TRABAJO PRÁCTICO Nº 2 Dinámica de Procesos. F CAi

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO PRÁCTICO Nº 2 Dinámica de Procesos. F CAi"

Transcripción

1 TRABAJO PRÁCTICO Nº Dinámica de Procesos OBJETIVOS: Saber deducir las funciones de transferencia de los sistemas Manejar el álgebra de bloques y aplicarla en la descripción de sistemas Conocer entradas típicas que desvían los sistemas de su estado estacionario Aprender la metodología para encontrar las respuestas temporales de los sistemas a partir de la función de transferencia Aprender a identificar l os procesos a partir de sus respuestas temporales Aprender a usar las funciones simplificadas para la caracterización de problemas complejos Usar Matlab para encontrar la respuesta temporal de sistemas a partir de su función de transferencia Desarrollar modelos simples en Simulink PROBLEMA.1 A un tanque agitado con retención constante se alimenta una corriente de 000 l/min de una solución acuosa de nitrato de potasio al 5 % (p/v). En forma abrupta se cambia la composición de la alimentación a 7 %. La respuesta temporal de la composición en la corriente de salida se registra a intervalos regulares de tiempo y se presenta en la figura. (a) La opinión de un experto indica que la función de transferencia que relaciona F CAi F C A los cambios en la concentración de entrada con los de la salida corresponde a un sistema de primer orden. Verifique esta afirmación y a partir del transitorio, identifique la función de transferencia. (b) Indique si se cumplen los teoremas del valor inicial y del valor final. (c) Usando la función de transferencia identificada, estime la concentración en un tiempo igual a cinco veces la constante de tiempo. Página 1/8

2 7.5 7 Composición (%) tiempo (minutos) (d) Suponga que después de 30 minutos, la composición de la corriente de alimentación toma instantáneamente el valor 4 %. Grafique la evolución temporal de la composición de salida. (puede usar Matlab). PROBLEMA. Se esté estudiando un proceso que consiste en una reacción química A B que sigue una cinética de primer orden con constante específica de velocidad de 0.5 min -1 y se lleva a cabo en dos tanques agitados continuos en serie con volúmenes iguales y constantes (5 m 3 ). Se procesa un caudal volumétrico de 1000 l/min con una concentración en la alimentación de 0.5 moles/l. F CAi F C A1 F C A Página /8

3 (a) Encontrar la función de transferencia entre caudal de alimentación y la concentración a la salida del segundo tanque. (b) Encontrar la respuesta temporal de las concentraciones a la salida de ambos tanques cuando se modifica el caudal de 1000 a 100 l/min. Graficar el transitorio de la concentración del reactivo a la salida del segundo tanque. (c) Desarrolle el diagrama de respuesta fraccional de la concentración del segundo tanque. PROBLEMA.3 Clasificar los siguientes sistemas de Segundo Orden según su coeficiente de amortiguamiento. G (s) = s + 3s +1 G (s) = s + s +1 G (s) = s +1 G (s) = s + s (a) Encontrar las raíces del polinomio denominador (b) Completar la tabla con el coeficiente de amortiguamiento y la frecuencia natural. Si corresponde las constantes de tiempo 1 y para cada función de transferencia. Para sistemas sobre amortiguados o críticamente amortiguados, en la última columna, escribir la función de transferencia donde queden explícitos los sistemas que están en serie. (c) Considerar la señal de entrada como un escalón unitario. Mediante tablas encuentre la respuesta temporal de la variable de salida. (d) Encontrar respuestas temporales usando Simulink y graficar. (e) Relacione la respuesta temporal con los polos de las distintas funciones de transferencia. (f) Puede ser aplicado el teorema del valor final en todos los casos? G i (s) Polos n 1 s + 3s +1 s + s +1 s +1 s + s +1 Sistemas en Serie Página 3/8

4 PROBLEMA.4 El Registro de la temperatura del agua a la salida del segundo tanque del sistema de la figura, se obtuvo cuando se abrió la válvula de vapor aumentando el caudal de vapor en 0 kg/min. La temperatura de entrada al primer tanque es de 0C y el valor estacionario de la temperatura de salida del segundo tanque es 50C. Fi VAPOR Ti F 1 T 1 F T CONDENSADO (a) Encontrar la función de transferencia que relaciona la temperatura medida con el caudal de vapor (modelado). Relacionar los parámetros con las condiciones de trabajo del sistema. (b) Estimar los parámetros de la función de transferencia a partir de la curva de respuesta (identificación). TIR Temperatura (ºC) tiempo (min) Página 4/8

5 PROBLEMA.5 La respuesta temporal de un sistema de Segundo Orden ante un impulso unitario en la entrada es la que se ve en la figura y(t) t (min) (a) Identificar la función de transferencia. (b) Encontrar la respuesta temporal a un escalón de magnitud -. Puede usar el Toolbox Control System o Simulink (c) Cuánto cambia el período de oscilación si se mantiene la frecuencia natural pero la relación de atenuación se hace igual a 1:4? PROBLEMA.6 Considere una batería de 5 tanques agitados continuos en serie de igual capacidad (4 m 3 ) que se mantienen constantes por rebosamiento. A la primera unidad se alimenta un caudal de 1500 l/min de solución líquida de cloruro de sodio de concentración 4 gramos/100 ml. (a) Haga un diagrama del proceso bajo estudio. (b) Encuentre las funciones de transferencia que relaciona los cambios de la concentración en el flujo de alimentación con las concentraciones a la salida de cada tanque. (c) Encontrar la respuesta temporal de las concentraciones en cada tanque si la alimentación cambia su concentración abruptamente a 10 gramos/100 ml. (d) Representar los cinco transitorios en una única gráfica y observar la característica de las respuestas (puede usar Simulink). Relacione la forma con el orden de la transferencia. (e) Identifique la función de transferencia de la concentración de salida del quinto tanque en forma simplificada como un tiempo muerto y una constante de tiempo. Página 5/8

6 PROBLEMA.7 Se desea instalar un sistema de control de temperatura en un reactor tanque agitado continuo adiabático donde se produce una reacción química endotérmica mediante la manipulación del flujo de alimentación empleando una válvula con actuador neumático. Para conocer las características del sistema a controlar, se llevó a cabo un ensayo en lazo abierto que consistió en aplicar un cambio escalón en la señal de entrada a la válvula (u) de 65 % a 45 % y se registró la señal de salida del transmisor (y). El transitorio que se muestra a continuación corresponde al registro de y. F TT TR u y A/M TC 5 Señal del Transmisor de Composición (%) tiempo (min) (a) Realizar el Diagrama en bloques que relaciona la señal de control que actúa sobre la válvula (u) con la señal de salida del transmisor (y). Página 6/8

7 (b) Identificar la función de transferencia que vincula los cambios en u con los cambios en y (planta a controlar) empleando el Método del Punto de Inflexión (Ziegler y Nichols) y por el Método de Smith. Tabule los resultados. (c) Usando las funciones de transferencia identificadas, graficar la respuesta de la señal transmitida a un escalón de la señal de control de 45 % a 70 %. (d) Realizar el diagrama en bloques del lazo de control de temperatura. PROBLEMA.8 La figura muestra un tanque abierto a la F atmósfera que almacena agua limpia a temperatura ambiente para F1 proveer el fluido a un sistema de riego. En el tanque agitado continuo se mezclan corrientes de agua proveniente de dos secciones diferentes de una fábrica de alimentos. A la salida del tanque el fluido descarga, en h x régimen turbulento, a través de una válvula F neumática cuya señal (apertura x) queda determinada por un sistema de control en un equipo aguas abajo del tanque analizado. La ecuación de flujo de la válvula en unidades consistentes es: F = Cv x Δp V γ = 0.03 x h El nivel (h) en el estado inicial es 1 m. La sección transversal del tanque es de 1. m. (a) Encontrar el modelo dinámico entre las variables de entradas F 1, F, x y la variable de salida h. Indique los parámetros del sistema analizado. (b) Encontrar la función de transferencia entre F 1 y h. (c) Deducir la función de transferencia entre x y h. (d) Representar en un diagrama en bloques la contribución de F 1, F y x a la variación de h. (e) Encontrar los parámetros de la función de transferencia entre F 1 y h cuando la apertura de la válvula está fija en 50%. (f) Encontrar la evolución temporal de h cuando F 1 varía como escalón de magnitud -. Página 7/8

8 PROBLEMA.9 En un tanque agitado continuo se produce una reacción en fase acuosa A B+C que sigue una cinética orden respecto del reactivo. r = k C con k = 0.04 (mol -1 l min -1 ) A A La transformación se realiza en condiciones isotérmicas. El tanque tiene una retención constante de 4 (m 3 ). Se procesa un caudal volumétrico de 800 l/min con una concentración en la alimentación de 0.5 mol/l. (a) Encontrar la función de transferencia entre el caudal de alimentación (F) y la concentración de sustrato en la corriente de salida. (b) Calcule el valor de los parámetros estáticos y dinámicos (c) Grafique la respuesta de la concentración del reactivo a la salida a escalones de caudal de +00 (l/min) y de +400 (l/min). CONCEPTOS INTRODUCIDOS EN EL TEMA Variable de Desviación. Linealización. Función de transferencia. Señal de entrada y de salida. Señales de entrada típicas: escalón, rampa, pulso, impulso. Respuesta temporal. Orden de un sistema. Sistemas sub y sobre amortiguados. Sistemas en serie. Parámetro estático: ganancia de estado estacionario. Parámetros dinámicos: constante de tiempo, frecuencia natural, coeficiente de amortiguamiento, tiempo muerto. Sistemas autorregulados. Integrador. Constante de un integrador. Identificación. Sistemas de alto orden. Caracterización simplificada de constante de tiempo y tiempo muerto. Caracterización simplificada de integrador y tiempo muerto Página 8/8

TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado

TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado TRABAJO PRÁCTICO Nº 4 Análisis temporal de sistemas en lazo Cerrado OBJETIVOS: Analizar las características del comportamiento transitorio de sistemas en lazo cerrado con controladores. Manejar el concepto

Más detalles

TRABAJO PRÁCTICO Nº 2 Herramientas Matemáticas de los Sistemas de Control

TRABAJO PRÁCTICO Nº 2 Herramientas Matemáticas de los Sistemas de Control TRABAJO PRÁCTICO Nº Herramientas Matemáticas de los Sistemas de Control PROBLEMA.1 Aplicando la definición de Transformada de Laplace encontrar la función transformada de las siguientes funciones: at a)

Más detalles

AUTOMATIZACIÓNY CONTROL DE PROCESOS CARRERA DE INGENIERÍA INDUSTRIAL 2018

AUTOMATIZACIÓNY CONTROL DE PROCESOS CARRERA DE INGENIERÍA INDUSTRIAL 2018 018 PROBLEMA.1 TRABAJO PRÁCTICO Nº Herramientas Matemáticas de los Sistemas de Control Aplicando la definición de Transformada de Laplace encontrar la función transformada de las siguientes funciones:

Más detalles

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos OBJETIVOS: Adquirir una primera aproximación de la forma en que actúan los sistemas de control realimentados, aprendiendo a identificar tipos de

Más detalles

TRABAJO PRÁCTICO N 5 Respuesta en Frecuencia

TRABAJO PRÁCTICO N 5 Respuesta en Frecuencia TRABAJO PRÁCTICO N 5 Respuesta en Frecuencia OBJETIVOS: Comprender el concepto de respuesta en frecuencia. Familiarizarse con la respuesta en frecuencia de elementos simples y su representación gráfica.

Más detalles

CONTROL DE PROCESOS EXAMEN FINAL Agosto de 2008

CONTROL DE PROCESOS EXAMEN FINAL Agosto de 2008 TEMA 1 Una corriente líquida es calentada en un intercambiador con control automático de temperatura como se muestra en la figura. El flujo líquido en condiciones normales está entre 5 y 15 m 3 /h. Los

Más detalles

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 4

Más detalles

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control OBJETIVOS: Conocer las características generales de los instrumentos e interpretar información de catálogos. Aprender una metodología general

Más detalles

PARÁMETROS ESTÁTICOS A PARTIR DE LA CURVA DE RESPUESTA AL ESCALÓN

PARÁMETROS ESTÁTICOS A PARTIR DE LA CURVA DE RESPUESTA AL ESCALÓN TEMA ARÁMETROS ESTÁTICOS A ARTIR DE LA CURVA DE RESUESTA AL ESCALÓN Todos los métodos evalúan la ganancia estática K a partir de los valores de los estados estacionarios inicial y final de la curva de

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control OBJETIVOS: Conocer las características generales de los instrumentos e interpretar información de catálogos. Aprender una metodología general

Más detalles

PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso

PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso PROYECTO DE CURSO DE LA ASIGNATURA TEORÍA DE CONTROL AUTOMÁTICO PRIMER PARCIAL 3 er CURSO Ingeniería de Telecomunicaciones Curso 2010-11 1. Descripción del sistema Se desea controlar la reacción química

Más detalles

C 2 H 6 C 2 H 4 + H 2

C 2 H 6 C 2 H 4 + H 2 GUIA DE PROBLEMAS 1. Determine la expresión del balance de energía general para un reactor que opera en estado estacionario, 1.1. donde se lleva cabo una reacción única, ingresa y egresa una sola corriente

Más detalles

Control automático con herramientas interactivas

Control automático con herramientas interactivas 1 El proyecto de fichas interactivas Objetivo del libro 2 Explicar de forma interactiva conceptos básicos de un curso de introducción al control automático y facilitar al recién llegado su aprendizaje

Más detalles

A puro. P b, kpa C A1 C A2. 3 m 4 5. Figura 1

A puro. P b, kpa C A1 C A2. 3 m 4 5. Figura 1 PROBLEMA. Considere el proceso mostrado en la figura. q, q en m 3 s C A, C A, C A3 en gma cc ρ en gm cc h, h, L en m q, ρ P a, kpa q, ρ A puro Reactor P b, kpa C A 3 h C A Tanque de Mezcla L h 3 m 4 5

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

Dinámica y Control de Procesos Repartido 5

Dinámica y Control de Procesos Repartido 5 Dinámica y Control de Procesos Repartido 5 5.1 El horno mostrado en la figura se utiliza para calentar el aire que se suministra a un regenerador catalítico. El transmisor de temperatura se calibra a 300-500

Más detalles

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X Laboratorio 1. Introducción a MATLAB y Simulink. 1. Uso de MATLAB. Manejo de Vectores y Matrices: Usando el editor de MATLAB, escriba el código necesario para generar: a. Vectores (1x1) (3x1) y (1x7),

Más detalles

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control.

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. . Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Herramientas del control

Más detalles

14. SINTONIZACION EN LINEA

14. SINTONIZACION EN LINEA 14. SINTONIZACION EN LINEA 14.1 INTRODUCCION Por sintonización de un controlador se entiende el ajuste de los parámetros del mismo (Ganancia, Tiempo Integral y Tiempo Derivativo) para enfrentar las características

Más detalles

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es Gp(S) = 1/(5S + 1). El proceso está en serie con

Más detalles

SISTEMAS DINÁMICOS DE SEGUNDO ORDEN SISTEMAS DINÁMICO DE ORDEN SUPERIOR

SISTEMAS DINÁMICOS DE SEGUNDO ORDEN SISTEMAS DINÁMICO DE ORDEN SUPERIOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN UNIDAD CURRICULAR: DINÁMICA Y CONTROL

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es: Gp(S) = 1 5S + 1 El proceso está en serie con

Más detalles

PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS

PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS PROBLEMAS PROPUESTOS 1. Un tanque con un serpentín por el que circula vapor se utiliza para calentar un fluido de capacidad calórica Cp. Suponga conocida la masa de líquido contenida en el tanque (M L

Más detalles

Instrumentación y Control Ejercicios Agosto Diciembre 2017

Instrumentación y Control Ejercicios Agosto Diciembre 2017 Instrumentación y Control Ejercicios gosto Diciembre 7 EJERCICIO daptado de Turton () La figura muestra un fragmento de un diagrama de tuberías e instrumentos (PID) que contiene varios errores. Identificar

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: [1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determinar: En base a la gráfica: a) Tiempo de establecimiento para un error

Más detalles

Sistema de mezcla con quemador

Sistema de mezcla con quemador EUITI-UPM Dpto. Electrónica Automática e Informática Industrial. Título: Sistema de mezcla con quemador Trabajo de Control de Procesos: 1 1. Descripción del sistema La figura representa un sistema mezclador

Más detalles

CARACTERÍSTICAS DE UN PROCESO

CARACTERÍSTICAS DE UN PROCESO CÁTEDRA: SISTEMAS DE CONTROL (PLAN 2004) DOCENTE: Prof. fing. Mec. Marcos A. AGlt Golato CARACTERÍSTICAS DE UN PROCESO 1 E (S) B (S) FACULTAD DE CIENCAS EXACTAS Y TECNOLOGIA GANANCIA - DEFINICIÓN GANANCIA

Más detalles

DEPARTAMENTO DE INGENIERÍA MECÁNICA

DEPARTAMENTO DE INGENIERÍA MECÁNICA DEPARTAMENTO DE INGENIERÍA MECÁNICA FACULTAD DECIENCAS EXACTAS Y TECNOLOGIA CÁTEDRA: SISTEMAS DE CONTROL (PLAN 2004) DOCENTE: Prof. fing. Mec. Marcos A. AGlt Golato CARACTERÍSTICAS DE UN PROCESO 1 GANANCIA

Más detalles

TAREA DE SISTEMAS DE CONTROL AVANZADO 2018_2

TAREA DE SISTEMAS DE CONTROL AVANZADO 2018_2 TAREA DE SISTEMAS DE CONTROL AVANZADO 2018_2 (70%) Un reactor químico es un equipo en cuyo interior tiene lugar una reacción química. Los reactores se diseñan para maximizar la conversión y selectividad

Más detalles

CONTROL DE REACTORES. ! Reactores de tanque agitado. ! Reactores de flujo pistón! Reactores batch

CONTROL DE REACTORES. ! Reactores de tanque agitado. ! Reactores de flujo pistón! Reactores batch 1/61 CONTROL DE REACTORES! Reactores de tanque agitado! Grados de libertad! Control de presión! Control de temperatura! Control de calidad! Reactores de flujo pistón! Reactores batch 2/61 grados de libertad?

Más detalles

Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink.

Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink. Modelado y Simulación de Sistema de Control de Llenado de estanques mediante Simulink. Por: Felipe Fernández G., Escuela Universitaria de Ingeniería Eléctrica y Electrónica. Universidad de Tarapacá, Sede

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE

PRÁCTICA N 7 ANÁLISIS DE RESPUESTA TRANSITORIA Y PERMANENTE ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO

Más detalles

Análisis temporal de sistemas

Análisis temporal de sistemas Control de Procesos Industriales 3. Análisis temporal de sistemas por Pascual Campoy Universidad Politécnica Madrid Control de Procesos Industriales 1 Análisis temporal de sistemas Estabilidad y ganancia

Más detalles

MODELOS EN ING. QUIMICA

MODELOS EN ING. QUIMICA MODELOS EN ING. QUIMICA ECUACION DE BALANCE: {velocidad de acumulación} = {velocidad de entrada} + {velocidad de generación} n} - {velocidad de salida} Unidades: [{velocidad de acumulación}] = [Propiedad].[tiempo]

Más detalles

Nombre del formato: Formato para la Instrumentación Didáctica del Periodo. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7.

Nombre del formato: Formato para la Instrumentación Didáctica del Periodo. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7. Referencia a la Norma ISO 9001:2008 7.1, 7.2.1, 7.5.1, 7.6 Página 1 de 15 INSTITUTO TECNOLÓGICO DE MÉRIDA SUBDIRECCIÓN ACADÉMICA Instrumentación didáctica para la formación y desarrollo de competencias

Más detalles

Test de ejercicios de auto-evaluación del módulo 1 Lecciones 1 y 2

Test de ejercicios de auto-evaluación del módulo 1 Lecciones 1 y 2 Test de ejercicios de auto-evaluación del módulo 1 Lecciones 1 y 1) La utilización de un modelo complejo para describir el comportamiento de un sistema: 1- Supone el mismo coste de simulación que un modelo

Más detalles

CONTROLADORES O REGULADORES PID. Prof. Gerardo Torres Sistemas de Control

CONTROLADORES O REGULADORES PID. Prof. Gerardo Torres Sistemas de Control 1 CONTROLADORES O REGULADORES PID INTRODUCCIÓN PID son los más utilizados en la industria. Son aplicados en general a la mayoría de los procesos. Pueden ser analógicos o digitales. Pueden ser electrónicos

Más detalles

Escuela de Ingeniería Eléctrica. Departamento de electricidad aplicada. Materia: Teoría de Control (E )

Escuela de Ingeniería Eléctrica. Departamento de electricidad aplicada. Materia: Teoría de Control (E ) Escuela de Ingeniería Eléctrica Departamento de electricidad aplicada Materia: Teoría de Control (E-4.26.1) Publicación E.4.26.1-TE-02-0 Marzo de 2012 CONTENIDO TEMÁTICO 1. INTRODUCCIÓN:... 3 2. CLASIFICACIÓN

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

ÍNDICE 1. Introducción 2. La transformada de Laplace 3. Variables y parámetros 4. Elementos básicos

ÍNDICE 1. Introducción 2. La transformada de Laplace 3. Variables y parámetros 4. Elementos básicos ÍNDICE 1. Introducción 1.1 Concepto de sistemas 1 1.2 Concepto de bloque 1 1.3 Diagrama de bloques 2 1.4 Función de transferencias o transmitación 2 1.5 Sistema controlado 5 1.6 Control manual en lazo

Más detalles

GRADO: CURSO: 3 CUATRIMESTRE:

GRADO: CURSO: 3 CUATRIMESTRE: DENOMINACIÓN ASIGNATURA: Ingeniería de Control I GRADO: CURSO: 3 CUATRIMESTRE: La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera

Más detalles

TEMA 6: INTRODUCCIÓN A LA INGENIERÍA DE LA REACCIÓN QUÍMICA. IngQui-6 [1]

TEMA 6: INTRODUCCIÓN A LA INGENIERÍA DE LA REACCIÓN QUÍMICA. IngQui-6 [1] TEMA 6: INTRODUCCIÓN A LA INGENIERÍA DE LA REACCIÓN QUÍMICA IngQui-6 [1] 6.1 La etapa de reacción en el proceso químico Ingeniería de la Reacción Química: Disciplina que sintetiza la información, los conocimientos

Más detalles

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es: 1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas

Más detalles

Reactor químico: Cálculos cinéticos para el diseño industrial

Reactor químico: Cálculos cinéticos para el diseño industrial Reactor químico: Cálculos cinéticos para el diseño industrial Objetivos de la práctica! Realizar el seguimiento experimental de la conversión de una reacción química con el tiempo.! Utilizar la ecuación

Más detalles

REACTORES QUÍMICOS - PROBLEMAS REACTORES NO IDEALES 61-78

REACTORES QUÍMICOS - PROBLEMAS REACTORES NO IDEALES 61-78 Curso 011-01 RECTORES QUÍMICOS - PROBLEMS RECTORES NO IDELES 61-78 61.- Distintos experimentos llevados a cabo en un reactor continuo de tanque agitado hacen sospechar que el comportamiento del reactor

Más detalles

MODOS O ACCIONES DEL CONTROLADOR

MODOS O ACCIONES DEL CONTROLADOR MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde

Más detalles

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo

Más detalles

Nombre del formato: Planeación del Curso y Avance Programático. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7.6, 8.1, 8.2.

Nombre del formato: Planeación del Curso y Avance Programático. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7.6, 8.1, 8.2. Página 1 de 8 INSTITUTO TECNOLÓGICO DE MÉRIDA SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE ELECTRICA Y ELECTRÓNICA PLANEACIÓN DEL CURSO Y AVANCE PROGRAMÁTICO DEL PERIODO ENERO-JUNIO 20 MATERIA: CONTROL 1 HT

Más detalles

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control OBJETIVOS. Conocer las características generales de los instrumentos e interpretar información de catálogos. Aprender una metodología general

Más detalles

REACTORES QUÍMICOS - PROBLEMAS ASOCIACIÓN REACTORES 47-60

REACTORES QUÍMICOS - PROBLEMAS ASOCIACIÓN REACTORES 47-60 Curso 2011-2012 RECTORES QUÍMICOS - PROBLEMS SOCICIÓN RECTORES 47-60 47.- (examen ene 09) La reacción química elemental en fase líquida + B C se lleva a cabo en 2 RCT de iguales dimensiones conectados

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

Nombre del formato: Planeación del Curso y Avance Programático. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7.6, 8.1, 8.2.

Nombre del formato: Planeación del Curso y Avance Programático. Referencia a la Norma ISO 9001: , 7.2.1, 7.5.1, 7.6, 8.1, 8.2. Página 1 de 8 INSTITUTO TECNOLÓGICO DE MÉRIDA SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE ELECTRICA Y ELECTRÓNICA PLANEACIÓN DEL CURSO Y AVANCE PROGRAMÁTICO DEL PERIODO Feb./Jun. 2 MATERIA: CONTROL 1 HT 3 HP

Más detalles

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que

Más detalles

Control PID de Temperatura

Control PID de Temperatura Control PID de Temperatura Esquema basico de control PID Reglas Euristicas de ajuste Reglas. Efecto Anti Windup Como la integral resulta de la sumatoria de los errores de cada ciclo, se corre el

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

TEMA Nº 2. SISTEMAS DINÁMICOS DE PRIMER ORDEN

TEMA Nº 2. SISTEMAS DINÁMICOS DE PRIMER ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCSCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE MECÁNCA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA Nº 2. SISTEMAS DINÁMICOS DE PRIMER ORDEN

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales PROGRAMA DE ESTUDIO POR COMPETENCIAS CONTROL I I. IDENTIFICACIÓN DEL CURSO Espacio Educativo: Facultad de Ingeniería Licenciatura: Ingeniería en Electrónica Año de aprobación por el Consejo Universitario:

Más detalles

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA

REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA REGULACIÓN AUTOMÁTICA ING. TEC. IND. ELECTRÓNICA 1 er Cuatrimestre: Martes 12:30-14:30 16:00-17:00 2º Cuatrimestre: Jueves 12:30-14:30 16:00-17:00 Profesor: Andrés S. Vázquez email: AndresS.Vazquez@uclm.es

Más detalles

EXAMEN DE GRADO GUÍA PARA EL ESTUDIANTE

EXAMEN DE GRADO GUÍA PARA EL ESTUDIANTE ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA QUÍMICA Y AGROINDUSTRIAL CARRERA DE INGENIERÍA QUÍMICA EXAMEN DE GRADO GUÍA PARA EL ESTUDIANTE Antecedentes Todas las carreras y programas de la Escuela

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica INGENIERIA CIVIL MECANICA PLAN 2001 GUIA DE LABORATORIO ASIGNATURA 15030 LABORATORIO GENERAL II NIVEL 11 EXPERIENCIA C229 ANÁLISIS DINAMICO DE SISTEMAS DE CONTROL HORARIO: MARTES: 7-8 9-10-11-12 ANÁLISIS

Más detalles

Orden de un sistema. El orden de un sistema está definido por el grado de su ecuación característica

Orden de un sistema. El orden de un sistema está definido por el grado de su ecuación característica ORDEN DE UN SISTEMA Orden de un sistema El orden de un sistema está definido por el grado de su ecuación característica Normalmente la ecuación característica (denominador) de un sistema tiene mayor grado

Más detalles

FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1

FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 Contenido El concepto de realimentación. Establecimiento de las ecuaciones diferenciales que rigen a un sistema. Función de transferencia.

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Seminario: Sistemas Analógicos S.0 S.1 S.2 S.3 S.4 Introducción: Control Transformada de Laplace Funciones

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

Planificaciones Sistemas de Control. Docente responsable: ALVAREZ EDUARDO NESTOR. 1 de 6

Planificaciones Sistemas de Control. Docente responsable: ALVAREZ EDUARDO NESTOR. 1 de 6 Planificaciones 6722 - Sistemas de Control Docente responsable: ALVAREZ EDUARDO NESTOR 1 de 6 OBJETIVOS c1 Los alumnos podrán elaborar modelos de sistemas físicos a controlar c2.-los alumnos podrán analizar

Más detalles

Así, la incoporación de esta ecuación obliga a reescribir la ecuación modelo como:

Así, la incoporación de esta ecuación obliga a reescribir la ecuación modelo como: La ecuación de balance de masa total para un estanque con un Volumen V R de fluido, que descarga un fluido de densidad ρ a un flujo F S mientras entra un flujo F E, corresponde a la ecuación particular:

Más detalles

6 APENDICE. A. Curvas de Calibración

6 APENDICE. A. Curvas de Calibración 6 APENDICE A. Curvas de Calibración Las muestras colectadas en las hidrólisis contenían básicamente carbohidratos como, glucosa, xilosa y arabinosa, entre otros. Se realizaron curvas de calibración para

Más detalles

Datos: T(min) Cpmx T(min) Cpmx

Datos: T(min) Cpmx T(min) Cpmx 2. REACTORES REALES 2.1. En un reactor de 18.4 L de volumen y v = 340 L/h se inyecta un pulso de trazador radiactivo. Se mide la concentración del trazador en cuentas por minuto a la salida del 2 2 reactor.

Más detalles

PROBLEMAS DE FUNDAMENTOS DE CINÉTICA QUÍMICA APLICADA

PROBLEMAS DE FUNDAMENTOS DE CINÉTICA QUÍMICA APLICADA PROBLEMS DE FUNDMENTOS DE CINÉTIC QUÍMIC PLICD TEM 4. MÉTODOS INTEGRLES DE NÁLISIS DE DTOS CINÉTICOS 1. La reacción en fase líquida R + S transcurre de acuerdo con los siguientes datos: t, min 0 36 65

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

0.1. Error en Estado Estacionario

0.1. Error en Estado Estacionario 0. Error en Estado Estacionario 0.. Error en Estado Estacionario La respuesta permanente es aquella que se alcanza cuando el sistema se establece y es muy importante su estudio pues informa lo que sucede

Más detalles

PRÁCTICA 3. Identificación de un Motor de Corriente Continua. mediante su Respuesta Frecuencial

PRÁCTICA 3. Identificación de un Motor de Corriente Continua. mediante su Respuesta Frecuencial UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE PROCESOS Y SISTEMAS LABORATORIO DE CONTROL AUTOMATICO PRÁCTICA 3 Objetivo Identificación de un Motor de Corriente Continua mediante su Respuesta Frecuencial Al

Más detalles

REGULACIÓN AUTOMÁTICA

REGULACIÓN AUTOMÁTICA SEGUNDO CURSO ANUAL INGENIERO TÉCNICO INDUSTRIAL ESPECIALIDAD EN ELECTRONICA INDUSTRIAL Plan de la Asignatura REGULACIÓN AUTOMÁTICA CURSO 2005-06 Departamento de Ingeniería de Sistemas y Automática Universidad

Más detalles

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos.

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos. Balance de masa con química. Balances de masa con química en reactores discontinuos y continuos. La aparición de una química en un proceso impone las restricciones adicionales dadas por la ecuación estequiométrica

Más detalles

CONTROL AUTOMÁTICO DE PROCESOS

CONTROL AUTOMÁTICO DE PROCESOS Universidad Tecnológica Nacional Facultad Regional San Francisco INGENIERÍA QUÍMICA CONTROL AUTOMÁTICO DE PROCESOS PLANIFICACIÓN CICLO LECTIVO 2015 ÍNDICE ÍNDICE... 2 PROFESIONAL DOCENTE A CARGO... 3 UBICACIÓN...

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Prof. Ing. Rubén Darío Marcano C. Es una operación no estacionaria en la que la composición va variando con el tiempo.

Prof. Ing. Rubén Darío Marcano C. Es una operación no estacionaria en la que la composición va variando con el tiempo. REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA NUCLEO FALCÓN SEDE PUNTO FIJO Prof.

Más detalles

AUTOMATIZACIÓNY CONTROL DE PROCESOS CARRERA DE INGENIERÍA INDUSTRIAL 2018

AUTOMATIZACIÓNY CONTROL DE PROCESOS CARRERA DE INGENIERÍA INDUSTRIAL 2018 TRABAJO PRÁCTICO Nº 1 Introducción a los sistemas de control PROBLEMA 1.1 Responda verdadero ó falso a las siguientes afirmaciones: 1. Las cantidades analógicas toman valores acotados dentro de un intervalo

Más detalles

IES LEÓN FELIPE (GETAFE) EXAMEN DE LA UNIDAD 3 (CINÉTICA) DE QUÍMICA DE 2º DE BACHILLERATO

IES LEÓN FELIPE (GETAFE) EXAMEN DE LA UNIDAD 3 (CINÉTICA) DE QUÍMICA DE 2º DE BACHILLERATO IES LEÓN FELIPE (GETAFE) EXAMEN DE LA UNIDAD 3 (CINÉTICA) DE QUÍMICA DE 2º DE BACHILLERATO Nombre: Fecha: 1. Considerando el siguiente diagrama de energía para la reacción A B + C, contesta razonadamente

Más detalles

TALLER FINAL DE CONTROL AVANZADO

TALLER FINAL DE CONTROL AVANZADO TALLER FINAL DE CONTROL AVANZADO 1. Dado el sistema no lineal: x 1 = x 2 2 cos x 1 x 2 = x 2 2 + x 2 3 + u y = x 1 + x 2 x 2 > 0 a) Linealice el sistema alrededor del punto u o = 1 b) Obtenga la función

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

I - Oferta Académica Materia Carrera Plan Año Período Ingeniería de las Reacciones Químicas I Ing. Química cuatrimestre

I - Oferta Académica Materia Carrera Plan Año Período Ingeniería de las Reacciones Químicas I Ing. Química cuatrimestre Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingenieria de Procesos Area: Procesos Químicos (Programa del año 2011) (Programa

Más detalles

MANUAL CONTROL DE TEMPERATURA EN UN REACTOR ENDOTÉRMICO

MANUAL CONTROL DE TEMPERATURA EN UN REACTOR ENDOTÉRMICO MANUAL CONTROL DE TEMPERATURA EN UN REACTOR ENDOTÉRMICO Simulation Control & Automation Solutions 1. Descripción del sistema Un ejemplo de reactor endotérmico se tiene en las unidades de Reformado Catalítico,

Más detalles

c) Hallar la fracción dentro del reactor que entró hace más de 5 min.

c) Hallar la fracción dentro del reactor que entró hace más de 5 min. REACTORES REALES Ejercicio 1 En un reactor de 18.4 L de volumen y v = 340 L/h se inyecta un pulso de 0.5 g de trazador. Se mide la concentración del trazador en cuentas por minuto a la salida del reactor.

Más detalles

Sistema neumático de control de nivel

Sistema neumático de control de nivel ULA. FACULTAD DE INGENIERIA. ESCUELA DE MECANICA. TEORIA DE CONTROL. EJERCICIOS FINAL Ejercicio 1. Primera parte: Modelado y de un tanque de agua, con su sistema de medición de nivel. La figura muestra

Más detalles

Universidad Tecnológica Nacional

Universidad Tecnológica Nacional Universidad Tecnológica Nacional Facultad Regional Rosario Área de Postgrado y Educación Continua Curso: Modelado, Simulación y Diseño de Procesos Químicos Examen Final Aplicación del Modelado, Simulación

Más detalles

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua. 7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado

Más detalles

Control I. Carrera: ELC

Control I. Carrera: ELC 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Control I ELC-0506 4-2-10 2.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD DEFINICIÓN Un Sistema de Control es un conjunto de elementos o componentes relacionados entre si que controlan alguna

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUÍMICAS

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUÍMICAS Operaciones Unitarias II Práctica de laboratorio Destilación de una mezcla de etanol-agua al 50% fracción mol Karen Chavarría Castillo 245380

Más detalles

Diseño de Estrategias de Control para un Estanque

Diseño de Estrategias de Control para un Estanque Ejercicio Nº 1 EL42D: Control de Sistemas. (Semestre Primavera 2008) Profesora: Dra. Doris Sáez H. Ayudante: Camila Troncoso Solar. (camtroncoso@gmail.cl) Diseño de Estrategias de Control para un Estanque

Más detalles