Optimización Con Restricciones de Igualdad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Optimización Con Restricciones de Igualdad"

Transcripción

1 Optimización Con Restricciones de Igualdad Departamento de Matemáticas, CSI/ITESM 11 de noviembre de 2009 Índice 151Introducción 1 152El método de los Multiplicadores de Lagrange 1 153Ejemplo Ejemplo Ejemplo Nota importante Introducción En esta lectura veremos el problema de optimizar una función de valor real sujeta a un conjunto de restricciones El método que veremos se debe a Joseph Louis Lagrange ( ) y la prueba de que define condiciones necesarias para los puntos óptimos aparece en el libro de A Khuri (1993): Advanced Calculus with Applications in Statistics (John Wiley and Sons, New York) y la prueba de las condiciones de suficiencia aparecen en el libro R P Gillespie (1954): Partial Differentiation (Oliver and Boyd, Edinburgh) Veremos un par de ejemplos para clarificar los criterios de máximos y mínimos relativos 152 El método de los Multiplicadores de Lagrange Suponga que se desea optimizar la función real valuada f(x 1,x 2,,x n ) donde las variables x 1,x 2,,x n están sujetas a las restricciones de igualdad (m < n): g 1 (x 1,x 2,,x n ) = 0 g 2 (x 1,x 2,,x n ) = 0 g m (x 1,x 2,,x n ) = 0 donde las funciones f,g 1,g 2,,g m son diferenciables f debe tener segundas derivadas continuas, mientras que las g i deben tener primeras derivadas continuas El primer paso consiste en determinar los puntos críticos o estacionarios del problema restringido, para ello se forma la función: F(x,λ) = f(x)+ m λ j g j (x) j=1

2 Los puntos estacionarios se determinan resolviendo F = 0: F = x 1 x n λ 1 λ m = f x 1 + m j=1 λ j g j x 1 x n + m j=1 λ j g j x n g 1 g m = 0 Es decir, los puntos máximos o mínimos se encuentran dentro del conjunto de puntos críticos que se obtienen de resolver el sistema formado por las ecuaciones: = f m g j + λ j = 0 para i = 1,2,,n x i x i x i j=1 y junto con las m ecuaciones dadas por las restricciones: g 1 (x 1,x 2,,x n ) = 0 g 2 (x 1,x 2,,x n ) = 0 g m (x 1,x 2,,x n ) = 0 Este sistema se resuelve para las variables x 1,x 2,,x n y λ 1,λ 2,, λ m Así pues el sistema consta de n+m ecuaciones en n + m incógnitas: El resultado sobre la necesidad dice: Un máximo o mínimo al problema debe satisfacer el sistema de ecuaciones antes planteado Habiendo ubicado los puntos estacionarios viene el problema de determinar si son máximos o mínimos locales Para cada punto estacionario x o y para los valores λ 1,λ 2,,λ m correspondientes Se construye la matriz: B 1 = H F = F 11 F 12 F 1n g (1) 1 g (1) 2 g m (1) F 21 F 22 F 2n g (2) 1 g (2) 2 g m (2) g (1) 1 g (2) 1 g (n) g (1) 2 g (2) 2 g (n) g m (1) g m (2) g m (n) Sea ahora para i = 2,3,,n m, B i la matriz obtenida de B 1 eliminando las primeras i 1 filas y las primeras i 1 columnas, y sea i el determinante de B i x o es un mínimo local si: siendo m par cuando 1 > 0, 2 > 0,, n m > 0 siendo m impar, cuando x o es un máximo local si: siendo n par cuando siendo n impar, cuando 1 < 0, 2 < 0,, n m < 0 1 > 0, 2 < 0,,( 1) n m n m < 0 1 < 0, 2 > 0,,( 1) n m n m > 0 2

3 153 Ejemplo 1 Encuentre los valores óptimos de la función sujeto a f(x,y) = x 2 +12xy +2y 2 4x 2 +y 2 = 25 Solución El número de restricciones es 1, es decir m = 1, y el número de variables de la función objetivo es 2, es decir n = 2 Debemos escribir cada restricción igualada a 0: Aquí El sistema de ecuaciones es: g 1 (x,y) = 4x 2 +y 2 25 F = x 2 +12xy +2y 2 +λ(4x 2 +y 2 25) F x = 0 = 2x+12y +8λx F y = 0 = 12y +4y +λy g 1 = 0 = 4x 2 +y 2 25 De la primera ecuación despejas y (Observe que no conviene que despeje x o λ pues implica indicar una división con una expresión que dependerá de una variable y se tendría que considerar por separado el caso cuando es cero): y = 1/6x 2/3λx Si sustituimos esto en las ecuaciones 2 y 3 del sistema nos queda: F y = 0 = 34/3x 3λx 4/3λ 2 x = 0 g = 0 = 145/36x 2 +2/9λx 2 +4/9λ 2 x 2 25 = 0 Si tomamos la nueva ecuación 1 y la factorizamos queda: Esto nos origina tres posibles casos: 1/3x(4λ+17) (λ 2) = 0 x = 0, λ = 17/4, y λ = 2 Si sustituimos el caso x = 0 en la segunda nueva ecuación nos queda: 25 = 0 Es decir, este caso de la primera ecuación es incompatible con la segunda El caso λ = 2 sustituido en la segunda ecuación da: 25/4x 2 25 = 0 La cual da las soluciones: sustituyendo λ = 2 y estos casos de x dan en y: x = 2y x = 2 y = 3 y y = 3 3

4 Resumiendo tenemos los puntos: P x = 2,y = 3,λ = 2 Q x = 2,y = 3,λ = 2 El caso λ = 17/4 sustituido en la segunda ecuación da: La cual da las soluciones: sustituyendo λ = 2 y estos casos de x dan en y: Resumiendo tenemos los puntos: 100/9x 2 25 = 0 x = 3/2 y x = 3/2 y = 4 y y = 4 R x = 3/2,y = 4,λ = 17/4 S x = 3/2,y = 4,λ = 17/4 En nuestro problema n = 2 (número de variables en f) y m = 1 (número de restricciones), y por tanto debemos calcular i desde i = 1 hasta i = n m = 1 Es decir, que en este ejemplo basta calcular 1 para cada punto La matriz B 1 queda: 2+8λ 12 8x B 1 = λ 2y 8x 2y 0 Para el punto P(x = 2,y = 3,λ = 2), B 1 queda: B 1 (P) = = Como m = 1 es impar, P es mínimo local Para el punto Q(x = 2,y = 3,λ = 2), B 1 queda: B 1 (Q) = = Como m = 1 es impar, Q es mínimo local Para el punto R(x = 3/2,y = 4,λ = 17/4), B 1 queda: B 1 (R) = 12 9/2 8 1 = Como n = 2 es par, R es máximo local Para el punto S(x = 3/2,y = 4,λ = 17/4), B 1 queda: B 1 (S) = 12 9/2 8 1 =

5 Figura 1: Gráfica de f(x,y) restringida a g = 0 del ejemplo 1 Figura 2: Inicio del problema 1 Como n = 2 es par, S es máximo local La gráfica en la figura 1 ilustra los puntos críticos de ejemplo 1 sobre la misma superficie de la función: se puede observar que tales puntos corresponden a los puntos más altos y más bajos de la superficie restringidos a la elipse Repitamos los cálculos utilizando ahora la calculadora TI En la figura 2 se ilustra el borrado de las variables utilizadas (x, y, nos faltó incluir a la variable t, que funcionará como λ 1,como t no tenía asignado valor no tuvimos problema); en la variable f está la función a optimizar; en g está la restricción; y en la variable fb la función F = f +λg En la figura 3 se obtiene el cálculo de F x (variables fbx), F y (variable fby) y el planteamiento del sistema para determinar los puntos críticos En la figura 4 se obtienen las soluciones al sistema y su conversión a una forma más conveniente En la matriz representada por p: los valores de x están en la primer columna, los de y en la segunda, y en la tercera los de t (λ) También aparece el cálculo de la matriz hessiana de F (variable h) Nuevamente, utilizaremos la variable i para ahorrarnos la escritura de comandos en el cálculo de 1 en cada punto crítico representado en cada renglón de p Figura 3: Sistema para obtener los puntos críticos del ejemplo 1 5

6 Figura 4: Puntos críticos y B 1 del ejemplo 1 Figura 5: Cálculo de 1 en los puntos críticos del ejemplo 1 En la figura 5 se obtienen los determinantes 1 para cada uno de los puntos críticos encontrados Recuerde que al ser m = 1 (impar): x es mínimo local si 1 < 0 y siendo n = 2 (par): x es máximo local si 1 > 0 Por tanto, el primero y el segundo renglón de p representan mínimos locales, mientras que el cuarto y el quinto representan máximos locales Los cálculos coinciden los realizados anteriormente 154 Ejemplo 2 Hagamos un ejemplo con más restricciones utilizando la calculadora Encuentre los máximos y los mínimos de la función sujeta a las condiciones f(x,y,z) = x 2 y +3z 6y +3x g 1 (x,y,z) = y x 2 1 = 0 y g 2 (x,y,z) = x y +z 1 = 0 En la figura 6 se preparan los cálculos: se limpian las variables usadas en las expresiones (t1 hará el papel de λ 1 y t 2 hará el papel de λ 2 ); se captura la función f, las restricciones g 1 y g 2 ; y el cálculo de las parciales En la figura 7 se obtiene la hessiana de F (guardada en h) y la obtención de los puntos críticos y convenientemente codificados en la matriz p Obervamos que sólo determina tres puntos críticos P(x = 1,y = Figura 6: Preparación del ejemplo 2 6

7 Figura 7: Hessiana y puntos críticos del ejemplo 2 Figura 8: 1 en los puntos críticos del ejemplo 2 2,z = 2,λ 1 = 2,λ 2 = 3) (renglón 1 de p), Q(x = 0,y = 1,z = 2,λ 1 = 3,λ 2 = 3) (renglón 2 de p), y R(x = 1,y = 2,z = 4,λ 1 = 2,λ 2 = 3) (renglón 3 de p) Se utilizó Maple para validar este resultado y hubo concordancia Como n = 3 y m = 2, sólo debemos determinar hasta n m = 1 en los puntos críticos Recordemos que al ser m par, x es un mínimo local si 1 > 0 Mientras que al ser n impar, x es un máximo local si 1 < 0 En la figura 8 se obtiene el determinante 1 en cada uno de los puntos críticos Por tanto, P y R son mínimos locales y Q es máximo local 155 Ejemplo 3 Determine los valores máximos y mínimos relativos de f(x,y,z) = 3+4x x 2 y 2 24z sujeta a g(x,y,z) = 6+x y 3z = 0 En la figura 9 se preparan los cálculos: se limpian las variables usadas en las expresiones (t hará el papel de λ); se captura la función f, la restricción g; y el cálculo de las parciales Figura 9: Preparación del ejemplo 3 7

8 Figura 10: H f y segunda submatriz primera de H f para el ejemplo 3 Figura 11: Obtención del único punto crítico y 1 y 2 en el ejemplo 3 En la figura 10 se obtiene la hessiana de F, también llamada B 1, y se guarda en h Como en este ejemplo se debe calcular hasta n m = 2 determinamos la segunda submatriz principal primera de h, también llamada B 2, y la guardamos en la variable h1 Enlafigura11seobtieneelúnicopuntocríticodeF elcualcorrespondeap(x = 2,y = 4,z = 4,t = 8) Al ser sólo uno el punto crítico es más conveniente hacer la sustituión directa de las variables en B 1 y en B 2 Note que la sustitución no es necesaria pues ni B 1 ni B 2 tienen variables Así que la sustitución las dejará igual Los determinantes que se obtienen son 1 = 36 y 2 = 18 Al ser n impar el criterio indica que el punto P es un máximo local 156 Nota importante Los ejemplos anteriores fueron adecuadamente fabricados de forma tal que los sistemas de ecuaciones para la obtención de los puntos críticos resultaran relativamente fáciles de resolver En general, tales sistemas de ecuaciones resultan imposibles de resolver en forma exacta Y en tales casos se utiliza un método numérico 8

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr.

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr. Optimización Optimización Con Restricciones de Igualdad Dr. E Uresti ITESM Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31 ducción En esta lectura veremos el problema de optimizar

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Extremos de varias variables

Extremos de varias variables Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo UNIVERSIDAD DE CHILE Facultad de Ciencias Departamento de Matemáticas MC-140 Matemáticas I Ayudantías 07 A y 07 B Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo 1. Para

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

OBTENER DATOS EXTERNOS

OBTENER DATOS EXTERNOS La herramienta Obtener datos externos nos va a permitir llevar a Excel datos que proceden de otras fuentes de datos, como archivos de texto o bases de datos, para su posterior tratamiento y análisis con

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I)

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I) Revista de Dirección y Administración de Empresas. Número 10, diciembre 2002 págs. 59-76 Enpresen Zuzendaritza eta Administraziorako Aldizkaria. 10. zenbakia, 2002 abendua 59-76 orr. HERRAMIENTAS DE EXCEL

Más detalles

Herramienta Solver. Activar Excel Solver

Herramienta Solver. Activar Excel Solver Herramienta Solver Introducción: Solver forma parte de una serie de comandos a veces denominados herramientas de análisis Y si. Con Solver, puede encontrar un valor óptimo (mínimo o máximo) para una fórmula

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2014

PRUEBA ESPECÍFICA PRUEBA 2014 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 014 PRUEBA SOLUCIONARIO HAUTAPROBAK 5 URTETIK 014ko MAIATZA DE 5 AÑOS MAYO 014 Aclaraciones previas Tiempo de duración de la

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25 Tarea 7 Soluciones. Una inversión de $3500 produce un rendimiento de $420 en un año, qué rendimiento producirá una inversión de $4500 a la misma tasa de interés durante el mismo tiempo? Sol. Sea x el porcentaje

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Prácticas de Análisis Matricial con MATLAB

Prácticas de Análisis Matricial con MATLAB Prácticas de Análisis Matricial con MATLAB Ion Zaballa. Trabajando con matrices y vectores Ejercicio.- Dados los vectores a = 3 4 a) Calcula el vector 3a a + 4a 3., a = 3, a 3 = b) Si A = [a a a 3 ] es

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 1 SEGUNDO SEMESTRE 2015. PROYECTO No. 2

DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 1 SEGUNDO SEMESTRE 2015. PROYECTO No. 2 PROYECTO No. 2 Fecha de publicación: Jueves 7 de septiembre de 205 Entrega: viernes 6 de octubre de 205 Instrucciones: Grupos de tres personas máximo Continuando con el desarrollo de los proyectos del

Más detalles

MATRÍCULA PREGRADO WEB

MATRÍCULA PREGRADO WEB MATRÍCULA PREGRADO WEB Actualizado: Mayo 2012. CONTENIDO INTRODUCCIÓN... 2 USUARIOS DE ESTA GUIA... 2 ASIGNACIÓN DE TURNOS PARA MATRÍCULA... 2 PÓLIZA DE ACCIDENTES... 2 CÓMO INICIAR LA MATRÍCULA... 2 MATRÍCULA

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

Introducción a las Funciones

Introducción a las Funciones PreUnAB Clase # 12 Agosto 2014 Concepto general de función En matemática el concepto de función se refiere a una regla f que asigna a cada elemento de un primer conjunto de partida A, un único elemento

Más detalles

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV Cadenas de Markov. Ejercicios resueltos Página EJERCICIOS RESUELTOS DE CADENAS DE MARKOV ) En un pueblo, al 90% de los días soleados le siguen días soleados, y al 80% de los días nublados le siguen días

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2

Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2 Informática Aplicada a la Gestión de Empresas (IAGE) Parte III Excel e Internet Tema 2 1. Rango de celdas. Definición. Selección Contenido. 2. Referencias relativas, absolutas y mixtas. 3. Gráficos. Creación,

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

EDICIÓN Y FORMATO (II)

EDICIÓN Y FORMATO (II) EDICIÓN Y FORMATO (II) 1. INTRODUCCIÓN Writer dispone de una serie de barras de herramientas predeterminadas, en las que se encuentran botones de acceso directo a comandos específicos que se activan con

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Modulo 1 El lenguaje Java

Modulo 1 El lenguaje Java Modulo 1 El lenguaje Java 13 - Codificación en Java Una de las grandes diferencias entre Java y Pascal en cuando a la codificación es que Java se trata de un lenguaje de los llamados case sensitive Esto

Más detalles

U.D. 24 Análisis económico (II)

U.D. 24 Análisis económico (II) U.D. 24 Análisis económico (II) 24.01 El margen de contribución unitario y el margen de contribución total. 24.02 el Punto de equilibrio (o Punto muerto). 24.02.01 Incremento de ventas y aumento de beneficio.

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles