Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22
Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores complejos definid como F (t) = U(t) + iv (t), donde U(t) y V (t) son funciones reles de t continus trzos definids en el intervlo cotdo y cerrdo t b. Bjo ests condiciones, l función F es continu trozos y l integrl definid de F (t) en el intervlo t b se define como: b F (t)dt = y se dice que F (t) es integrble en [, b]. b U(t)dt + i b V (t)dt, (4.) Propieddes de l integrl definid Sen F (t) = U(t) + iv (t), F (t) = U (t) + iv (t) y F 2 (t) = U 2 (t) + iv 2 (t), integrbles en [, b]. A prtir de l ecución (4.) se deducen fácilmente ls siguientes propieddes de l integrl definid. { } b i) Re F (t)dt = b Re {F (t)} dt. { } b ii) Im F (t)dt = b Im {F (t)} dt. iii) b cf (t)dt = c b F (t)dt, pr tod constnte complej c. iv) b [F (t) + F 2 (t)] dt = b F (t)dt + b F 2(t)dt. v) b F (t)dt b F (t) dt. Ejemplo 4. lculr l integrl /4 e it dt.
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 2 Solución. Se tiene que e it = cos t + isen t, hor, utilizndo l ecución (4.) /4 e it dt = /4 cos t dt + i /4 = [sen t] /4 + i [ cos t] /4 2 = 2 + i2 2. 2 sen t dt 4.2 Integrción de líne 4.2. ontornos Se presentn hor vris clses de curvs decuds pr el estudio de ls integrles de un función de vrible complej. Definición 4. (urv) Un curv es un conjunto de puntos z = x+iy en el plno complejo tles que x = x(t), y = y(t), ( t b), donde x(t) y y(t) son funciones continus en el intervlo [, b]. describir medinte l ecución Los puntos de se pueden z(t) = x(t) + iy(t) ( t b) y se dice que z(t) es continu, y que x(t) y y(t) son continus. Definición 4.2 (urv suve) Un curv se llm curv suve, si z (t) = x (t) + iy (t) existe y es continu en el intervlo t b y si z (t) nunc se hce cero en el intervlo. Definición 4.3 (ontorno) Un contorno o curv suve trmos, es un curv que const de un número finito de curvs suves unids por sus extremos. Definición 4.4 (ontorno cerrdo simple) Se un contorno. Se dice que es un contorno cerrdo simple si solmente los vlores inicil y finl de z(t) son igules (z(b) = z()). 4.2.2 Integrles de líne Se f(z) un función de vrible complej. Se un contorno representdo por l ecución z(t) = x(t) + iy(t) ( t b) que se extiende del punto α = z() l punto β = z(b). Supongmos que f(z) = u(x, y) + iv(x, y) es continu trozos en, es decir, ls prtes rel e imginri, u(x(t), y(t)) y v(x(t), y(t)),
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 3 de f(z(t)) son funciones de t continus por trmos. Bjo ests condiciones, se define l integrl de líne de f lo lrgo de como: b f(z) = f(z(t))z (t) dt, (4.2) donde z (t) = x (t) + iy (t). Asocido l contorno de l ecución (4.2), está el contorno, el cul se describe por l ecución z = z( t) donde b t. Por tnto, b f(z) = f(z( t))z ( t) dt, (4.3) donde z ( t) denot l derivd de z(t) con respecto t evlud en t. Propieddes de ls integrles de líne Sen f(z) y g(z) funciones de vrible complej continus trozos sobre un contorno descrito por l ecución z = z(t) ( t b). A prtir de l ecución (4.2) se deducen fácilmente ls siguientes propieddes de ls integrles de líne. i) f(z) = f(z), pr tod constnte complej. ii) [f(z) + g(z)] = f(z) + g(z). iii) Si const de un curv desde α hst β y de l curv 2 desde α 2 hst β 2, donde β = α 2, se cumple: f(z) = f(z) + f(z). 2 iv) f(z) b f(z(t))z (t) dt. Ejemplo 4.2 lculr z = z, donde z = es l circunferenci de centro en y rdio, recorrid en sentido positivo. Solución. Un prmetrizción de l circunferenci z = es: z(t) = e it, ( t 2). Así, z = 2 z = i = i 2 = 2i. e it [ ie it] dt dt
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 4 4.3 Teorem de uchy-gourst El siguiente resultdo se conoce como Teorem de uchy-gourst. Teorem 4. (Teorem de uchy-gourst) Se un contorno cerrdo simple. Se f un función nlític sobre y en el interior de. Entonces f(z) =. (4.4) El Teorem de uchy-gourst es uno de los más importntes en l teorí de vrible complej. Un de ls rzones es que puede horrrnos un grn contidd de trbjo l relizr cierto tipo de integrciones. Por ejemplo, integrles como sen, cosh y ez deben nulrse si es un contorno cerrdo simple culquier. En todos estos csos, el integrndo es un función enter. Obsérvese que l dirección de integrción en l ecución (4.4) no fect el resultdo pues f(z) = f(z). El siguiente ejemplo verific l vlidez del Teorem de uchy-gourst. Ejemplo 4.3 Verifique que z n = donde n es un entero positivo y es l circunferenci z = r, con r >. Solución. Se observ que f(z) = z n es enter, luego por el Teorem de uchy-gourst z n =. Vemos que esto es efectivmente cierto. Un prmetrizción de z = r es: z(t) = re it, ( t 2), luego 2 z n ( = i e it ) n ( ire it ) dt 2 = ir n+ e i(n+)t dt 2 = ir n+ [cos ((n + )t) + isen ((n + )t)] dt = irn+ [sen ((n + )t) i cos ((n + )t)] n + =. 2 De est form se h verificdo el Teorem de uchy-gourst pr un cso prticulr. Definición 4.5 (Dominio simplemente conexo) Un dominio D se dice simplemente conexo si todo contorno cerrdo simple dentro del mismo encierr sólo puntos de D.
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 5 Definición 4.6 (Dominio multiplemente conexo) Un dominio D se dice multiplemente conexo si no es simplemente conexo. El Teorem de uchy-gourst se puede extender pr dominios simplemente conexos. Teorem 4.2 Si un función f es nlític en un dominio simplemente conexo D, entonces pr todo contorno cerrdo simple, dentro de D, se sumple f(z) =. De igul form, el Teorem de uchy-gourst se puede extender pr dominios multiplemente conexos. Teorem 4.3 Se denot como un contorno cerrdo simple y j (j =, 2,..., n) como un número finito de contornos cerrdos simples interiores tles que los conjuntos interiores cd j no tienen puntos en común. R es l región cerrd que const de todos los puntos dentro y sobre excepto los puntos interiores cd j (R es un dominio multiplemente conexo). Se denot por B l fronter complet orientd de R que const de y todos los j, descrit en un dirección tl que los puntos de R se encuentrn l izquierd de B. En este cso, si un función f es nlític en R, entonces = f(z) =. El siguiente ejemplo clr el significdo de este teorem. Ejemplo 4.4 Demostrr que B B z 2 (z 2 ) =, donde B const de l circunferenci z = 2 descrit en l dirección positiv, y de ls circunferencis z + = /2, z = /2 y z = /2, descrits en l dirección negtiv. Solución. Se R l región cerrd que const de todos los puntos dentro y sobre z = 2 excepto los puntos interiores z + = /2, z = /2 y z = /2. El integrndo es nlítico excepto en los puntos z = y z = ±, y estos tres puntos no pertenecen R. Por lo tnto, plicndo el Teorem 5.3 concluimos que z 2 (z 2 ) =. 4.4 Integrl indefinid B El Teorem de uchy-gourst es un herrmient vlios cundo se trt de integrr un función nlític lrededor de un contorno cerrdo. En cso de que el contorno no se cerrdo, existen métodos que se pueden deducir prtir de dicho teorem y que fclitn el cálculo de l integrl considerd. El siguiente teorem se conoce como principio de independenci de l tryectori.
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 6 Teorem 4.4 (Principio de independenci de l tryectori) Se f(z) un función nlític en todo punto de un dominio simplemente conexo D y sen z y z 2 dos puntos de D. Entonces, si usmos contornos contenidos en D, el vlor de z 2 z f(z) no dependerá del contorno utilizdo pr ir de z z 2. Demostrción. Se D un dominio simplemente conexo y y 2 dos contornos en D sin intersección que vn de z z 2. Se tiene que los contornos y 2 formn un contorno cerrdo simple, que denominremos. Luego, por el Teorem de uchy-gourst f(z) =, pero f(z) = = f(z) + f(z) 2 f(z) f(z), 2 por lo tnto, f(z) = f(z) 2 lo cul indic que l integrl desde z hst z 2 es sí independiente del contorno seguido, en tnto ese contorno se encuentre dentro de D. Del principio de l independenci de l tryectori podemos definir l primitiv de un función de vrible complej. Se f(z) un función nlític en un dominio simplemente conexo D. Se z un punto de D. L función F (z) definid en D por F (z) = z z f(s) ds + c, (4.5) donde c es un constnte complej, se denomin integrl indefinid o primitiv de f. En relidd f(z) posee un número infinito de primitivs. Dichs primitivs difieren en vlores constntes y son nlítics en D, y stisfcen F (z) = f(z). Usmos l integrl indefinid f(z) pr indicr tods ls posibles primitivs de f(z). El vlor de l constnte correspondiente un primitiv específic z z f(s) ds qued determindo por el límite de integrción inferior como se muestr en el siguiente ejemplo. Ejemplo 4.5 ) Encuentre ls primitivs de f(z) = z sen z. b) Emplee el resultdo del prtdo () pr clculr z s sen s ds. Solución. ) A fin de clculr z sen z usremos el método de integrción por prtes. Así, con u = z, dv = sen z, v = cos z, tenemos z sen z = z cos z + cos = z cos z + sen z + c = F (z).
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 7 b) Usndo el resultdo de () tenemos z w sen w dw = z cos z + sen z + c. Pr determinr el vlor de c observemos que el ldo izquierdo de est ecución es cero cundo z =. El ldo derecho coincide con el ldo izquierdo en z = si tommos c =. Por lo tnto, z w sen w dw = z cos z + sen z. Según l ecución (4.5), un integrl definid se puede evlur como el cmbio en el vlor de l integrl indefinid, como en el cálculo elementl β β f(z) = F (β) F (α) = F (z). (4.6) Ejemplo 4.6 lculr l integrl definid Solución. α z sen z. Tomndo F (z) = z cos z + sen z del ejemplo 5.6 tenemos: z sen z = [ z cos z + sen z ] = cos + sen. 4.5 Fórmul integrl de uchy En est sección veremos que si un función es nlític en un punto, sus derivds de todos los órdenes existen en ese punto y son tmbién nlítics hí. Previo este resultdo veremos un resultdo curioso que se obtiene trvés del Teorem de uchy-gourst. Si considermos un función nlític sobre y en el interior de un contorno cerrdo simple, bst con conocer los vlores que ell tom sobre ese contorno, pr determinr los vlores que tom en el interior del mismo. Este resultdo se conoce como fórmul integrl de uchy. Teorem 4.5 (Fórmul integrl de uchy) Se f(z) un función nlític en un dominio simplemente conexo D. Se un contorno cerrdo simple perteneciente D. Se z un punto interior de. Entonces f(z ) = f(z). (4.7) 2i (z z ) L fórmul (4.7) se denomin fórmul integrl de uchy. El siguiente ejemplo clr el uso de est fórmul en l evlución de integrles. Ejemplo 4.7 Hllr el vlor de l integrl donde es l circunferenci z i = 2. z 2 + 4. α
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 8 Solución. No podemos decidir de inmedito si debemos plicr l fórmul integrl de uchy o el teorem de uchy-gourst. Fctorizndo el denomindor tenemos. (z 2i)(z + 2i). Observmos que el fctor z 2i se nul dentro del contorno de integrción y que z + 2i no se nul ni sobre el contorno ni en su interior. Escribiendo l integrl considerd en l form [ ] z + 2i, z 2i vemos que, como /(z + 2i) es nlític tnto en l circunferenci z i = 2 como en su interior, podemos usr l fórmul integrl de uchy. En l ecución (4.7) tommos f(z) = /(z + 2i) y z = 2i, obteniendo luego [ 4i = z + 2i 2i z 2i Así, el vlor de l integrl considerd es ] = 2i z 2 + 4 = 2. z 2 + 4. Vemos que si un función es nlític en un punto, sus derivds de todos los órdenes existen en ese punto y son tmbién nlítics. Teorem 4.6 (Extensión de l fórmul integrl de uchy) Se f(z) un función nlític en un dominio simplemente conexo D. Se un contorno cerrdo simple perteneciente D. Se z un punto interior de. Entonces f es infinitmente diferencible en cd punto de D y l derivd n-ésim de f en z es: f (n) (z ) = n! 2i Además, f (n) (z) es nlític en D pr cd n. f(z). (4.8) (z z ) n+ El siguiente ejemplo clr el uso de l ecución (4.8) en l evlución de integrles. Ejemplo 4.8 Hllr el vlor de l integrl donde es l circunferenci z i = 2. (z 2 + 4) 2,
INTEGRAIÓN DE FUNIONES DE VARIABLE OMPLEJA 9 Solución. No podemos decidir de inmedito si debemos plicr l fórmul integrl de uchy o el teorem de uchy-gourst. Fctorizndo el denomindor tenemos. (z 2i) 2 (z + 2i) 2. Tomndo f(z) = /(z + 2i) 2 y z = 2i obtenemos, según l ecución (4.8), f (2i) = 2i (z 2 + 4) 2, ddo que f(z) es nlític sobre y en el interior de. omo f 2 (z) =, el vlor de l (z + 2i) 3 integrl es: (z 2 + 4) 2 = 6. 4.5. Alguns plicciones de l fórmul integrl de uchy En est sección estudiremos lguns de ls consecuencis de l fórmul integrl de uchy y de su extensión. Teorem 4.7 (Teorem de Morer) Si un función f(z) es continu en todo un dominio simplemente conexo D y si pr cd contorno cerrdo simple que se encuentr en D, f(z) =, entonces f es nlític en todo D. El Teorem de Morer sirve como recíproco del Teorem de uchy-gourst. Teorem 4.8 (Teorem del vlor medio de Guss) Se f(z) un función nlític en un dominio simplemente conexo D. Se z = z + re iθ, donde r r y θ 2, un círculo de centro en z y rdio r > perteneciente D. Entonces, f(z ) = 2 2 f(z + re iθ ) dθ. (4.9) L expresión de l derech de l ecución (4.9) es l medi ritmétic o vlor medio de f(z) lo lrgo de l circunferenci del círculo. El teorem del vlor medio de Guss puede usrse pr demostrr importntes propieddes de ls funciones nlítics: Teorem 4.9 (Principio del módulo máximo) Si f(z) es nlític y no constnte en el interior de un región, entonces f(z) no tiene máximo en es región. Teorem 4. (Principio del módulo mínimo) Si f(z) es nlític no nul y no constnte en el interior de un región, entonces f(z) no tiene mínimo en es región. Ahor, l extensión de l fórmul integrl de uchy nos permite obtener un sorprendente resultdo: Teorem 4. (Teorem de Liouville) Si f(z) es enter y cotd pr todos los vlores de z en el plno complejo, entonces f(z) es constnte.