Optimización Con Restricciones de Igualdad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Optimización Con Restricciones de Igualdad"

Transcripción

1 Optimización Con Restricciones de Igualdad Departamento de Matemáticas, CSI/ITESM 11 de noviembre de 2009 Índice 151Introducción 1 152El método de los Multiplicadores de Lagrange 1 153Ejemplo Ejemplo Ejemplo Nota importante Introducción En esta lectura veremos el problema de optimizar una función de valor real sujeta a un conjunto de restricciones El método que veremos se debe a Joseph Louis Lagrange ( ) y la prueba de que define condiciones necesarias para los puntos óptimos aparece en el libro de A Khuri (1993): Advanced Calculus with Applications in Statistics (John Wiley and Sons, New York) y la prueba de las condiciones de suficiencia aparecen en el libro R P Gillespie (1954): Partial Differentiation (Oliver and Boyd, Edinburgh) Veremos un par de ejemplos para clarificar los criterios de máximos y mínimos relativos 152 El método de los Multiplicadores de Lagrange Suponga que se desea optimizar la función real valuada f(x 1,x 2,,x n ) donde las variables x 1,x 2,,x n están sujetas a las restricciones de igualdad (m < n): g 1 (x 1,x 2,,x n ) = 0 g 2 (x 1,x 2,,x n ) = 0 g m (x 1,x 2,,x n ) = 0 donde las funciones f,g 1,g 2,,g m son diferenciables f debe tener segundas derivadas continuas, mientras que las g i deben tener primeras derivadas continuas El primer paso consiste en determinar los puntos críticos o estacionarios del problema restringido, para ello se forma la función: F(x,λ) = f(x)+ m λ j g j (x) j=1

2 Los puntos estacionarios se determinan resolviendo F = 0: F = x 1 x n λ 1 λ m = f x 1 + m j=1 λ j g j x 1 x n + m j=1 λ j g j x n g 1 g m = 0 Es decir, los puntos máximos o mínimos se encuentran dentro del conjunto de puntos críticos que se obtienen de resolver el sistema formado por las ecuaciones: = f m g j + λ j = 0 para i = 1,2,,n x i x i x i j=1 y junto con las m ecuaciones dadas por las restricciones: g 1 (x 1,x 2,,x n ) = 0 g 2 (x 1,x 2,,x n ) = 0 g m (x 1,x 2,,x n ) = 0 Este sistema se resuelve para las variables x 1,x 2,,x n y λ 1,λ 2,, λ m Así pues el sistema consta de n+m ecuaciones en n + m incógnitas: El resultado sobre la necesidad dice: Un máximo o mínimo al problema debe satisfacer el sistema de ecuaciones antes planteado Habiendo ubicado los puntos estacionarios viene el problema de determinar si son máximos o mínimos locales Para cada punto estacionario x o y para los valores λ 1,λ 2,,λ m correspondientes Se construye la matriz: B 1 = H F = F 11 F 12 F 1n g (1) 1 g (1) 2 g m (1) F 21 F 22 F 2n g (2) 1 g (2) 2 g m (2) g (1) 1 g (2) 1 g (n) g (1) 2 g (2) 2 g (n) g m (1) g m (2) g m (n) Sea ahora para i = 2,3,,n m, B i la matriz obtenida de B 1 eliminando las primeras i 1 filas y las primeras i 1 columnas, y sea i el determinante de B i x o es un mínimo local si: siendo m par cuando 1 > 0, 2 > 0,, n m > 0 siendo m impar, cuando x o es un máximo local si: siendo n par cuando siendo n impar, cuando 1 < 0, 2 < 0,, n m < 0 1 > 0, 2 < 0,,( 1) n m n m < 0 1 < 0, 2 > 0,,( 1) n m n m > 0 2

3 153 Ejemplo 1 Encuentre los valores óptimos de la función sujeto a f(x,y) = x 2 +12xy +2y 2 4x 2 +y 2 = 25 Solución El número de restricciones es 1, es decir m = 1, y el número de variables de la función objetivo es 2, es decir n = 2 Debemos escribir cada restricción igualada a 0: Aquí El sistema de ecuaciones es: g 1 (x,y) = 4x 2 +y 2 25 F = x 2 +12xy +2y 2 +λ(4x 2 +y 2 25) F x = 0 = 2x+12y +8λx F y = 0 = 12y +4y +λy g 1 = 0 = 4x 2 +y 2 25 De la primera ecuación despejas y (Observe que no conviene que despeje x o λ pues implica indicar una división con una expresión que dependerá de una variable y se tendría que considerar por separado el caso cuando es cero): y = 1/6x 2/3λx Si sustituimos esto en las ecuaciones 2 y 3 del sistema nos queda: F y = 0 = 34/3x 3λx 4/3λ 2 x = 0 g = 0 = 145/36x 2 +2/9λx 2 +4/9λ 2 x 2 25 = 0 Si tomamos la nueva ecuación 1 y la factorizamos queda: Esto nos origina tres posibles casos: 1/3x(4λ+17) (λ 2) = 0 x = 0, λ = 17/4, y λ = 2 Si sustituimos el caso x = 0 en la segunda nueva ecuación nos queda: 25 = 0 Es decir, este caso de la primera ecuación es incompatible con la segunda El caso λ = 2 sustituido en la segunda ecuación da: 25/4x 2 25 = 0 La cual da las soluciones: sustituyendo λ = 2 y estos casos de x dan en y: x = 2y x = 2 y = 3 y y = 3 3

4 Resumiendo tenemos los puntos: P x = 2,y = 3,λ = 2 Q x = 2,y = 3,λ = 2 El caso λ = 17/4 sustituido en la segunda ecuación da: La cual da las soluciones: sustituyendo λ = 2 y estos casos de x dan en y: Resumiendo tenemos los puntos: 100/9x 2 25 = 0 x = 3/2 y x = 3/2 y = 4 y y = 4 R x = 3/2,y = 4,λ = 17/4 S x = 3/2,y = 4,λ = 17/4 En nuestro problema n = 2 (número de variables en f) y m = 1 (número de restricciones), y por tanto debemos calcular i desde i = 1 hasta i = n m = 1 Es decir, que en este ejemplo basta calcular 1 para cada punto La matriz B 1 queda: 2+8λ 12 8x B 1 = λ 2y 8x 2y 0 Para el punto P(x = 2,y = 3,λ = 2), B 1 queda: B 1 (P) = = Como m = 1 es impar, P es mínimo local Para el punto Q(x = 2,y = 3,λ = 2), B 1 queda: B 1 (Q) = = Como m = 1 es impar, Q es mínimo local Para el punto R(x = 3/2,y = 4,λ = 17/4), B 1 queda: B 1 (R) = 12 9/2 8 1 = Como n = 2 es par, R es máximo local Para el punto S(x = 3/2,y = 4,λ = 17/4), B 1 queda: B 1 (S) = 12 9/2 8 1 =

5 Figura 1: Gráfica de f(x,y) restringida a g = 0 del ejemplo 1 Figura 2: Inicio del problema 1 Como n = 2 es par, S es máximo local La gráfica en la figura 1 ilustra los puntos críticos de ejemplo 1 sobre la misma superficie de la función: se puede observar que tales puntos corresponden a los puntos más altos y más bajos de la superficie restringidos a la elipse Repitamos los cálculos utilizando ahora la calculadora TI En la figura 2 se ilustra el borrado de las variables utilizadas (x, y, nos faltó incluir a la variable t, que funcionará como λ 1,como t no tenía asignado valor no tuvimos problema); en la variable f está la función a optimizar; en g está la restricción; y en la variable fb la función F = f +λg En la figura 3 se obtiene el cálculo de F x (variables fbx), F y (variable fby) y el planteamiento del sistema para determinar los puntos críticos En la figura 4 se obtienen las soluciones al sistema y su conversión a una forma más conveniente En la matriz representada por p: los valores de x están en la primer columna, los de y en la segunda, y en la tercera los de t (λ) También aparece el cálculo de la matriz hessiana de F (variable h) Nuevamente, utilizaremos la variable i para ahorrarnos la escritura de comandos en el cálculo de 1 en cada punto crítico representado en cada renglón de p Figura 3: Sistema para obtener los puntos críticos del ejemplo 1 5

6 Figura 4: Puntos críticos y B 1 del ejemplo 1 Figura 5: Cálculo de 1 en los puntos críticos del ejemplo 1 En la figura 5 se obtienen los determinantes 1 para cada uno de los puntos críticos encontrados Recuerde que al ser m = 1 (impar): x es mínimo local si 1 < 0 y siendo n = 2 (par): x es máximo local si 1 > 0 Por tanto, el primero y el segundo renglón de p representan mínimos locales, mientras que el cuarto y el quinto representan máximos locales Los cálculos coinciden los realizados anteriormente 154 Ejemplo 2 Hagamos un ejemplo con más restricciones utilizando la calculadora Encuentre los máximos y los mínimos de la función sujeta a las condiciones f(x,y,z) = x 2 y +3z 6y +3x g 1 (x,y,z) = y x 2 1 = 0 y g 2 (x,y,z) = x y +z 1 = 0 En la figura 6 se preparan los cálculos: se limpian las variables usadas en las expresiones (t1 hará el papel de λ 1 y t 2 hará el papel de λ 2 ); se captura la función f, las restricciones g 1 y g 2 ; y el cálculo de las parciales En la figura 7 se obtiene la hessiana de F (guardada en h) y la obtención de los puntos críticos y convenientemente codificados en la matriz p Obervamos que sólo determina tres puntos críticos P(x = 1,y = Figura 6: Preparación del ejemplo 2 6

7 Figura 7: Hessiana y puntos críticos del ejemplo 2 Figura 8: 1 en los puntos críticos del ejemplo 2 2,z = 2,λ 1 = 2,λ 2 = 3) (renglón 1 de p), Q(x = 0,y = 1,z = 2,λ 1 = 3,λ 2 = 3) (renglón 2 de p), y R(x = 1,y = 2,z = 4,λ 1 = 2,λ 2 = 3) (renglón 3 de p) Se utilizó Maple para validar este resultado y hubo concordancia Como n = 3 y m = 2, sólo debemos determinar hasta n m = 1 en los puntos críticos Recordemos que al ser m par, x es un mínimo local si 1 > 0 Mientras que al ser n impar, x es un máximo local si 1 < 0 En la figura 8 se obtiene el determinante 1 en cada uno de los puntos críticos Por tanto, P y R son mínimos locales y Q es máximo local 155 Ejemplo 3 Determine los valores máximos y mínimos relativos de f(x,y,z) = 3+4x x 2 y 2 24z sujeta a g(x,y,z) = 6+x y 3z = 0 En la figura 9 se preparan los cálculos: se limpian las variables usadas en las expresiones (t hará el papel de λ); se captura la función f, la restricción g; y el cálculo de las parciales Figura 9: Preparación del ejemplo 3 7

8 Figura 10: H f y segunda submatriz primera de H f para el ejemplo 3 Figura 11: Obtención del único punto crítico y 1 y 2 en el ejemplo 3 En la figura 10 se obtiene la hessiana de F, también llamada B 1, y se guarda en h Como en este ejemplo se debe calcular hasta n m = 2 determinamos la segunda submatriz principal primera de h, también llamada B 2, y la guardamos en la variable h1 Enlafigura11seobtieneelúnicopuntocríticodeF elcualcorrespondeap(x = 2,y = 4,z = 4,t = 8) Al ser sólo uno el punto crítico es más conveniente hacer la sustituión directa de las variables en B 1 y en B 2 Note que la sustitución no es necesaria pues ni B 1 ni B 2 tienen variables Así que la sustitución las dejará igual Los determinantes que se obtienen son 1 = 36 y 2 = 18 Al ser n impar el criterio indica que el punto P es un máximo local 156 Nota importante Los ejemplos anteriores fueron adecuadamente fabricados de forma tal que los sistemas de ecuaciones para la obtención de los puntos críticos resultaran relativamente fáciles de resolver En general, tales sistemas de ecuaciones resultan imposibles de resolver en forma exacta Y en tales casos se utiliza un método numérico 8

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr.

Optimización. Optimización Con Restricciones de Igualdad ITESM. Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31. Dr. Optimización Optimización Con Restricciones de Igualdad Dr. E Uresti ITESM Optimización Con Restricciones de Igualdad Profr. E. Uresti - p. 1/31 ducción En esta lectura veremos el problema de optimizar

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Extremos de varias variables

Extremos de varias variables Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Elementos de Cálculo en Varias Variables Departamento de Matemáticas ITESM Elementos de Cálculo en Varias Variables Ma130 - p. 1/47 En esta lectura se dará una revisión

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Prácticas de Análisis Matricial con MATLAB

Prácticas de Análisis Matricial con MATLAB Prácticas de Análisis Matricial con MATLAB Ion Zaballa. Trabajando con matrices y vectores Ejercicio.- Dados los vectores a = 3 4 a) Calcula el vector 3a a + 4a 3., a = 3, a 3 = b) Si A = [a a a 3 ] es

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Introducción bloques intro Control+Intro mayúsculas y minúsculas

Introducción bloques intro Control+Intro mayúsculas y minúsculas Wiris Wiris... 1 Introducción... 2 Aritmética... 3 Álgebra... 4 Ecuaciones y Sistemas... 4 Análisis... 5 Objetos matemáticos, definición de identificadores y funciones... 7 Funciones predefinidas:... 10

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de

Más detalles

Problemas Resueltos de Ecuaciones en Derivadas Parciales

Problemas Resueltos de Ecuaciones en Derivadas Parciales Problemas Resueltos de Ecuaciones en Derivadas Parciales Alberto Cabada Fernández 4 de diciembre de. Índice general Introducción I. Ecuaciones de primer orden.. Método de las bandas características...................

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV

Cadenas de Markov. Ejercicios resueltos Página 1 EJERCICIOS RESUELTOS DE CADENAS DE MARKOV Cadenas de Markov. Ejercicios resueltos Página EJERCICIOS RESUELTOS DE CADENAS DE MARKOV ) En un pueblo, al 90% de los días soleados le siguen días soleados, y al 80% de los días nublados le siguen días

Más detalles

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I)

HERRAMIENTAS DE EXCEL PARA EL ANALISIS Y VALORACION DE PROYECTOS DE INVERSION (I) Revista de Dirección y Administración de Empresas. Número 10, diciembre 2002 págs. 59-76 Enpresen Zuzendaritza eta Administraziorako Aldizkaria. 10. zenbakia, 2002 abendua 59-76 orr. HERRAMIENTAS DE EXCEL

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa

Más detalles

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real).

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real). Tema 5 Integral Indefinida 5.1 Introducción Dedicaremos este tema a estudiar el concepto de Integral Indefinida y los métodos más habituales para calcular las integrales indefinidas. De una manera intuitiva

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo UNIVERSIDAD DE CHILE Facultad de Ciencias Departamento de Matemáticas MC-140 Matemáticas I Ayudantías 07 A y 07 B Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo 1. Para

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

PRÁCTICAS CON DERIVE 1 DERIVE 6

PRÁCTICAS CON DERIVE 1 DERIVE 6 DERIVE 6 PRÁCTICAS CON DERIVE 1 Las ventanas principales de Derive 6, al igual que otras aplicaciones bajo Windows, consta de una barra de herramientas con iconos que facilitan el uso de distintas funciones

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 1 SEGUNDO SEMESTRE 2015. PROYECTO No. 2

DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA BÁSICA 1 SEGUNDO SEMESTRE 2015. PROYECTO No. 2 PROYECTO No. 2 Fecha de publicación: Jueves 7 de septiembre de 205 Entrega: viernes 6 de octubre de 205 Instrucciones: Grupos de tres personas máximo Continuando con el desarrollo de los proyectos del

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Cantidad en el sistema en el tiempo 1 (t 1 )

Cantidad en el sistema en el tiempo 1 (t 1 ) I. BALANCES DE MATERIA SIN REACCIÓN QUÍMICA EN FLUJO CONTINUO. Tema 2. Balance de masa sin reacción química en flujo continúo I.2 Objetivo de aprendizaje: SABER: Deducir la ecuación de balance de masa.

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la

Más detalles

Polinomios. Objetivos. Antes de empezar

Polinomios. Objetivos. Antes de empezar 2 Polinomios Objetivos En esta quincena aprenderás a: Manejar las expresiones algebraicas y calcular su valor numérico. Reconocer los polinomios y su grado. Sumar, restar y multiplicar polinomios. Sacar

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

La Herramienta Solver de Excel

La Herramienta Solver de Excel La Herramienta Solver de Excel Optimización con restricciones. En un problema de optimización con restricciones se buscan los valores de ciertas variables que optimizan una función objetivo, sujetas a

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Fundamentos de Informática - Ms. Excel (3) 2011

Fundamentos de Informática - Ms. Excel (3) 2011 Tabla de contenidos Resolución de sistemas de ecuaciones usando Ms. Excel... Introducción... Ecuación de una incógnita... 3 Método gráfico... 3 Herramienta Buscar objetivo... 4 Herramienta Solver... 8

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS E. SÁEZ Una Ecuación Diferencial Partial (E.D.P.) de Primer Orden, en dos variables, es simplemente una expresión de la forma

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

Saint Louis School Educación Matemática NB2. Miss Rocío Morales Vásquez

Saint Louis School Educación Matemática NB2. Miss Rocío Morales Vásquez Saint Louis School Educación Matemática NB2 Miss Rocío Morales Vásquez Objetivo s de aprendizajes Resolver adiciones y sustracciones de fracciones con igual denominador (denominadores 100, 12, 10, 8, 6,

Más detalles

INSTRUCTIVO PARA USO DEL SOLVER DE EXCEL

INSTRUCTIVO PARA USO DEL SOLVER DE EXCEL INSTRUCTIVO PARA USO DEL SOLVER DE EXCEL Ing. Mario René Galindo MAI, mgalindo@url.edu.gt RESUMEN La utilización de software computacional para resolver problemas de programación lineal es actualmente

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)

SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12) SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles