Definiciones generales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Definiciones generales"

Transcripción

1 Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para datos agrupados y no agrupados Formulas Ejemplos Resueltos Ejercicios Propuestos 1

2 Conceptos básicos de Media Aritmética Media Aritmética Se trata del valor medio de todos los valores que toma la variable estadística de una serie de datos. Por lo tanto, la medida posicional más utilizada en los estudios estadísticos. Por su ácil cálculo e interpretación, es la medida de posición más conocida y más utilizada en los cálculos estadísticos. La media es el valor más representativo de la serie de valores, es el punto de equilibrio, es el centro de gravedad de la serie de datos. Esta dada por la suma de todos los datos de la población dividida entre el numero total de ellos. Desviaciones o desvíos Son dierencias algebraicas entre cada valor de la serie o cada punto medio y la media aritmética de dicha serie, o un valor cualquiera tomado arbitrariamente. Los desvíos o desviación se designan con la letra di. Dado una serie de valores X1, X2, X3,...Xn, se llama desvío a la dierencia entre un valor cualquiera Xi de la serie y un valor indicado k de esa misma serie. Si el valor indicado k de la serie corresponde precisamente a la media aritmética de esos valores dados, se dice entonces que los desvíos son con respecto a la media aritmética. En símbolo: d = ( X X ). Propiedades de la media aritmética i i i 1. La suma de las desviaciones con respecto a la media aritmética es igual a cero. d = La suma de las desviaciones al cuadrado de los diversos valores con respecto a la media aritmética es menor que la suma de las desviaciones al cuadrado de los diversos valores con respecto a cualquier punto K, que no sea la media aritmética. ( X ) 2 X i < ( X K ) 2 i. Características principales de la media aritmética 1. El valor de la media depende de cada una de las medidas que orman la serie de datos, y se halla aectada excesivamente por los valores extremos de la serie de datos. 2. La media se calcula con acilidad y es única para cada caso y permite representar mediante un solo valor la posición de la serie de valores. 3. La media es una medida de posición que se calcula con todos los datos de la serie de valores y es susceptible de operaciones algebraicas. 2

3 Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre medidas de posición ( Cuartil, Decil y Percentil ). En esta sesión Conceptos básicos de Cuartil Decil y Percentil Formulas Ejemplos Resueltos Ejercicios Propuestos 3

4 Conceptos básicos de Cuartil, Decil y Percentil Cuartiles Medida de posición que divide en cuatro partes iguales al conjunto de los valores ordenados de una distribución de recuencias. Las medidas son el primer cuartil Q1, el segundo cuartil Q2 y el tercer cuartil Q3. Q1 Q2 = Md 25% 75% Q2 = Md 75% 25% PRIMER CUARTIL Distribuye a la izquierda el 25% de los datos y al lado derecho el 75 % ver igura 1 SEGUNDO CUARTIL Coincide con la mediana entonces el segundo cuartil es igual a la mediana Q2 = Md TERCER CUARTIL Distribuye a la izquierda el 75% del numero de datos y al otro lado el 25% del numero de valores ver igura 2 Deciles Medida de posición que divide en 10 partes iguales al conjunto de valores ordenados de una distribución de recuencias. Estas medidas son : El primer decil D1, el segundo decil D2 hasta el noveno decil D9. 4

5 El primer decil distribuye al lado izquierdo el 10% de los datos y al otro lado el 90%. Ocupa la posición (n/ 10). El segundo decil distribuye al lado izquierdo el 20% de los datos y al otro lado el 80%. Ocupa la posición (2n/ 10). El noveno decil distribuye al lado izquierdo el 90% de los datos y al otro lado el 10%. Ocupa la posición (9n/ 10). 0 D1 D2 D3 D4 D9 0 n /10 2n /10 3n /10 9n/10 Percentiles Medida de posición que divide en 100 partes iguales al conjunto de valores ordenados de una distribución de recuencias y se indican con P1, P2,... P99. El 50 percentil coincide con la mediana. 0 P1 P2 P3 P99 Formulas 5

6 Cuartiles Q1 = Extremo Inerior + ( n/4 - Fi - 1 ) *c Q3 = Extremo Inerior + ( 3n/4 - Fi - 1 ) *c Deciles Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c Percentiles Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Ejemplos Resueltos D r = Decil Buscado Extremo Inerior = Extremo inerior donde se halla el decil buscado r = indica el decil. Tercer decil ( r=3 ) r toma valores de 1 hasta el 9. rn / 10 = indica la situación del decil. Intervalo donde esta el decil P r = Indica percentil Buscado Extremo Inerior = Extremo inerior donde se halla el percentil r = es el rango percentil, es decir, la situación dentro de la escala ordenada de cien elementos. rn / 100 = indica el intervalo de la distribución de recuencia donde se halla el percentil Cuartiles EJERCICIO 1 Al aplicar una evaluación de Teoría política a un grupo de 138 alumnos se obtuvieron los siguientes puntajes organizado en la siguiente distribución de recuencias. a) Determinar el 25% inerior y el 25% superior. Intervalos i Fi

7 n = 138 Determinar el 25% superior : Calculando el cuartil Q3 Para determinar el intervalo donde esta el Q3 dividimos : 3n / 4 = 3 * 138 /4 = se halla en el sétimo intervalo empieza en 102 y termina en 117 Aplicando ormula : Q3 = Extremo Inerior + ( 3n/4 - Fi - 1 ) *c Fi - 1 = F 7-1 = F 6 = = 16 Q3 = 70 + ( )*5 Q3 = Q3 = Q3 = 71 Todos los alumnos con puntaje superior a 71 se hallan en el 25% superior. Deciles EJERCICIO 2 16 Se tiene los puntajes obtenidos por 269 alumnos en una prueba de rendimiento de Geometría. a) Determinar los puntajes de los que se hallan en el 20% inerior y cuales puntajes se ubican en el décimo superior Intervalos i Fi

8 n = 269 Puntajes de los que se hallan en el 20% inerior Calculando el segundo decil. Entonces r=2 Ubicación del segundo decil 2n / 10 = (2*269) /10 =53.8 Entonces el segundo decil esta en el quinto intervalo Aplicando la ormula : Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c D2 = 36 + ( ) *4 41 D2 = Todos los alumnos que tengan puntajes desde 20 hasta 36 entero inmediato anterior a se encuentra en el 20% inerior Puntajes se ubican en el décimo superior Calculando el noveno decil. Entonces r=9 Ubicación del segundo decil 9n / 10 = (9*269) /10 = Entonces el noveno decil esta en el noveno intervalo Aplicando la ormula : Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c D9 = 52 + ( ) *4 21 8

9 D9 = Todos los alumnos que tengan puntajes desde 55 se hallaran en el décimo superior Percentiles EJERCICIO 3 Con la siguiente distribución de recuencia calcular P10 y P90 Intervalos i Fi n=50 Calculando P10 Empleando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Calculando P10. Entonces r=10 Ubicación del décimo percentil r n / 100 = (10*50) /100 = 5 Entonces el décimo percentil esta en el segundo intervalo Aplicando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c P10 = 40 + ( 5-4 ) *10 6 P10 = = 42 puntos Calculando P90 9

10 Empleando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Calculando P90. Entonces r=90 Ubicación de P90. r n / 100 = (90*50) /100 = 45 Entonces el P90. esta en el sexto intervalo Aplicando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c P90 = 80 + ( ) *10 7 P90 = = 89 puntos Ejercicio Propuestos Cuartiles Intervalos i Fi Intervalos i 2 Fi n= Respuestas : Intervalos i Fi Intervalos i 2 Fi n = Respuestas : Q 1 =

11 Q1 = = 139 Q3 = = 157 Deciles Y Percentiles 11

12 Deiniciones generales Objetivo Determinar que los datos tienden a alejarse de los valores medios o tendencia central es decir los datos presentan dispersión. En esta sesión Conceptos básicos de Medida de dispersión, rango, desviación estándar o desviación típica y varianza Formulas Ejemplos Resueltos Ejercicios Propuestos 12

13 Conceptos básicos de Medida de dispersión, rango, desviación estándar o desviación típica y varianza Medida de dispersión Determinan el grado de alejamiento de los datos respecto a una medida de posición que generalmente suele ser la media. nos da una idea de lo agrupado que están los datos Estas medidas de posición central no tienen ningún valor si no se conoce como se acercan o se alejan esos valores con respecto al promedio, en otras palabras es conocer como se dispersan o varían esos valores con respecto al promedio de una distribución de recuencia. Las Medidas de Dispersión relativa. Son relaciones entre medidas de dispersión absolutas y medidas de tendencia central multiplicadas por 100, por lo tanto vienen expresadas en porcentaje Cuando la dispersión es baja indica que la serie de valores es relativamente homogénea mientras que una variabilidad alta indica una serie de valores heterogénea. RANGO O RECORRIDO(R) Es la primera medida de dispersión, no esta relacionada con ningún promedio en particular, ya que este se relaciona con los datos mismos, puesto que su cálculo se determina restándole al dato mayor de una serie el dato menor de la misma Rango(R) = Dato mayor (XM) Dato Menor (Xm) R = XM Xm. El rango es la medida de dispersión más sencilla e inexacta dentro de las medidas de dispersión absoluta. Indica la extension de los valores que puede tomar la variable cuyas medidas constituyen los datos Rango = Valor Máximo Valor Mínimo Se utiliza cuando se desea una rápida apreciación de la extensión de los datos es aectado por los valores extremos no toma en cuenta las variaciones al interior de la distribución. DESVIACIÓN MEDIA Su uso es restringido porque existen otras medidas mas precisas. La desviación media es la media de las desviaciones La desviación media de un conjunto de N observaciones x1, x2, x3,...xn, es el promedio de los valores absolutos de las desviaciones (di) con respecto a la media aritmética o la mediana. Si se denomina como DM a la desviación media Observamos que es las desviaciones de cada valor con respecto a la media. Las desviaciones se toman en valor absoluto. La suma obtenida se divide entre el numero de elementos. 13

14 DESVIACIÓN TÍPICA O ESTÁNDAR Estadística Aplicada Es la medida de dispersión más utilizada en las investigaciones por ser la más estable de todas, ya que para su calculo se utilizan todos los desvíos con respecto a la media aritmética de las observaciones, y además, se toman en cuenta los signos de esos desvíos. Se le designa con la letra castellana S. La desviación típica es una orma reinada de la desviación media. Es la raíz cuadrada de la suma de los cuadrados de las desviaciones de cada valor con respecto a la media, dividida entre el numero de valores. INTERPRETACIÓN DE LA DESVIACIÓN TÍPICA La desviación típica como medida absoluta de dispersión, es la que mejor nos proporciona la variación de los datos con respecto a la media aritmética, su valor se encuentra en relación directa con la dispersión de los datos, a mayor dispersión de ellos, mayor desviación típica, y a menor dispersión, menor desviación típica. Formulas Desviación Media N X i X d i i = 1 i = 1 DM = = N N Desviacion Estandar o tipica Datos no agrupados N Ó (xi x ) 2 S = n Datos Agrupados S = Ó i(xi x ) 2 n 14

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. 3. MEDIDAS DE TENDENCIA CENTRAL Con estas medidas se persigue reducir en pocas cifras significativas el conjunto de observaciones de una variable y describir con ellas ciertas características de los conjuntos,

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable.

El promedio como punto típico de los datos es el valor al rededor del cual se agrupan los demás valores de la variable. TEMA 3: ESTADÍSTICA DESCRIPTIVA 3.1 Conceptos fundamentales Es el conjunto de procedimientos y técnicas empleadas para recolectar, organizar y analizar datos, los cuales sirven de base para tomar decisiones

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas

Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Cómo describir e interpretar los resultados de un estudio de investigación quirúrgica? Variables cuantitativas Sesión de Residentes 13 de febrero, 2012 ÍNDICE Diferencia entre población y muestra. Diferencia

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

MEDIDAS DE DISPERSIÓN

MEDIDAS DE DISPERSIÓN CAPÍTULO 15 MEDIDAS DE DISPERSIÓN En el capítulo anterior se estudiaron las medidas de tendencia central, que son un indicador de cómo los datos se agrupan o concentran en una parte central del conjunto.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Estadística descriptiva. Representación de datos descriptivos

Estadística descriptiva. Representación de datos descriptivos 6 Estadística descriptiva. Representación de datos descriptivos Alberto Rodríguez Benot Rodolfo Crespo Montero 6.1. Introducción Tal como vimos en la introducción, la estadística descriptiva comprende

Más detalles

UNIDAD Nº2 MEDIDAS DE TENDENCIA CENTRAL

UNIDAD Nº2 MEDIDAS DE TENDENCIA CENTRAL UIDAD º2 MEDIDAS DE TEDECIA CETRAL 1.- MEDIDAS DE TEDECIA CETRAL O POSICIÓ 1.1.- Definición.- Es un estadígrafo en donde el conjunto de la información tiende a concentrarse en el centro de la distribución,

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

Estadística: Medidas de dispersión: varianza, desviación media y estándar

Estadística: Medidas de dispersión: varianza, desviación media y estándar Estadística: Medidas de dispersión: varianza, desviación media y estándar Situación vinculada a la vida cotidiana: embarazo de jóvenes en el municipio de Diriá A nivel nacional, el 27% de partos corresponde

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

8 MEDIDAS DE POSICIÓN

8 MEDIDAS DE POSICIÓN Capítulo 8 MEDIDAS DE POSICIÓN Como su nombre lo indica, estas medidas indican el lugar o posición de los datos de interés para el investigador. Las medidas de posición son los cuartiles, deciles, percentiles,

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Introducción a la estadística descriptiva La estadística descriptiva ayuda a describir las características de grupos

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

PROBABILIDAD. Unidad I Ordenamiento de la Información

PROBABILIDAD. Unidad I Ordenamiento de la Información 1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

UNIDAD IV MEDIDAS DE DISPERSIÓN

UNIDAD IV MEDIDAS DE DISPERSIÓN UNIDAD IV MEDIDAS DE DISPERSIÓN ISC. Claudia García Pérez 1 PRESENTACIÓN Los estudios estadísticos permiten hacer inferencias de una característica de una población a partir de la información contenida

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc.

Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc. Matemáticas y Estadística para Finanzas Prof.: H. Ernesto Sheriff, PhD(c) M.Sc. Sesión 3 INTRODUCCIÓN A LA ESTADÍSTICA 1 Estadística Aplicada a los Negocios Motivación: usos de la estadística Encuestas

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel:

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Considere una muestra de notas de un alumno en la asignatura de matemática: Notas 4.5 3.5 6.7 4.6 5.3 4.8

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

UNIDAD 2 MEDIDAS DE TENDENCIA CENTRAL Y DE POSICIÓN. Germán E. Rincón

UNIDAD 2 MEDIDAS DE TENDENCIA CENTRAL Y DE POSICIÓN. Germán E. Rincón UNIDAD 2 MEDIDAS DE TENDENCIA CENTRAL Y DE POSICIÓN Germán E. Rincón MEDIDAS DE TENDENCIA CENTRAL 1. Formas de describir un fenómeno Tablas y gráficos Números 2. Concepto de medida en Estadística 3. Objetivo

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación 1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación Medidas de Variación Amplitud Coeficiente variación Desviación estándar Rango Valor Z Varianza de Diferencia entre los valores

Más detalles

ESTADISTICA POR REGLA DE TRES

ESTADISTICA POR REGLA DE TRES ESTADISTICA POR REGLA DE TRES La Estadística no es otra cosa que la mensurabilidad de los hechos aleatorios, es tratar de sistematizar lo que de hecho no es un sistema, es crear un número de algo que no

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25

1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 25 1º BACH CCSS - MATEMÁTICAS - PROBLEMAS DE ANÁLISIS ESTADÍSTICO DE UNA VARIABLE ˆ EJERCICIO 24 Dada la siguiente tabla de ingresos: Ingresos mensuales Frecuencia Menos de 1000 35 [1000, 1100) 70 [1100,

Más detalles

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º DEFINICIÓN DE PARÁMETRO ESTADÍSTICO Un parámetro estadístico es un número que se obtiene a partir

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO Cronograma actividades grado 0 Periodo lectivo: CUARTO Año lectivo 206 DOCENTE RESPONSABLE: Subleyman Ivonne Usman Narváez Asignatura: Estadística SEMANA No. 2 FECHA TEMA ACTIVIDAD 2 6 DE SEPTIEMBRE RECOMENDACIONES

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

Guía de Matemática Cuarto Medio

Guía de Matemática Cuarto Medio Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES CARRERA: LICENCIATURA EN TURISMO ASIGNATURA: ESTADÍSTICA SOCIAL CURSO: 3er. AÑO AÑO: 2015 CARGA HORARIA SEMANAL: CUATRO

Más detalles

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (10) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Media, mediana, moda y otras medidas de tendencia central CAPÍTULO 3 NOTACION DE INDICES. Denotemos por X }

Media, mediana, moda y otras medidas de tendencia central CAPÍTULO 3 NOTACION DE INDICES. Denotemos por X } Media, mediana, moda y otras medidas de tendencia central CAPÍTULO 3 OTACIO DE IDICES Denotemos por X } (léase "X sub/') cualquiera de los valores X lt, X 3,..., X que tom; una variable X. La letra j en

Más detalles

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x

x i = n = 35 5 =7 MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas , x 2 Datos no agrupados: x 1 ,...,x n x= x 1 +x MEDIDAS DE CENTRALIZACIÓN Media aritmética: variables cuantitativas Datos no agrupados: x 1, x 2,...,x n x= x 1 +x 2 +... x n n n i=1 = n Ejemplo: dados los valores: X = 1, 4, 16, 11, 3, 6, su media es

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 3 del texto básico, págs. 71 86 y capítulo 4 en las páginas

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN

Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN Tema 3. DESCRIPCIÓN DE UNA VARIABLE: MEDIDAS DE LOCALIZACIÓN CONTENIDO: 1. MODA 2. MEDIANA 3. MEDIA ARITMÉTICA 4. CUANTILES 5. DIAGRAMA DE CAJA Lecturas recomendadas: PP. 13-18 de La Estadística en Cómic,

Más detalles

Tema 3: Estadística Descriptiva

Tema 3: Estadística Descriptiva Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA VICERRECTORADO ACADÉMICO ARAGUA VENEZUELA FACULTAD: ESCUELA: ASIGNATURA: CODIGO: CIENCIAS ADMINISTRATIVAS Y SOCIALES ADMINISTRACION

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva ESTADÍSTICA DESCRIPTIVA 1 Sesión No. 8 Nombre: Medidas de centralización Contextualización En la sesión anterior has conocido una de las medidas de tendencia central denominada

Más detalles

CONCEPTOS BÁSICOS DE ESTADÍSTICA

CONCEPTOS BÁSICOS DE ESTADÍSTICA Organización de la información Presentación de datos Realizado el experimento o finalizada la investigación, el investigador ha recopilado un conjunto de datos u observaciones los cuales requieren ser

Más detalles

2. FRECUENCIAS. 2.1. Distribución de Frecuencias.

2. FRECUENCIAS. 2.1. Distribución de Frecuencias. 2. FRECUENCIAS 2.1. Distribución de Frecuencias. El manejo de la información requiere de la ordenación de datos de tal forma que permita la obtención de una forma más fácil la obtención de conclusiones

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010

Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010 Medidas de Posición Preparado por: Dra. Noemí L. Ruiz Limardo 2007 Derechos de Autor Reservados Revisado 2010 Objetivos de Lección 1. Conocer las medidas de posición o localización más comunes y cómo se

Más detalles

Estadísticas Elemental Cuartiles y los diagramas de caja 3.1-1

Estadísticas Elemental Cuartiles y los diagramas de caja 3.1-1 Estadísticas Elemental Cuartiles y los diagramas de caja 3.1-1 Rango intercuartil El rango intercuartil, se denota IQR, es el rango del 50% central de los datos. Esto es la diferencia entre Q 3 y Q 1.

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M.

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M. FACTORES DETERMINANTES DEL PRECIO DE LAS ACCIONES: Riesgo Se puede examinar ya sea por su relación con un: Activo individual Cartera Rendimiento RIESGO: En un concepto básico es la probabilidad de enfrentar

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2012 Matilde Ungerovich- mungerovich@fisica.edu.uy DEFINICIÓN PREVIA: Distribución: función que nos dice cuál es la probabilidad de que cada suceso

Más detalles

NOMBRE: CURSO: Iº. Muestra: Es un subconjunto de la población, que debe ser representativa y aleatoria.

NOMBRE: CURSO: Iº. Muestra: Es un subconjunto de la población, que debe ser representativa y aleatoria. Nivel: Iº Medio Guía 1: Estadística Profesora: Estela Muñoz Vilches Unidad VIII: Estadística y Probabilidades NOMBRE: CURSO: Iº I. Introducción Estadística: Es una rama de la matemática que comprende Métodos

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL

Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

SEGUNDA UNIDAD ESTADÍSTICA Y PROBABILIDADES MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

SEGUNDA UNIDAD ESTADÍSTICA Y PROBABILIDADES MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN SEGUNDA UNIDAD ESTADÍSTICA Y PROBABILIDADES MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Segunda Unidad Didáctica Estadística y Probabilidades Esquema de contenidos INTRODUCCIÓN MEDIDAS DE TENDENCIA CENTRAL

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES Carrera: LICENCIATURA EN COMERCIO EXTERIOR Asignatura: ESTADÍSTICA APLICADA A LOS NEGOCIOS ESTADÍSTICA DE LOS NEGOCIOS Curso: 1º AÑO Año lectivo: 2016 Carga

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i

+ f 2. + f 3. p i. =h i 100. F i. = f i. H i. = h i. P i. = p i OCIOES de ESTADÍSTICA En las tablas estadísticas se pueden tabular, entre otros, los siguientes aspectos: La frecuencia absoluta ( f i ), es decir, el número de veces que aparece un determinado valor en

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE.

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : PROBABILIDAD Y ESTADÍSTICA UNIDAD Nº I ESTADÍSTICA DESCRIPTIVA AÑO: 2010

Más detalles

RELACIÓN TEMA 13: ESTADÍSTICA UNIDIMENSIONAL

RELACIÓN TEMA 13: ESTADÍSTICA UNIDIMENSIONAL RELACIÓN TEMA 13: ESTADÍSTICA UNIDIMENSIONAL 1.- Un fabricante de tornillos desea hacer un control de calidad. Para ello recoge uno de cada 0 tornillos y lo analiza. El conjunto de tornillos analizado

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto

Más detalles