TEOREMAS FUNDAMENTALES DEL CALCULO VECTORIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEOREMAS FUNDAMENTALES DEL CALCULO VECTORIAL"

Transcripción

1 Ω Ω Geoge Gabiel tokes 89-9 Geoge Geen Johann al Fiedich Gass TEOREMA FUNDAMENTALE DEL ALULO VETORIAL Pofesoa Dois Hinestoa Teoema de Geen

2 INTEGRAL DE LÍNEA DE UN AMPO VETORIAL F b d F t ' t dt a INTEGRAL DE LÍNEA DE UN AMPO EALAR b fds f t ' t a dt

3 T T t ' t ' t ' t T t ' t F T ampo escala F : Ω R R F T ds b a b a F t F t T t ' t dt ' t dt F d F T ds F d

4 Teoema de Geen paa na egión sae. Ω F P Q campo ectoialdifeenciable en Ω Q P Pd Qd dd Ω

5 t - Ω t a b ea la ca ceada qe detemina la fontea de la egión la ca : la ca : t t t t t t a t b a t b Ω

6 Ω b a b a b a b a Pd d P P d P P d P d d P dd P a b Ω

7 c d D D Ω Ω Ω d c d c d c dd P Q Qd Pd Qd d Q Q d Q d d Q dd Q qe tenemos smando

8 Ejemplo Deteminación de n áea mediante na integal de línea. Detemine el áea de la egión limitada po la hipocicloide qe tiene la ecación ectoial t cos t i sen t j sen t / sen t / / ± t π cos t / cos t / / / A / Paa aplica Geen debeíamos enconta fnciones P Q : A Q P 8 π π Ω cos sen Q P da Pd Qd sen t π cost cos t dt 4 cos4t sen t t d d cos sen t cost dt π 8 sen t dt 4 / / / dd d / π Q sen P cos tsentcostdt tsentdt t costdt sen4 t t 8 8 sen t 6 π π cos t sen π P Q. 4 tsentdt t cos t dt

9 f fnción de dos aiables Gaf { f : Df } Gáficade f R f f n a b a b Las speficies también peden se pensadas como speficies de niel de na fnción g se define la speficie como { R : g c} n g g g P P P

10 : R R T R paametiación de la speficie : :peficie paamética } : { T } { UPERFIIE PARAMETRIA

11 [ ] cos cos π π T a asensen sen a

12 [ ] [ ] h T sen cos π

13 } { de en n pnto tangente plano al nomal ecto :

14 Aea peficial T paametiaciòn de na speficie na ea Ω dd A Aea speficial de

15 Ejemplo Aea speficial de na speficie paametiada A dd Ω θ a cosθsen asenθsen a cos i j k θ asen θenθ acos θosθ acos θosθ asen θenθ asen a a cos θosθ a sen θenθs a sen cos θ θ a sen A Ω θ ddθ Ω a sen ddθ a π π sen ddθ 4πa

16 Recodemos qe la gáfica de na fnción de dos aiables está paametiada po Ω f f Gf Aea f f f f f f k j i f Po lo tanto

17 INTEGRAL DE UPERFIIE DE UN AMPO EALAR f : U R U abieto en difeenciable Definimos la integal de speficie de f sobe R n campo escala fd f Ω dd donde es la paametiación de Ω con. : Ω R R

18 INTEGRAL DE UPERFIIE DE UN AMPO VETORIAL n o n ea n el ecto nomal n o n

19 onsideemos el campo ectoial F : U R U abieto en R Definimos la integal de speficie de F sobe a la integal F d F nd s ± F Ω dd ± F Ω dd si n n - si n n es la paametiación de Ω con.

20 F i : X 9 Halla la integal de speficie de F sobe con nn n cosθsen π sen θsen θ π cos θ cos θsen sen θsen cos i j k θ sen θsen cos θcos cos θcos sen θsen sen 9cos θcos 9sen θ9sen 9sen cos

21 Fθ; sencosθ sensenθcos θ 9cos θcos 9sen θ9sen 9sencos F θ 8 θ sen F d F ; θ ddθ π π π π D 8senddθ 8 θ [ ] cos dθ 4π

22 FLUJO DE FLUIDO A LO LARGO DE UNA UPERFIIE Flido: olección de pntos llamados patíclas. ada patìcla està asociada con el pnto. V : ecto elocidad de la patícla amos a spone qe el campo de elocidades sólo depende de la posición. ρ : densidad masa del flido en el pnto. El campo ectoial ρ po nidad de olmen Fljo incompensible: ρcte F V : densidad de fljo antidad de masa qe fle del pnto en la diección de V po nidad de áea po nidad de tiempo

23 Masa del flido qe pasa a taés de Φ F nd F n d

24 TEOREMA DE TOKE ea na speficie oientada sae a toos acotada po na ca sae a toos ceada simple ca oientación es positia. ea F n campo ectoial cas componentes tienen deiadas paciales continas sobe na egión abieta en R qe contiene a. Entonces: F d ot F d F d

25 F d Ejemplo: onsidee el campo ectoial F ahalle el RotF. b i es pate del cbo con étices ±; ±; ± sin el fondo oientado positiamente halle RotF d F d O k ; ; ; - i F RotF.d F d F d j k ' F d' F d F d' - - ' F d dd

26 Ejemplo: alcla la ciclación del campo de elocidades de n flido F e tg a lo lago de la intesección de la esfea 4 con el cilindo con >. i j k Rot F F i j e tg k Ω k F d ' da F d' π ddθ π Ω

27 TEOREMA DE LA DIVERGENIA ea V na egión simple sólida ca speficie fontea tiene na oientación positia hacia afea. ea F n campo ectoial cas fnciones componentes tienen deiadas paciales continas sobe na egión abieta qe contiene a V. Entonces: F d di F dv n V n n n

28 a ε Po el Teoema de la diegencia F d ε B a Vol B ε dif a Vol B Definimos : dif a lim ε a dif a ε di F dv dif a ε a Vol B ε ε a F nd ε F nd a dv la diegencia en a se intepeta como el coeficiente de aiaciónde masa po nidad de olmen po nidad de tiempo B ε

29 Ejemplo: ea F. Halla F d donde indica las seis paedes del cbo Usamos el teoema de la Diegencia F.d F d V difdv dif F d di FdV dv ol V V V

30 Ejemplo: Eala el fljo del campo ectoial F sen a taés de la speficie fontea de la egión V acotada po el cilindo paabólico - los planos. dif - e ;; - F d difdv ;; ;; E E dv ddd 84 5

31 Ejemplo: Veifica el teoema de la diegencia paa el campo ectoial Y la speficie esféica 9. sen cosθ sen senθ cos θ π θ π θ F cosθsen senθsen cos cosθco π θ π senθse cos i j k senθsen cosθcos cosθcos senθsen sen 9cosθcos 9senθ9sen 9sen cos

32 Fθ; sencosθ sensenθcos θ 9cosθcos 9senθ9sen 9sencos F d 9sen F ; θ cos θ ;9sen θ d d sen θ θ ;9sen 8 cos sen π d d θ 8 [ cos π ] d θ θ 4 π θ π π π π D F θ 8sen F d F ; θ 8sen ddθ 8 ddθ π π π π D θ [ ] cos dθ 4π

33 di F 4 di F π θ ρ θ ρ ρ ρ π π π π di 4 d d sen d d d sen dv V F 4π difdv d F V

34 Ejemplo: alcla el fljo del campo F sen tan a taés del semielipsoide speio 6 con s nomal apntando hacia aiba. 6 dif O F d difdv V

35 Le de Gass. Demostemos el sigiente esltado de impotancia tascendente en electomagnetismo. ea V na egión simple sólida en R s fontea. ea también el ecto posición. Entonces si ;; tenemos: E si E ;; ;; si 4 π d E si E ;; ;; si 4 π d V si V ;; si 4 π d / / / di F / / / R dif

36 i el oigen petenece a V no podemos aplica el teoema de la diegencia pes el campo ectoial no es sae allí. Aplica el teoema de la diegencia a toda la egión salo na peqeña bola de adio ε centada en el oigen lego calclamos el fljo sobe la fontea de esta última. F d difdv i V V Obseemos qe la fontea de V B ε está compesta po B ε el ecto nomal nitaio sobe la fontea B ε es n

37 π ε πε ε ε ε ε ε ε ε B B B B B B V d d d nd F d F nd F d F difdv

38 APLIAIÓN DEL TEOREMA DIVERGENIA

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

z + 1 = x + y situada debajo del plano

z + 1 = x + y situada debajo del plano CÁLCULO INTERMEIO APLICAO (64) EGUNO PARCIAL (%) 6/1/9 EPARTAMENTO E APLICAA JOÉ LUI QUINTERO 1. ea la poción de la esfea de ecuación del cono de ecuación supeficie. + y + z = a contenida dento + y = z,

Más detalles

y 2 dy dx = 1 x 2 dx y 2 dy = 1 9 sen 1. 0 x 3 y dy dx = 0 dx = 0. 6 = y=x 2 1 y [y 2 y 3 ] dy = 1 [ 1 1 e = cos y x sen x dx + π

y 2 dy dx = 1 x 2 dx y 2 dy = 1 9 sen 1. 0 x 3 y dy dx = 0 dx = 0. 6 = y=x 2 1 y [y 2 y 3 ] dy = 1 [ 1 1 e = cos y x sen x dx + π Solciones de poblemas de Cálclo (gpo - /6). Integales múltiples. a) b) c) ( + ) d d = e d d = [ e ] d d + d = d d = d + d =. [ e ] d = e = e. () cos d d = [ sen ] d = sen d = 9 sen.. a) log() d d = log

Más detalles

Tema 3: Campo eléctrico

Tema 3: Campo eléctrico Tema : Campo eléctico Ley de Colomb. Campo eléctico. Teoema de Gass. Potencial eléctico. Enegía potencial. Dipolo eléctico. Condctoes. Dielécticos. Polaización. Desplazamiento eléctico. Campo en aislantes:

Más detalles

APÉNDICE : COORDENADAS CURVILÍNEAS

APÉNDICE : COORDENADAS CURVILÍNEAS PÉNDICE : COORDENDS CURVILÍNES Cantal Fee Roca 008 Las coodenadas esféicas se tiliaban en el siglo IV-III a.c., tanto paa la deteminación de posiciones estelaes (po ejemplo, catalogación estela de Hipaco)

Más detalles

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos)

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos) U..V. F.I.U..V. ÁLULO VETORIAL (54) PRIMER PARIAL (3%) 5/1/9 MATEMÁTIA APLIADA Pof. 1. Sean el campo posición (x,, z) = (x,, z) el campo eléctico E = ε Q poducido po una caga Q localizada en el oigen,

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Electicidad Magnetismo - Gpo. Cso / Tema : Intodcción Concepto de campo Repaso de álgeba vectoial Sistemas de coodenadas Catesiano Cvilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

Combinación de operadores.

Combinación de operadores. Electicidad Magnetismo so / Tema : Intodcción oncepto de campo Repaso de álgeba vectoial istemas de coodenadas atesiano vilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente Divegencia

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

PROBLEMAS CON CONDICIONES DE CONTORNO

PROBLEMAS CON CONDICIONES DE CONTORNO PROBLEMAS CON CONDICIONES DE CONTORNO PREGUNTAS. Qué es el método de imágenes?, agumente.. Paa una caga puntual q fente a una esfea conductoa, mantenida a potencial V, indique cantidad y ubicación de cagas

Más detalles

Apuntes de Geometría Curso 2017/2018 Esther Madera Lastra

Apuntes de Geometría Curso 2017/2018 Esther Madera Lastra Apntes de Geometía Cso 07/08 Esthe Madea Lasta BLOQUE DE GEOMETRÍA. VECTORES EN EL ESPACIO. Un ecto fijo es n segmento oientado. Se epesenta po AB. El pnto A es el oigen, y el pnto B, el extemo. a El módlo:

Más detalles

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss

Tema 1: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Flujo, divergencia y teorema de Gauss Tema 1: Fundamentos Matemáticos 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Flujo, divegencia y teoema de Gauss Concepto

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO DP. - S - 59 7 Matemáticas ISSN: 988-79X a b = a b cos(a, b) a b = a b + a b + a b GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR ando sabemos el ánglo qe foman a y b ando sabemos las coodenadas de a y b a =

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

ÁREAS Y VOLÚMENES I. Ejercicio nº 1.- Ejercicio nº 2.- a) determinen un paralelepípedo de volumen 10. b) sean linealmente dependientes.

ÁREAS Y VOLÚMENES I. Ejercicio nº 1.- Ejercicio nº 2.- a) determinen un paralelepípedo de volumen 10. b) sean linealmente dependientes. Ejecicio nº.- Halla elvalo de m y v, m, sea. ÁREAS Y VOLÚMENES I paa qe el áea del paalelogamo deteminado po,, Ejecicio nº.- Dados los vectoes,,, v,, y w,, 5 ; halla elvalo de paa qe: a) deteminen n paalelepípedo

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables (x 0 ). x ik. x ik 1 1. RESUMEN Ingenieía Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vaias Vaiables 08-1 Ingenieía Matemática Univesidad de Chile Guía Semana 5 Teoema del valo medio.

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

u r 2 1 x 2 y 2 r 1 r 2 dr dθ = 2π 3 Como siempre, los cálculos se complican si se usan las cartesianas en vez de las esféricas:

u r 2 1 x 2 y 2 r 1 r 2 dr dθ = 2π 3 Como siempre, los cálculos se complican si se usan las cartesianas en vez de las esféricas: 5. Itegales de speficie 5.. efiicioes cálclo Geealiamos las itegales de líea (de campos escalaes de campos ectoiales). Ua speficie a eces iee dada po F(,, ) =. i se pede despeja la, po = f (, ). Peo lo

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

TEMA 10: ECUACIONES DE RECTAS Y PLANOS. . Para poder operar con sus coordenadas se introduce su vector de posición, que se define como a OA.

TEMA 10: ECUACIONES DE RECTAS Y PLANOS. . Para poder operar con sus coordenadas se introduce su vector de posición, que se define como a OA. lonso Fenánde Galián TEM ECUCIONES DE RECTS Y PLNOS La Geometía nalítica en el espacio se ocpa fndamentalmente del estdio de ectas planos po medio de ecaciones. En paticla, en este tema estdiaemos las

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

IV. Comportamiento dieléctrico

IV. Comportamiento dieléctrico IV. Compotamiento dieléctico. Campos y cagas de aización Gabiel Cano Gómez, G 9/1 pto. Física F Aplicada III (U. Sevilla) Campos Electomagnéticos ticos Ingenieo de Telecomunicación IV. Compotamiento dieléctico

Más detalles

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS

: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA Y ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : TEORÍA DE CAMPOS ELECTROMAGNÉTCOS PROFESOR : ng. JORGE MONTAÑO PSFL PROLEMAS RESUELTOS

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. lectostática tica en el vacío 6. otencial electostá Gabiel Cano Gómez, G 29/1 Dpto. Física F plicada III (U. Sevilla) Campos lectomagnés s Ingenieo de Telecomunicación II. lectostática tica en el vacío

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

Tema 1: Análisis vectorial

Tema 1: Análisis vectorial Tema 1: Análisis vectoial Campos Electomagnéticos º Cuso Ingenieía Industial Dpto.Física Aplicada III Cuso 010/011 Dpto. Física Aplicada III - Univ. de Sevilla Joaquín Benal Ménde 1 Tema 1: Índice (I)

Más detalles

LEY DE COULOMB. INTENSIDAD DE CAMPO ELÉCTRICO. DENSIDAD DE FLUJO ELÉCTRICO. LEY DE GAUSS. DIVERGENCIA. ENERGÍA. POTENCIA. CORRIENTE Y CONDUCTORES.

LEY DE COULOMB. INTENSIDAD DE CAMPO ELÉCTRICO. DENSIDAD DE FLUJO ELÉCTRICO. LEY DE GAUSS. DIVERGENCIA. ENERGÍA. POTENCIA. CORRIENTE Y CONDUCTORES. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSITARIA UNIVERSIDAD POLITÉCNICA TERRITORIAL DE ARAGUA FEDERICO BRITO FIGUEROA PROGRAMA NACIONAL DE FORMACIÓN EN ELECTRÓNICA

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5 Integrales Múltiples álulo Vetorial Tarea 5 1. Evalúe las siguientes integrales: 1.1 0 1 4 ( 1 8 dd 1. 1 0 sin 1. 0 0 (Res. 57 ( 1 dd (Res. 0/ (1 os (Res. dd 1 1 1.4 os( sen( 0 (Res. dd 7 9. Utilie una

Más detalles

Ecuaciones de las corrientes estacionarias

Ecuaciones de las corrientes estacionarias V. Coienes elécicas. Leyes de la coiene elécica Gómez, 21/11 Dpo. Física Aplicada III (U. Seilla) Campos Elecomagnéicos Ingenieo de Telecomunicación Gómez, 1/11 V. Coienes elécicas 1. Inoducción 2. Magniudes

Más detalles

Principios básicos de Magnetismo:

Principios básicos de Magnetismo: Pincipios básicos de Magnetismo: ' µ II 0 dl' ( ') Ley de fuezas de Ampèe: F = dl ' C C 3 4π ' Definiendo: J = lim s 0 I tendemos: s Paa cicuitos filifomes: B= µ 0I' 4π µ ( ') B = 0 J ( ') ' 3 4 π ' dv

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

MOVIMIENTOS EN EL PLANO 1- VECTORES

MOVIMIENTOS EN EL PLANO 1- VECTORES 1 MOVIMIENTOS EN EL PLANO 1- VECTORES Las medidas de magnitudes ectoiales son los ectoes. Un ecto se epesenta gáficamente po una flecha que a desde el punto llamado oigen al etemo. La longitud del ecto

Más detalles

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico.

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico. Electicidad Magnetismo Intodcción Tema : Intodcción oncepto de campo ampos escalaes vectoiales Opeaciones con vectoes istemas de coodenadas atesiano vilíneas genealiadas: cilíndico eséico. Opeadoes vectoiales.

Más detalles

Resolviendo la Ecuación de Schrodinger en 1-D

Resolviendo la Ecuación de Schrodinger en 1-D Resolvieno la Ecación e Schoinge en -D D. Hécto René VEGA-ARRILLO so e Física Moena Unia Acaémica e Ingenieía Eléctica Univesia Atónoma e Zacatecas Docmento: FM/Notas/RES/070309 Domingo/-Mazo/009 ontenio

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

b 2 m 2 k 2 sin fricción + L C R 2

b 2 m 2 k 2 sin fricción + L C R 2 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Contol Atoático Pobleas 3 UNIVERSIDAD NACIONAL DE QUILMES 25 de azo de 2002 Página de 5. Obtene n odelo ateático del sistea asa-esote-aotigado ontado sobe

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización Pontificia Univesidad Católica de Chile Facultad de Física FIS1533 Electicidad y Magnetismo Pofeso: Máximo Bañados Ayudante: Felipe Canales, coeo: facanales@uc.cl Ayudantía 11 Poblema 1. Considee un cascaón

Más detalles

Temas teóricos. Lino Spagnolo

Temas teóricos. Lino Spagnolo 1 Temas teóicos Electomagnetismo Teoema de Helmholtz. Lino Spagnolo La teoía electomagnética de Maxwell, e incluso las modenas elaboaciones como la electodinámica cuántica y la como dinámica, utilizan

Más detalles

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 6-. Ejemplo º. Calcula el potencial eléctico ceado po un hilo ectilíneo e infinito, que pesenta

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra)

Matemáticas II (preparación para la PAU) Tomo II (Integrales y Álgebra) Matemáticas II (pepaación paa la PAU) Tomo II (Integales Álgeba) José Lis Loente Aagón A mi mje Rth a mi hijo Daid. Mchas gacias al coecto el oto José L. Loente ÍNDICE: Tema. Fnciones eales. Definición

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 5/7 Potencial eléctico La ciculación del campo

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

z Región III Región II Región I

z Región III Región II Región I Capacito de placas ciculaes - solución completa amos a calcula el potencial electostático en todo el espacio paa un capacito de placas ciculaes y paalelas. Las placas conductoas están ubicadas en z = ±l/2,

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

1 Campos conservativos

1 Campos conservativos ampos consevativos Un campo F se dice consevativo si es un gadiente. Esto es, si existe una función f (potencial) tal que F = f: Po lo tanto, si F es un campo consevaivo de clase ; él es iotacional. Esto

Más detalles

el vector v (1, 3). Qué son las ecuaciones lineales y cómo se representan sus soluciones.

el vector v (1, 3). Qué son las ecuaciones lineales y cómo se representan sus soluciones. 0SMTL_B_0.08 // 07: P gina 50 Geometía analítica Los cepos en moimiento desciben na tayectoia qe a eces es ecta, como oce con las bolas de billa. Estas chocan nas con otas y con las paedes de la mesa descibiendo

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ).

Electromagnetismo I. 1. Problema: (20pts) El potencial en la superficie de una esfera de radio R está dado por. Alm r l + B lm r (l+1)] Y lm (θ, ϕ). Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución a la Taea 5 Solución po Calos Maciel Escudeo. Poblema: 2pts El potencial

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

Esta establece que para un sistema la masa ( M ) es constante. Esto se puede expresar matemáticamente como sigue: dm dt sistema

Esta establece que para un sistema la masa ( M ) es constante. Esto se puede expresar matemáticamente como sigue: dm dt sistema Mecánica de Flidos Tema 4 FORMAS DIFERENCIALES E INTEGRALES DE LAS LEYES FUNDAMENTALES Intodcción La mecánica de flidos al ial qe las otas disciplinas físicas se basa en na seie de lees fndamentales. Estas

Más detalles

UNIVERSIDAD POLITECNICA DE CARTAGENA

UNIVERSIDAD POLITECNICA DE CARTAGENA UNIVERIDAD POLITECNICA DE CARTAGENA ECUELA TECNICA UPERIOR DE INGENIERIA AGRONOMICA Edificio Minas, Pº Alfonso XIII, 48 3003 Catagena (PAIN) Tel. 968-3573 Fax. 968-3573 II. CINEMÁTICA Es la pate de la

Más detalles

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión Resmen e Geometía Matemáticas II GEOMETRÍA - BASE EN lr Daos los ectoes x,, z,, w los númeos a, b, c,, g, la expesión a x+ b + c z + + gw se llama combinación lineal e esos ectoes Dos ectoes son linealmente

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

. Dos vectores AB, CD son equivalentes ( AB = CD) si tienen

. Dos vectores AB, CD son equivalentes ( AB = CD) si tienen Geometía. Pntos, ectas y planos en el espacio. Poblemas méticos en el espacio. Coodenadas o componentes de n ecto Sean dos pntos a, a, a y ecto son: b a, b a, b a b, b, b del espacio. Entonces las coodenadas

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

(Apuntes en revisión para orientar el aprendizaje) INTEGRACIÓN MÚLTIPLE

(Apuntes en revisión para orientar el aprendizaje) INTEGRACIÓN MÚLTIPLE (Apuntes en revisión para orientar el aprendizaje) INTEGACIÓN MÚLTIPLE Este estudio se concretará a los casos de dos tres variables, dado que las aplicaciones, en su maoría, se sujetan a ese número de

Más detalles

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r,

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r, egundo Examen Parial Cálulo etorial Abril de 16 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono elular.

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II º ENSAYO (FUNCIONES) Apellidos: Nombre: Crso: º Grpo: Día: CURSO 056 Instrcciones: a) Dración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los catro ejercicios

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I

Curvas paramétricas. { x + 2y = 4 y = t. { x = 4 2t y = t y denimos f(t) = (4 2t, t) con t R. y = t. Facultad de Ciencias UNAM Geometría Analítica I Unidad 2. Tigonometía 2.7 Cuvas paaméticas Cuvas paaméticas Supongamos que en un plano catesiano dibujamos una cuva, y que el punto de la cuva coespondiente al instante t se denota po P(t) entonces, como

Más detalles

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007 Soluciones de los ejecicios del eamen Pacial de Pime cuso de Ingenieía de Telecomunicación - febeo de 7 Ejecicio a) Paa todo > sea f ) log e, y f ). Justifica que lím f ). Estudia el signo de la deivada

Más detalles

Unidad 4 : DERIVADAS PARCIALES. Tema 4.5 : Vector Gradiente y Derivada Direccional

Unidad 4 : DERIVADAS PARCIALES. Tema 4.5 : Vector Gradiente y Derivada Direccional Undad : ERIVAAS PARCIALES Tema. : Vecto Gadente eada ecconal (Estda la Seccón. en el Stewat ª Edcón Hace la Taea No. ) encón del Vecto Gadente de na ncón de dos aables S encón del Vecto Gadente de na ncón

Más detalles

FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 2017/2018

FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 2017/2018 FUNDAMENTOS DE MECÁNICA COMPUTACIONAL 7/8 Páctica 7: ANÁLISIS TENSORIAL Y TEORÍA DE CAMPOS Demosta, utiliano cooenaas catesianas otonomales, las siguientes expesiones: a ot ga f b iv ot f c f iv ga f f

Más detalles

Electromagnetismo I. Solución Tarea 3

Electromagnetismo I. Solución Tarea 3 Electomagnetismo I Semeste: 25-2 Pof. Alejando Reyes Coonado Ayud. Calos Albeto Maciel Escudeo Ayud. Chistian Espaza López Solución po Calos Maciel Escudeo Solución Taea 3. Poblema: (pts) El potencial

Más detalles

TEMA 1. CINEMÁTICA DEL PUNTO MATERIAL

TEMA 1. CINEMÁTICA DEL PUNTO MATERIAL TEM 1. CINEMÁTIC DEL PUNTO MTERIL 1. Intodcción.. Sistema de efeencia. Taectoia, espacio ecoido vecto de posición de n pnto 3. Velocidad aceleación. Ejemplos de movimientos. 4. celeación nomal tangencial.

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

GEOMETRIA 3D VECTORES EN EL ESPACIO

GEOMETRIA 3D VECTORES EN EL ESPACIO GEOMETRIA D VECTORES EN EL ESPACIO Ofimega Geometía D - Caacteísticas de n ecto Módlo Diección Sentido Base Vectoes coplanaios Si al toma epesentantes con el mismo oigen, qedan todos sitados en el mismo

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE VAPOR

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE VAPOR DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE VAPOR Pedo Fenández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I.1.- INTRODUCCIÓN Paa estdia las

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

v = (1) y 0 lo que significa que la velocidad depende sólo de z : ( ) u y u g x u x v g y v y w g z w y

v = (1) y 0 lo que significa que la velocidad depende sólo de z : ( ) u y u g x u x v g y v y w g z w y UNIDAD - PROBLEMA onsidee el fljo iscoso lamina de n líqido de densidad iscosidad dinámica ene dos lacas oionales aalelas. La laca infeio esá fija la laca seio se mee acia la deeca con elocidad U. La disancia

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. Herramientas matemáticas. ticas. Ingeniero de Telecomunicación I. Fundamentos matemá Heamientas matemáticas ticas Gabiel Cano Gómez, G 7/8 Dpto. Física F Aplicada III (U. Sevilla) Campos Electomagné Ingenieo de Telecomunicación Álgeba del opeado nabla Gabiel Cano

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

CAMPOS ELECTROMAGNÉTICOS

CAMPOS ELECTROMAGNÉTICOS CAMPOS ELECTROMAGNÉTICOS INGENIERÍA DE TELECOMUNICACIÓN (IT-LADE, IT-ITIS, BILINGÜE) UNIVERSIDAD RE JUAN CARLOS «ANÁLISIS VECTORIAL» CURSO ACADÉMICO 08/09 1. Sistemas de coodenadas Deendiendo de la geometía

Más detalles

Geometría afín en el espacio. Rectas y planos

Geometría afín en el espacio. Rectas y planos Geometía afín en el epacio. Recta plano Matemática Geometía afín en el epacio. Recta plano. Ecacione de la ecta La ecación de na ecta iene deteminada po n pnto X ( )R n ecto V o po do pnto ( ) ( ) R qe

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles