Práctico Nº 4 : Vectores
|
|
|
- Luz Gil Marín
- hace 7 años
- Vistas:
Transcripción
1 Práctico Nº 4 : Vectores Nota: Cando en el presente práctico los ectores estén dados por coordenadas salo qe se aclare lo contrario deberá entenderse qe éstas se refieren a la base canónica del espacio correspondiente. ) Obtener las sigientes combinaciones lineales de los ectores dados mediante métodos gráficos como dilataciones contracciones regla del paralelogramo y el método de la poligonal. w a) d) + w g) w b) e) h) + + w c) w f) i) + w 4 ) Dados los ectores y de R obtener geométrica y analíticamente: 4 a) + b) c) 5 d) e) ) En cada caso graficar y describir el ector en la forma trigonométrica cos θ i + senθ donde θ < π es el ánglo barrido desde el semiee positio de abscisas : a) b) c) 4 6 Nota: Obserar qe esta representación es análoga a la de los números compleos por lo calθ pede ser mayor qe π. Esto no pede sceder (por definición) con el ánglo entre dos ectores. 4) Dados los pntos P() y Q(4) de R : a) Representar los pntos P y Q y los ectores OP y OQ en n mismo sistema de ees coordenados. b) Obtener las componentes de los ectores PQ y QP. Representarlos gráficamente. c) Calclar la distancia entre P y Q. d) Dar las coordenadas del pnto medio del segmento PQ y señalarlo en el primer gráfico. e) Calclar el ánglo entre OP y OQ tilizando prodcto escalar.
2 5) Dados los ectores b + b 5b y b b ectorial V: a) Obtener las coordenadas de y en la base B. b) Calclar + y. en la base { b b b } B de n espacio Prodcto Escalar y Ortogonalidad 6) Calclar sabiendo qe: 5 a) 8 y. b) i + + y i + 7. c) 5 4 y el ánglo formado por y π es. 6 d) 4 y. 7) Un agón es remolcado na distancia de m a lo largo de n camino horizontal con na ferza constante de 5N. La mania del agón está a n ánglo de º con la horizontal Qé cantidad de trabao W se lleó acabo? (El trabao está dado por el prodcto escalar W F d donde d es el ector del desplazamiento horizontal y F es la ferza aplicada) 8) Sean y dos ectores no nlos. Demostrar qe: si y sólo si y son ortogonales. 9) Para el ector obtener y graficar: - 4 a) Dos ectores nitarios paralelos a y de sentidos opestos. b) Dos ectores paralelos a de módlo. c) Todos los ectores ortogonales a con el mismo módlo qe él. d) Dos ectores ortogonales a de módlo 5. ) Todo ector no nlo determina na dirección. En R a diferencia de lo qe scede en R existen infinitas direcciones ortogonales a ésta. Dado el ector i 5 + : a) Qé ecación deben satisfacer las coordenadas de n ector ortogonal a? b) Obtener cinco ectores ortogonales a todos ellos en distintas direcciones.
3 ) Sean y dos ectores de R de igal módlo. Demestre las sigientes afirmaciones tilizando propiedades del prodcto escalar. Verifiqe gráficamente: a) + y son ortogonales. b) Si y son ortogonales entonces el ánglo qe + forma con cada no de ellos es de 45º. ) Utilizando los ectores del eercicio obtener gráficamente las sigientes proyecciones: a) proy w b) proy w c) proy w a para n a ortogonal a w. ) Sea. Para cada ector del eercicio obtener gráfica y analíticamente proy. Prodcto Vectorial 4) i) Calclar los prodctos ectoriales y de: a) b) c) 4 5 ii) En cada caso graficar y en n mismo sistema. iii) En general qé es posible afirmar sobre la dirección el sentido y el módlo de? Verificar analíticamente para a). 5) Demostrar qe:. a) ( ) b) Dos ectores de R y son paralelos si y sólo si. c) es ortogonal a los ectores y. d) es ortogonal a toda combinación lineal de y es decir para dos números reales a y b a + b. calesqiera ale ( ) ( ) Combinaciones Lineales e Independencia Lineal 7 6) i) Escribir si es posible como combinación lineal de a y b. Graficar: 5 a) a y b b) a y b 4
4 ii) Escribir 6 como combinación lineal de y. 7) Dados los conntos de ectores: en R : en R : a) 5 b) y c) d) + y f) i y i) En cada caso obtener tres combinaciones lineales de los ectores dados. Graficar los ectores y ss combinaciones lineales en n mismo sistema de coordenadas. ii) Señalar en cada caso si los ectores dados generan na recta n plano o el espacio R. 8) De acerdo a la definición de independencia lineal : a) Pede el ector nlo pertenecer a n connto linealmente independiente? b) Qé condición debe cmplir para qe el connto nitario { } sea linealmente independiente? 9) Resoler las sigientes cestiones tilizando la eqialencia ennciada en la proposición de la pág. 64 del apnte de teoría: Graficar en R : a) Un connto de dos ectores linealmente independientes Qé condición deben cmplir estos ectores? b) Un connto de dos ectores linealmente dependientes. Graficar en R : c) Un connto de dos ectores linealmente independientes. d) Un connto de tres ectores linealmente independientes agregando n tercer ector al connto representado en c) Qé precación debe tener al agregar el tercer ector? Explicar. e) Un connto de tres ectores linealmente dependientes con distintas direcciones. ) Teniendo en centa los eemplos del eercicio 9: i) Pede n connto de R n generar todo el espacio si tiene menos de n elementos? ii) Pede n connto de R n ser linealmente independiente si tiene más de n elementos? 4
5 5 ) Para cada no de los sigientes conntos de ectores: a) b) 4 c) 4 i) Determinar por definición si son linealmente independientes. ii) Determinar si ellos generan o no todo el espacio R y demostrarlo. iii) Utilizar lo hecho en i) y ii) para decidir si son bases de R. Para Licenciatra y Profesorado de Matemática ) Demostrar qe para todo ector de R y para todo número real λ se cmple λ λ. ) Demostrar qe si y w son ectores no nlos de R n con igal dirección entonces para todo ector ale la igaldad proy proy w es decir la proyección de depende exclsiamente de la dirección sobre la cal se proyecta. 4) Demostrar qe n connto de ectores... de R n es linealmente independiente si y sólo si la representación de todo ector como combinación lineal de... es única. Ayda: Esta segnda condición se tradce del sigiente modo β α β α :....
TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u
DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.
Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS
GEOMETRÍA: VECTORES 1 TEMA 7: VECTORES
GEOMETRÍA: VECTORES 1 Definición de ector: TEMA 7: VECTORES Un ector es n segmento orientado qe qeda determinado por dos pntos, A y B, el primero de los pntos se denomina origen y el segndo es el extremo,
TEMA 7 VECTORES MATEMÁTICAS 1
TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de
VECTORES EN EL PLANO.
VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas
el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES
el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto
SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169
TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a
VECTORES - PRODUCTO ESCALAR - 1 -
VECTORES - PRODUCTO ESCALAR - - Observa el rombo de la figra y calcla: B a) AB + BC b) OB + OC c) OA + OD d) AB + CD A O C e) AB + AD f) DB CA Expresa los resltados tilizando los vértices del rombo. D
ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3
ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector
TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES
TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que
VECTORES EN EL PLANO. el punto B el extremo. Mientras no preste confusión el vector v podemos expresarlo simplemente por v.
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatra: FÍSICA 10º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE VECTORES VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por
ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido
ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones
IDENTIFICAR LOS ELEMENTOS DE UN VECTOR
8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas
TEMA 5. VECTORES EN EL ESPACIO
TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3
Álgebra Manuel Hervás Curso
Álgebra Manel Herás Crso 0-0 ESPACIO EUCLÍDEO Introdcción El estdio de los espacios ectoriales es na generalización de los ectores geométricos a otros casos qe responden también a la estrctra de espacio
a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )
Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable
GEOMETRÍA ANALÍTICA AB CD CD AB CD
GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;
BLOQUE 4: GEOMETRÍA. Vectores. La recta en el plano
BLOQUE 4: GEOMETRÍA Vectores La recta en el plano 63 VECTORES Hay magnitdes qe no qedan bien definidas mediante n número; necesitamos conocer además s dirección y s sentido. A estas magnitdes se les llama
EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R 3
GEOMETRÍA Ejercicios reseltos del tema Geometría en R Jan S. Herrera Lpión EJERCICIOS RESUELTOS DEL TEMA: GEOMETRÍA EN R Ejercicio Halla n vector perteneciente a R qe sea perpendiclar a (,8,-) y cyo prodcto
4. Espacios Vectoriales
4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n
Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez
Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,
NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa
NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los
3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2
34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando
Tema 10 Ejercicios resueltos
Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1
TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:
Vector director de una recta
Vector director de na recta En la figra se observa n vector libre aplicado en distintos pntos. Cada na de las flechas resltantes proporciona na recta. Se tienen así las rectas r, r y r3 qe son paralelas
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
VECTORES EN EL PLANO
VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B
V E C T O R E S L I B R E S E N E L P L A N O
V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan
ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS
Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)
RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO Para poder isalizar los elementos de R 3 ={(x,y,z)/x,y,z R}, primero fijamos n sistema de coordenadas, eligiendo n pnto en el espacio llamado el origen qe denotaremos por O, y tres
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado
VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas
VECTORES MATEMÁTICAS I 1º Bachillerato CCNN Alfonso González IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES Magnitdes Vectoriales: Un ector es n segmento orientado qe, para ser definido, precisa
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica
Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen
RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS DENOMINADORES CON FACTORES LINEALES CUADRÁTICOS Cando al smar dos fracciones algebraicas
DERIVADAS. incremento de la variable independiente, x
DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento
Cálculo Diferencial. libro Cálculo I de los autores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones Pirámide del año 2002
Cálclo Diferencial 1. Gráficas y modelos Teoría: Ver páginas y 5 del capítlo P del libro: Preparación para el Cálclo del libro Cálclo I de los atores Larson, R., Hostetler, R.P., y Edwards, B. Ediciones
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
4 Vectores en el espacio
4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) 1 + 1 5,, 4, 7, 2 2 3 b) 3 3 2, 1, c) 6(2, 3, 1) + 4(1, 5, 2) 4 4.II. Calcula los valores de a, b y c para
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
REPASO DE ALGEBRA VECTORIAL
REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es
3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA
3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA ANALÍTICA EN EL PLANO Y EN EL ESPACIO. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 3.2.1. Rectas en el plano y en el espacio La recta que pasa por el punto
VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:
a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores
12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por
. Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
1 Parametrización de super cies
Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes
Análisis Matemático II Curso 2018 Práctica introductoria
Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)
Tercera Parte: Producto Vectorial y Producto Mixto entre vectores
Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica
TEMA 11.- VECTORES EN EL ESPACIO
TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL
1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema
VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!
VECTORES Vectores libres del plano Definiciones Sean A y B dos puntos del plano de la geometría elemental. Se llama vector AB al par ordenado A, B. El punto A se denomina origen y al punto B extremo. (
TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2
FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMATICA CATEDRA DE ALGEBRA Y GEOMETRÍA ANALITICA I CARRERA: Licenciatura en Física TRABAJO
TEMA 5. VECTORES. Dados dos puntos del plano y.
TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)
TEMA 11: VECTORES EN EL ESPACIO
Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
A u. OX=OA+tu, t R. u 2. O u 1. Emilio Martínez Ros
r A X OX=OA+t, t R O 1 Emilio Martínez Ros del plano 1. Vectores y pntos... 1 1.1 Vectores fijos 1. Vectores libres 1.3 Operaciones con vectores - Sma de vectores - Prodcto de n número real por n vector
Los vectores y sus operaciones
lasmatematcase Pedro Castro rtega Los ectores ss operacones Matemátcas I 1º achllerato Un ector qeda determnado por dos pntos, el orgen, el extremo Un ector qeda completamente defndo a traés de tres elementos:
1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y
FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010
Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................
TEMA 1: VECTORES EN EL PLANO
Profesora: María José Sánchez Qeedo TEMA 1: VECTORES EN EL PLANO El estdio del Análisis Vectorial se remonta al siglo XVII, cando el ingeniero holandés Steen (1548-160), formló el principio del paralelogramo
Geometría 1. Ejercicio 2.
Geometría 1 1 3 7 A = 2 a b Ejercicio 1. Dada la matriz c a d halla a, b, c d sabiendo que Ejercicio 2. i.el ector cuas coordenadas son las que aparecen en la primera columna de A es ortogonal al ector
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano
Espacio vectorial MATEMÁTICAS II 1
Espacio vectorial MATEMÁTICAS II 1 1 VECTORES EN EL ESPACIO. ESPACIO VECTORIAL V 3 1.1. VECTORES FIJOS Definición: Un vector fijo es un segmento orientado determinado por dos puntos. El primero de sus
1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.
CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio
3. Campos escalares diferenciables: gradiente.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto
Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido
1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB
1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García
Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas
VECTORES EN EL ESPACIO
VECTORES EN EL ESPACIO ACTIVIDADES 1 Dados los puntos del espacio: 7 Calcula el área del triángulo cuyos vértices son los P(1, 1, ) siguientes puntos: A(1, 0, ), B(,, ) y C(, 1, ) 6 Q(,,) R(, 0, 1) S(,,
VECTORES EN EL ESPACIO
UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
TEMA: VECTORES EN R² Y R³
Apuntes de la Cátedra: ÁLGEBRA Y GEOMETRÍA TEMA: VECTORES EN R² Y R³ VECTORES EN R Y R 3 Contenidos: Segmentos orientados y ectores. Suma. Propiedades. Distancia entre ectores. Vector unitario. Vectores
Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x
Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA
EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean
SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7
SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente
Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos
Tema 13: Espacio vectorial
Tema 1: Espacio vectorial 1. Vectores en el espacio Un vector fijo del espacio es un segmento AB ordenado donde A y B son puntos del espacio. Lo representaremos por AB, siendo A el origen y B el extremo.
