada pnto la ferza qe actúa sobre cada cara será: pddz Si eiste eqilibrio debe cmplirse: p pddz pddz ( p dy) ddz y p p ddydz y y p lo mismo debe cmplirse en la dirección : En la dirección z, si consideramos qe hay n campo gravitatorio el resltado es distinto. p pddy ( p dz) ddy ρ gddydz z p p con los resltados anteriores tendremos : ddydz ρgddydz ρg z z dp dz ρg Con densidad constante (flido homogéneo) p p ρ gz p ρg z Ley de Pascal p En general la ecación de movimiento se debe escribir: a F ρ internas. Ecación de la Estática: a ; F et p ρ et donde p ρ representan ferzas

7 plicación de ferzas de presión sobre cerpos smergidos: Principio de rqímedes En n cerpo smergido en n flido de volmen V y rodeado por na sperficie, se pede conocer la ferza ejercida por el flido sobre toda la sperficie qe rodea al cerpo, a partir de la ferza infinitesimal sobre n elemento de sperficie etendida a toda ella. V d df df pd F pd p p ρgz F ρgzd en caso de flido homogéneo (densidad constante) F ρg zd zd representa n vector cyo módlo es el volmen rodeado por al sperficie y s vector nitario es z (Th. Gass aplicado a n escalar) Por tanto F ρgvk Principio de rqímedes. La ferza resltante en n cerpo smergido de densidad ρ, teniendo en centa s peso y el empje (ferza calclada anteriormente) es: F Peso Empje ( ρ' ρ) gv

8 Cinemática. Descripción Lagrangiana Se realiza en fnción del movimiento de las partíclas qe forman el flido. Necesita identificar dichas partíclas tilizando coordenadas de nmeración. v (, y, z,) t por ejemplo partícla qe pasa por (, y, z ) en t : n n n v (, y, z,) t Descripción Eleriana: Consiste en es estdio del movimiento según las velocidades de los pntos qe ocpa el flido sin importar qé partíclas están en cada instante en cada pnto. No reconoce a las partíclas. vyzt (,,,) Derivada sstancial de na magnitd (escalar o vectorial) Caso de la velocidad dv dt v v v t v derivada local t v v termino advectivo. d dt v t Gradiente de la velocidad v : v v y v z v v v y z v y y y v v y v z z z z

9 Descripción del fljo (definiciones): línea flida: línea formada por na scesión de partíclas adyacentes. trayectoria: Recorrido de na determinada partícla en el tiempo. línea de traza: Línea flida formada por las partíclas qe han pasado por determinado pnto. (emitidas desde n foco). línea de corriente: Línea tangente al vector velocidad en cada pnto para n instante dado. Se cmple qe tbo de corriente: v dl con v ( vw,, ) y dl ( d, dy, dz) por lo qe eisten proporcionalidad entre componentes dl d dy dz v v w volmen encerrado por la sperficie engendrada por las líneas de corriente qe se apoyan en na línea flida cerrada. t t o v En fljo estacionario las líneas de corriente coinciden con las trayectorias. v t

10 DEFORMCIÓN EN UN FLUIDO. Cando en n sólido se aplican ferzas eternas se pede prodcir na deformación: Desplazamientos relativos entre las partíclas qe lo forman. En los flidos la deformación qe se prodce se pede medir según la variación del campo de velocidades. p δv p δs O δr δs p δs δr s p δs p δr δv O δv p δv δr v Deformación en el sólido Deformación en el flido Sea v r (,, ) ; (,, ) v Tensor deformación de velocidad

11 Deformación lineal. t t dt B B δ δ ( δ ) ' dt dt δ

12 Deformación lateral. t t dt δ B dt δ dα B δ dt C dt dβ C dt dt δ δ δ

13 Los términos diagonales del tensor deformación representan las deformaciones lineales y conjntamente la variación relativa (deformación) volmétrica. i i ; i i V dt d V ) ( δ δ El resto de términos llevan las variaciones de forma y las rotaciones del flido. Cambios de forma por nidad de tiempo. Variaciones laterales del campo de velocidades (Cizallas) Rotación del flido en el plano (,) Llamamos vorticidad al vector, qe está relacionada con la velocidad según: ; j k ijk i ε Con las componentes: ; ;

14 El tensor deformación es sma de los tres tensores vistos hasta ahora: Deformación Volmétrica B ; Deformación lateral Se tiene qe v v B ; qe representa la deformación del flido propiamente.

15 v v C ; Rotación sí el tensor gradiente de velocidad se pede poner como sma de los tensores, B y C: v C B. Tensor rotación también se pede escribir: C ; ( ) ( ) ( ) ( ) C v

16 ( ) Por otra parte se cmple qe r ( ) poner como: δ δr, con lo qe el campo de velocidades se pede v v v v vp v δr v v δr δr v v δr v v δr v v δr v δr (( )) ( ) v v vp v δr δr donde los tres términos del último miembro representan: ( ) ( ) v traslación v v δ r deformación ( ) δr rotación.

17 Vorticidad : rot Definimos circlación según: Γ v dl c por el teorema de Stokes se tiene: v dl rot v ds c s es decir: Γ ds qe representa el fljo de la vorticidad a través de la S sperficie S S C dl v Cando la vorticidad es cero se dice qe el movimiento es irrotacional Ejemplos:. vórtice sólido La velocidad anglar es la misma en todo el flido. tilizando coordenadas polares: θ r r z r y la vorticidad: z ( rθ ) r r r θ. vórtice irrotacional.. vórtice irrotacional. La vorticidad en todos los pntos es cero ecepto en el origen. c θ r z r r la vorticidad en el origen es, ya qe la circlación de v a lo largo de calqier línea cerrada qe contiene el origen O es finita y representa el fljo de la vorticidad. c Γ πr πc (finito) en algún pnto ( O) r Γ v dl ds (th. Stokes) ds

18 Fnción de corriente Se dice qe n flido es incompresible cando se cmple: dρ dδv o alternativamente no hay variación relativa de densidad ρ dt δv dt (o volmen específico) Según se ha visto en las deformaciones del flido: δv dt dδv i i con lo qe se pede decir qe en flidos incompresibles se cmple: i ó ó i () v w En movimiento plano: con ó w y z (fljo solenoidal). Las componentes de la velocidad se peden tener de la derivación de na fnción escalar según: ψ ψ ; v y donde se cmple la ecación () porqe las derivadas crzadas son igales: v ψ ψ y y y La fnción ψ se llama fnción de corriente (Potencial de corriente)

19 ψ es constante a lo largo de las líneas de corriente d dy dψ ψ ψ y El fljo transcrre entre líneas de potencial de corriente constante. Los valores mayores de ψ qedan a la izqierda del movimiento. ψ ψ ψ i j vi j ψ v y La diferencia de valores de dos líneas de corriente representan la cantidad de flido qe atraviesa na línea transversal (C) en la nidad de tiempo (Fljo de volmen): vi j v i vj ψ ψ dψ ψ dl v dl Φ ψ ψ C ψ v ψ

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos.

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos. DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. Concepto de fluido. Fluido ideal. Fluidos reales. Viscosidad Tensión superficial. Capilaridad Estática. Presión en un punto. Ecuación general de la estática.

Más detalles

4. Cinemática de fluidos

4. Cinemática de fluidos 4. Cinemática de flidos Objetio Introdcir los conceptos cinemáticos relacionados con el moimiento de flidos. Se estdia la deriada material (sstancial) s papel en la transformación de las ecaciones de conseración

Más detalles

límite Esquema de cálculoc en una placa plana Las soluciones que brinda el flujo potencial tienen asociada una condición de deslizamiento en la pared

límite Esquema de cálculoc en una placa plana Las soluciones que brinda el flujo potencial tienen asociada una condición de deslizamiento en la pared Capa ímite as solciones qe brinda el fljo potencial tienen asociada na condición de deslizamiento en la pared A' A' as solciones del fljo potencial son aproimadas a altos números de nolds pero dejan de

Más detalles

ESTADO DE TENSIONES Y DE DEFORMACIONES

ESTADO DE TENSIONES Y DE DEFORMACIONES ENSAYOS NDUSTRALES Dpto. ngeniería Mecánica y Naval acltad de ngeniería Universidad de Benos Aires ESTADO DE TENSONES Y DE DEORMACONES Lis A. de Vedia Hernán Svoboda Benos Aires 00 - Ensayos ndstriales

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Apéndice I Capa límite

Apéndice I Capa límite Apéndice I Capa límite Capa límite. Aproimadamente hasta antes de 860, el interés de la ingeniería por la mecánica de flidos se limitaba casi eclsivamente al fljo del aga. La complejidad de los fljos viscosos,

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. Física para iencias e Ingeniería ÁLGEBRA ETORIAL 7.2- Introdcción A lo largo del estdio de la Física srgen na serie de propiedades, tanto de magnitdes escalares como vectoriales, qe se epresan por medio

Más detalles

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas I. Introdcción I. El método de rigideces I. Estrctra de los programas I. Principios variacionales -- I. INTRODUCCIÓN El modelo básico de n cerpo en mecánica debe representar a calqier cerpo posible. Consideremos

Más detalles

FLUJOS EXTERNOS. José Agüera Soriano

FLUJOS EXTERNOS. José Agüera Soriano FLUJOS EXTERNOS José Agüera Soriano 011 1 José Agüera Soriano 011 FLUJOS EXTERNOS CAPA LÍMITE RESISTENCIA DE SUPERFICIE RESISTENCIA DE FORMA RESISTENCIA TOTAL VELOCIDADES SUPERSÓNICAS José Agüera Soriano

Más detalles

Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales

Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales Física de Fluidos Aplicada Tema 1: INTRODUCCIÓN A LA FÍSICA DE FLUIDOS 3 er curso de Licenciado en Ciencias Ambientales Dr. Eduardo García Ortega Departamento de Química y Física Aplicadas. Área de Física

Más detalles

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U

CONVECCION. Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U CONVECCION Para el diseño de Intercambiadores de calor necesitamos el coeficiente global de transferencia, U U está formado por resistencias conectias condctias. Las conectias dependen del coeficiente

Más detalles

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL pfernandezdiez.es

VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL pfernandezdiez.es VII.- TEORÍA ELEMENTAL DE LA CAPA LIMITE BIDIMENSIONAL VII.1.- CAPA LIMITE LAMINAR Y TURBULENTA EN FLUJO SOBRE PLACA PLANA En el movimiento de flidos sobre na placa plana, la Hidrodinámica clásica se limita

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTELAR ADAJOZ A Mengiano PRUEA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTARIA JUNIO - 9 (RESUELTOS por Antonio Mengiano) MATEMÁTICAS II Tiempo máimo: horas y mintos - Debe escogerse na sola de las opciones

Más detalles

X.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA

X.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA X.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA X..- INTRODUCCIÓN Antes de entrar en la metodología qe permite determinar el coeficiente de transferencia de calor por convección

Más detalles

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA

XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA XI.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CAPA LIMITE TÉRMICA E HIDRODINÁMICA XI..- INTRODUCCIÓN Antes de entrar en la metodología qe permite determinar el coeficiente de transferencia de calor por convección

Más detalles

Ley de Faraday. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS

Ley de Faraday. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS Ley de Faraday Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Ley de Faraday En electrostática el campo eléctrico es conservativo, por lo tanto pede ser descripto por

Más detalles

Introducción a la simulación de fluidos (II) Animación Avanzada

Introducción a la simulación de fluidos (II) Animación Avanzada Introdcción a la simlación de flidos (II) Animación Avanzada Iván Aldán Íñigez 7 de Marzo de 014 Índice Flidos en el contino Leyes de conservación Método de paso fraccionado Advección Viscosidad Ferzas

Más detalles

VI.- SEMEJANZA HIDRODINÁMICA Y ANÁLISIS DIMENSIONAL

VI.- SEMEJANZA HIDRODINÁMICA Y ANÁLISIS DIMENSIONAL VI.- SEMEJANZA HIDRODINÁMICA Y ANÁISIS DIMENSIONA http://libros.redsace.net/ VI..- NÚMEROS DE FROUDE, REYNODS, WEBER Y MACH En n fenómeno hidrálico, las variables qe intervienen en el mismo se peden redcir

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

Estudiar las propiedades que se encuentran en el análisis del flujo de fluidos e introducir algunas definiciones básicas para dicho análisis.

Estudiar las propiedades que se encuentran en el análisis del flujo de fluidos e introducir algunas definiciones básicas para dicho análisis. Objetivo Estudiar las propiedades que se encuentran en el análisis del flujo de fluidos e introducir algunas definiciones básicas para dicho análisis. Contenido 2.1 Introducción. 2.2 El medio continuo.

Más detalles

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido.

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido. 87 Capítulo 7 Flujo Viscoso Se analiará en este capítulo las ecuaciones diferenciales de movimiento que gobiernan el movimiento de un fluido viscoso µ 0. Se considerarán en el desarrollo de estas ecuaciones

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

Dinámica de los Fluidos

Dinámica de los Fluidos CI3A Mecánica de lidos Prof. Aldo Tambrrino Tavantzis Dinámica de los lidos Aplicación de la Segnda Ley de Newton al Movimiento de los lidos: Teorema de la Cantidad de Movimiento SEGUNDA LEY DE NEWTON

Más detalles

Elementos de Física de los Medios Continuos

Elementos de Física de los Medios Continuos Elementos de Física de los Medios Continuos Martín Rivas e-mail:martin.rivas@ehu.es http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica e Historia de la Ciencia UPV/EHU Leioa, Mayo 2014 En la

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín NIVRSIDAD NACIONAL D COLOMBIA SD MDLLÍN FACLTAD D CINCIAS-SCLA D FÍSICA FÍSICA D OSCILACIONS ONDAS Y ÓPTICA MÓDLO # 10: ONDAS MCÁNICAS NRGÍA- Diego Lis Aristizábal R., Roberto Restrepo A., Tatiana Mñoz

Más detalles

Lección 1: Tensiones verticales en los suelos.

Lección 1: Tensiones verticales en los suelos. Lección : Tensiones verticales en los selos. Tensión vertical en n pnto del terreno. La tensión vertical en n pnto calqiera de n selo a na profndidad es el peso de la colmna de terreno existente por encima

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

Fundamentos Matemáticos

Fundamentos Matemáticos Tema 1: Fndamentos Matemáticos Antonio Gonále Fernánde Departamento de Física Aplicada III Universidad de Sevilla Parte I Índice Introdcción I. Sistemas de coordenadas II. Campos escalares. Gradiente III.

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

CAPÍTULO I ÁLGEBRA TENSORIAL

CAPÍTULO I ÁLGEBRA TENSORIAL Sección I.1.a) álgebra ectorial intrínseca 10/09/2011 CAPÍTULO I ÁLGEBRA TENSORIAL 1.1 Repaso de álgebra ectorial intrínseca 1.2 Álgebra ectorial en componentes ortonormales y generales: notación indicial.

Más detalles

actividades propuestas en la unidad vectores

actividades propuestas en la unidad vectores actiidades propestas en la nidad ectores Las respestas feron elaboradas por las Profesoras Lciana Calderón y María de los Ángeles Fernandez qienes realizan na adscripción en la Cátedra. Propesta.3: 1)

Más detalles

V. Corrientes eléctricas

V. Corrientes eléctricas V. Corrientes eléctricas. Leyes de la corriente eléctrica Gabriel Cano Gómez, G 29/1 Dpto. Física F Aplicada III (U. Sevilla) Campos Electromagnéticos ticos Ingeniero de Telecomunicación Gabriel Cano G

Más detalles

Introducción a la simulación de fluidos (III) Animación Avanzada

Introducción a la simulación de fluidos (III) Animación Avanzada Introdcción a la simlación de flidos (III) Animación Avanzada Iván Aldán Íñigez de Abril de 4 Índice Gradiente de resión Constrcción del sistema de resiones Rejillas con comonentes deslazados Esqema de

Más detalles

Fluidos en rotación. Flujos en fluidos en rotación. Teorema de Taylor-Proudman. Flujo geostrófico.

Fluidos en rotación. Flujos en fluidos en rotación. Teorema de Taylor-Proudman. Flujo geostrófico. Física de Flidos UNIDAD 1 Flidos neonianos. Descripción del flido: campos ecoriales escalares. Ecación de coninidad. Ecaciones del moimieno para n flido ideal. Voricidad circlación. Las ecaciones del fljo

Más detalles

Tema 5: Energía y Leyes de Conservación*

Tema 5: Energía y Leyes de Conservación* Tema 5: Energía y Leyes de Conservación* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez y Prof.Dra. Ana Mª Marco Ramírez 1 Índice

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

FLUJO POTENCIAL. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

FLUJO POTENCIAL. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA FLUJO POTENCIAL Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CIRCULACIÓN La circulación del vector velocidad se define

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma.

Aproximación al MEF en el cálculo de estructuras: Resolución paso a paso de una estructura sencilla desde las funciones de forma. º COGRESO EMIE 8-9 Jlio ETSIE, Universidad Politécnica de Valencia Aproimación al MEF en el cálclo de estrctras: Resolción paso a paso de na estrctra sencilla desde las fnciones de forma. Enriqe David

Más detalles

ESTRUCTURAS III CONCEPTOS DE ELASTICIDAD. Facultad de Ingeniería Universidad Nacional de La Plata

ESTRUCTURAS III CONCEPTOS DE ELASTICIDAD. Facultad de Ingeniería Universidad Nacional de La Plata Facltad de Ingeniería Uniersidad Nacional de La Plata STRUCTURAS III CONCPTOS D LASTICIDAD Atores: MScAA Ing. Alejandro J. Patanella Ing. Jan Pablo Drrt Dr. Ing. Marcos D. Actis 9 strctras III Conceptos

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 5. Divergencia y rotacional. Ingeniero de Telecomunicación I. Fundamentos matemá 5. Divergencia y rotacional Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

TEMA 5. ANÁLISIS DIMENSIONAL Y CAMBIO DE ESCALA

TEMA 5. ANÁLISIS DIMENSIONAL Y CAMBIO DE ESCALA TEMA 5. ANÁISIS IMENSIONA Y CAMBIO E ESCAA 1. Módlos M adimensionales de interés s en Ingeniería a Qímica. Métodos M de análisis dimensional.1. Método M de Rayleigh.. Método M de Bckingham 3. iscsión n

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI

FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZAGHI Capítlo FLUJO EN MEDIOS POROSOS PRINCIPIO DE TERZGHI Problemas de Geotecnia y Cimientos 34 Capítlo - Fljo en Medios Porosos Principio de Teraghi PROLEM.1 El permeámetro de carga constante, cyo esqema se

Más detalles

Introducción al método de los

Introducción al método de los Introdcción al método de los Elementos Finitos en D Lección 0: Prelim Matem Ecaciones diferenciales formlación débil Adaptado por Jaime Pig-Pe UC) de:. Zabaras, N. Crso FE Analsis for Mech&Aerospace Design.

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

4.3 Teorema del transporte de Reynolds. Enfoque diferencial

4.3 Teorema del transporte de Reynolds. Enfoque diferencial Cinemática de fluidos 4.3 Teorema del transporte de Reynolds. Enfoque diferencial Apliquemos el teorema del transporte de Reynolds para estudiar la variación de la densidad ρ en un volumen de control infinitesimal,

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Flujo. v 1 v 2. V 1 = constante. V 2 = constante

Flujo. v 1 v 2. V 1 = constante. V 2 = constante Hidrodinámica Flujo Can2dad de masa (o de fluido) que atraviesa una (pequeña) superficie por unidad de 2empo y superficie. Si en un punto del fluido la densidad es ρ y la velocidad es v el flujo está dado

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles

F2 Bach. Fundamentos de Mecánica. Magnitudes vectoriales Derivación Integración Cinemática Dinámica. Dinámica del sólido rígido

F2 Bach. Fundamentos de Mecánica. Magnitudes vectoriales Derivación Integración Cinemática Dinámica. Dinámica del sólido rígido F Bach Fundamentos de Mecánica Magnitudes vectoriales Derivación Integración Cinemática Dinámica Energía mecánica Dinámica del sólido rígido 1. Magnitudes vectoriales Magnitudes escalares y vectoriales.

Más detalles

Álgebra Manuel Hervás Curso

Álgebra Manuel Hervás Curso Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Estructura de Materia 1 Curso de Verano Práctica 4 Fluidos ideales incompresibles

Estructura de Materia 1 Curso de Verano Práctica 4 Fluidos ideales incompresibles Estructura de Materia 1 Curso de Verano 2012 Práctica 4 Fluidos ideales incompresibles Problema 1. Flujos singulares Los siguientes fluidos incompresibles e ideales fluyen de tal manera que su movimiento

Más detalles

Miguel Hermanns. 4 de diciembre de 2006

Miguel Hermanns. 4 de diciembre de 2006 niversidad Politécnica de Madrid, España la 4 de diciembre de 2006 Si el número de Reynolds es grande L Re = ρl µ 1 Σ ρ, µ y constantes se obtienen las ecuaciones de Euler incompresibles v = 0, ρv v =

Más detalles

Introducción. 1.1 Sistema de Unidades

Introducción. 1.1 Sistema de Unidades 1 Capítulo 1 Introducción La Mecánica de Fluidos es la disciplina que estudia el comportamiento estático y dinámico de un fluido. Entenderemos como fluido cualquier substancia (líquida o gaseosa) que se

Más detalles

Auxiliar N 1. Geotecnia Minera (MI46B)

Auxiliar N 1. Geotecnia Minera (MI46B) Auxiliar N 1 Geotecnia Minera (MI46B) Fuerzas y tensiones La mecánica de sólidos asume un comportamiento ideal de los materiales: homogéneo, continuo, isótropo, lineal y elástico. Las rocas, a diferencia

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Deformaciones. Contenidos

Deformaciones. Contenidos Lección 2 Deformaciones Contenidos 2.1. Concepto de deformación................... 14 2.2. Deformación en el entorno de un punto.......... 15 2.2.1. Vector deformación. Componentes intrínsecas........

Más detalles

CURSO DE HIDRÁULICA 2010

CURSO DE HIDRÁULICA 2010 CURSO DE HIDRÁULICA 2010 LECCIÓN 1. INTRODUCCIÓN A LA HIDRÁULICA: CONCEPTO Y PROPIEDADES FUNDAMENTALES DE LOS FLUIDOS. ECUACIÓN GENERAL DE LA HIDRÁULICA. EL MEDIO CONTINUO. CONCEPTO DE CINEMÁTICA: TRAYECTORIAS

Más detalles

Dr. Ing. Claudio E. Jouglard

Dr. Ing. Claudio E. Jouglard 8QYHUVGD 7HQROJ DRQDO )DXOWD 5HJRQD %XHQR $UHV CURSO DE ESPECIAIZACIÓN QWURGX D pwrg G (OHPHQWR )QWRV &RQHSWR G HiQ G OR 6OGRV Dr. Ing. Cladio E. Joglard Notas del Crso dictado en el º catrimestre de QGH

Más detalles

Práctico Nº 4 : Vectores

Práctico Nº 4 : Vectores Práctico Nº 4 : Vectores Nota: Cando en el presente práctico los ectores estén dados por coordenadas salo qe se aclare lo contrario deberá entenderse qe éstas se refieren a la base canónica del espacio

Más detalles

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Divergencia y rotacional. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Divergencia y rotacional. Ingeniero de Telecomunicación I. Fundamentos matemá Divergencia y rotacional Gabriel Cano Gómez, G 2007/08 Dpto. Física F Aplicada III (U. Sevilla Campos Electromagné Ingeniero de Telecomunicación Divergencia. Teorema de Gauss Divergencia

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

Sociedad Mexicana de Ingeniería Estructural

Sociedad Mexicana de Ingeniería Estructural Sociedad Mexicana de Ingeniería Estrctral SOLUCIÓN DE PROBLEMAS ELASTICOS CON ELEMENTOS FINITOS MIXTOS López Gevara Sergio Felipe 1, Járez Lna Gelacio 2 y Ayala Milián Gstavo 3 RESUMEN En este artíclo

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

Física General III. Ayudantía 8. Mecánica de fluidos: Paradoja de la hidrostática y viscosidad. El alumno una vez finalizado la guía debe ser capaz:

Física General III. Ayudantía 8. Mecánica de fluidos: Paradoja de la hidrostática y viscosidad. El alumno una vez finalizado la guía debe ser capaz: Física General III Ayudantía 8 Mecánica de fluidos: Paradoja de la hidrostática y viscosidad. El alumno una vez finalizado la guía debe ser capaz: Entender y aplicar los conceptos de viscosidad de un fluido.

Más detalles

ANÁLISIS DIFERENCIAL DE FLUJOS

ANÁLISIS DIFERENCIAL DE FLUJOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola Mecánica de Fluidos ANÁLISIS DIFERENCIAL DE FLUJOS Alejandro Rivas Doctor Ingeniero Industrial

Más detalles

DINÁMICA DE FLUIDOS (Septiembre 1999)

DINÁMICA DE FLUIDOS (Septiembre 1999) (Septiembre 1999) Teoría: 1.- Considérese un flujo plano. Dígase cómo se deformaría el cuadrado adjunto si: a) La vorticidad es nula b) No hay deformación pura. c) Voriticidad y deformación son ambas distintas

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

TEOREMAS FUNDAMENTALES DEL CALCULO VECTORIAL

TEOREMAS FUNDAMENTALES DEL CALCULO VECTORIAL Ω Ω Geoge Gabiel tokes 89-9 Geoge Geen 79-84 Johann al Fiedich Gass 777-85 TEOREMA FUNDAMENTALE DEL ALULO VETORIAL Pofesoa Dois Hinestoa Teoema de Geen INTEGRAL DE LÍNEA DE UN AMPO VETORIAL F b d F t '

Más detalles

Estructura de la Materia I

Estructura de la Materia I Estrctra de la Materia I Práctica 1. Se tilizará la densidad tensorial de do orden ij, llamada delta de Krönecker, qe se define como: 1 si i j ij 1 i, j 3 si i j También se defin e el psedotensor isótropo

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO ASIGNATURA MECANICA DE FLUIDOS II CODIGO 9513 NIVEL 3 EXPERIENCIA C9 ESTUDIO DE DESARROLLO DE CAPA LIMITE" OBJETIVO GENERAL UNIVERSIDAD DE SANTIAGO DE CHILE

Más detalles

Tema 1. Introducción

Tema 1. Introducción Grado en Ingeniería Aeroespacial en Aeronavegación Tema 1. Introducción Felipe Alonso Atienza felipe.alonso@urjc.es @FelipeURJC Escuela Técnica Superior de Ingeniería de Telecomunicación Universidad Rey

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.

VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v. COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Circulación, rotacional y teorema de Stokes

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Circulación, rotacional y teorema de Stokes Tema 1: Fundamentos Matemáticos Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 5/7 Circulación, rotacional y teorema de Stokes La circulación es una integral

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles