Definiciones generales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Definiciones generales"

Transcripción

1 Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre Media Aritmética para datos no agrupados y agrupados En esta sesión Conceptos básicos de Media Aritmética para datos agrupados y no agrupados Formulas Ejemplos Resueltos Ejercicios Propuestos 1

2 Conceptos básicos de Media Aritmética Media Aritmética Se trata del valor medio de todos los valores que toma la variable estadística de una serie de datos. Por lo tanto, la medida posicional más utilizada en los estudios estadísticos. Por su ácil cálculo e interpretación, es la medida de posición más conocida y más utilizada en los cálculos estadísticos. La media es el valor más representativo de la serie de valores, es el punto de equilibrio, es el centro de gravedad de la serie de datos. Esta dada por la suma de todos los datos de la población dividida entre el numero total de ellos. Desviaciones o desvíos Son dierencias algebraicas entre cada valor de la serie o cada punto medio y la media aritmética de dicha serie, o un valor cualquiera tomado arbitrariamente. Los desvíos o desviación se designan con la letra di. Dado una serie de valores X1, X2, X3,...Xn, se llama desvío a la dierencia entre un valor cualquiera Xi de la serie y un valor indicado k de esa misma serie. Si el valor indicado k de la serie corresponde precisamente a la media aritmética de esos valores dados, se dice entonces que los desvíos son con respecto a la media aritmética. En símbolo: d = ( X X ). Propiedades de la media aritmética i i i 1. La suma de las desviaciones con respecto a la media aritmética es igual a cero. d = La suma de las desviaciones al cuadrado de los diversos valores con respecto a la media aritmética es menor que la suma de las desviaciones al cuadrado de los diversos valores con respecto a cualquier punto K, que no sea la media aritmética. ( X ) 2 X i < ( X K ) 2 i. Características principales de la media aritmética 1. El valor de la media depende de cada una de las medidas que orman la serie de datos, y se halla aectada excesivamente por los valores extremos de la serie de datos. 2. La media se calcula con acilidad y es única para cada caso y permite representar mediante un solo valor la posición de la serie de valores. 3. La media es una medida de posición que se calcula con todos los datos de la serie de valores y es susceptible de operaciones algebraicas. 2

3 Deiniciones generales Objetivo Brindar al participante los conceptos teóricos básicos sobre medidas de posición ( Cuartil, Decil y Percentil ). En esta sesión Conceptos básicos de Cuartil Decil y Percentil Formulas Ejemplos Resueltos Ejercicios Propuestos 3

4 Conceptos básicos de Cuartil, Decil y Percentil Cuartiles Medida de posición que divide en cuatro partes iguales al conjunto de los valores ordenados de una distribución de recuencias. Las medidas son el primer cuartil Q1, el segundo cuartil Q2 y el tercer cuartil Q3. Q1 Q2 = Md 25% 75% Q2 = Md 75% 25% PRIMER CUARTIL Distribuye a la izquierda el 25% de los datos y al lado derecho el 75 % ver igura 1 SEGUNDO CUARTIL Coincide con la mediana entonces el segundo cuartil es igual a la mediana Q2 = Md TERCER CUARTIL Distribuye a la izquierda el 75% del numero de datos y al otro lado el 25% del numero de valores ver igura 2 Deciles Medida de posición que divide en 10 partes iguales al conjunto de valores ordenados de una distribución de recuencias. Estas medidas son : El primer decil D1, el segundo decil D2 hasta el noveno decil D9. 4

5 El primer decil distribuye al lado izquierdo el 10% de los datos y al otro lado el 90%. Ocupa la posición (n/ 10). El segundo decil distribuye al lado izquierdo el 20% de los datos y al otro lado el 80%. Ocupa la posición (2n/ 10). El noveno decil distribuye al lado izquierdo el 90% de los datos y al otro lado el 10%. Ocupa la posición (9n/ 10). 0 D1 D2 D3 D4 D9 0 n /10 2n /10 3n /10 9n/10 Percentiles Medida de posición que divide en 100 partes iguales al conjunto de valores ordenados de una distribución de recuencias y se indican con P1, P2,... P99. El 50 percentil coincide con la mediana. 0 P1 P2 P3 P99 Formulas 5

6 Cuartiles Q1 = Extremo Inerior + ( n/4 - Fi - 1 ) *c Q3 = Extremo Inerior + ( 3n/4 - Fi - 1 ) *c Deciles Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c Percentiles Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Ejemplos Resueltos D r = Decil Buscado Extremo Inerior = Extremo inerior donde se halla el decil buscado r = indica el decil. Tercer decil ( r=3 ) r toma valores de 1 hasta el 9. rn / 10 = indica la situación del decil. Intervalo donde esta el decil P r = Indica percentil Buscado Extremo Inerior = Extremo inerior donde se halla el percentil r = es el rango percentil, es decir, la situación dentro de la escala ordenada de cien elementos. rn / 100 = indica el intervalo de la distribución de recuencia donde se halla el percentil Cuartiles EJERCICIO 1 Al aplicar una evaluación de Teoría política a un grupo de 138 alumnos se obtuvieron los siguientes puntajes organizado en la siguiente distribución de recuencias. a) Determinar el 25% inerior y el 25% superior. Intervalos i Fi

7 n = 138 Determinar el 25% superior : Calculando el cuartil Q3 Para determinar el intervalo donde esta el Q3 dividimos : 3n / 4 = 3 * 138 /4 = se halla en el sétimo intervalo empieza en 102 y termina en 117 Aplicando ormula : Q3 = Extremo Inerior + ( 3n/4 - Fi - 1 ) *c Fi - 1 = F 7-1 = F 6 = = 16 Q3 = 70 + ( )*5 Q3 = Q3 = Q3 = 71 Todos los alumnos con puntaje superior a 71 se hallan en el 25% superior. Deciles EJERCICIO 2 16 Se tiene los puntajes obtenidos por 269 alumnos en una prueba de rendimiento de Geometría. a) Determinar los puntajes de los que se hallan en el 20% inerior y cuales puntajes se ubican en el décimo superior Intervalos i Fi

8 n = 269 Puntajes de los que se hallan en el 20% inerior Calculando el segundo decil. Entonces r=2 Ubicación del segundo decil 2n / 10 = (2*269) /10 =53.8 Entonces el segundo decil esta en el quinto intervalo Aplicando la ormula : Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c D2 = 36 + ( ) *4 41 D2 = Todos los alumnos que tengan puntajes desde 20 hasta 36 entero inmediato anterior a se encuentra en el 20% inerior Puntajes se ubican en el décimo superior Calculando el noveno decil. Entonces r=9 Ubicación del segundo decil 9n / 10 = (9*269) /10 = Entonces el noveno decil esta en el noveno intervalo Aplicando la ormula : Dr = Extremo Inerior + ( r n /10 - Fi - 1 ) *c D9 = 52 + ( ) *4 21 8

9 D9 = Todos los alumnos que tengan puntajes desde 55 se hallaran en el décimo superior Percentiles EJERCICIO 3 Con la siguiente distribución de recuencia calcular P10 y P90 Intervalos i Fi n=50 Calculando P10 Empleando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Calculando P10. Entonces r=10 Ubicación del décimo percentil r n / 100 = (10*50) /100 = 5 Entonces el décimo percentil esta en el segundo intervalo Aplicando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c P10 = 40 + ( 5-4 ) *10 6 P10 = = 42 puntos Calculando P90 9

10 Empleando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c Calculando P90. Entonces r=90 Ubicación de P90. r n / 100 = (90*50) /100 = 45 Entonces el P90. esta en el sexto intervalo Aplicando la ormula : Pr = Extremo Inerior + ( r n /100 - Fi - 1 ) *c P90 = 80 + ( ) *10 7 P90 = = 89 puntos Ejercicio Propuestos Cuartiles Intervalos i Fi Intervalos i 2 Fi n= Respuestas : Intervalos i Fi Intervalos i 2 Fi n = Respuestas : Q 1 =

11 Q1 = = 139 Q3 = = 157 Deciles Y Percentiles 11

12 Deiniciones generales Objetivo Determinar que los datos tienden a alejarse de los valores medios o tendencia central es decir los datos presentan dispersión. En esta sesión Conceptos básicos de Medida de dispersión, rango, desviación estándar o desviación típica y varianza Formulas Ejemplos Resueltos Ejercicios Propuestos 12

13 Conceptos básicos de Medida de dispersión, rango, desviación estándar o desviación típica y varianza Medida de dispersión Determinan el grado de alejamiento de los datos respecto a una medida de posición que generalmente suele ser la media. nos da una idea de lo agrupado que están los datos Estas medidas de posición central no tienen ningún valor si no se conoce como se acercan o se alejan esos valores con respecto al promedio, en otras palabras es conocer como se dispersan o varían esos valores con respecto al promedio de una distribución de recuencia. Las Medidas de Dispersión relativa. Son relaciones entre medidas de dispersión absolutas y medidas de tendencia central multiplicadas por 100, por lo tanto vienen expresadas en porcentaje Cuando la dispersión es baja indica que la serie de valores es relativamente homogénea mientras que una variabilidad alta indica una serie de valores heterogénea. RANGO O RECORRIDO(R) Es la primera medida de dispersión, no esta relacionada con ningún promedio en particular, ya que este se relaciona con los datos mismos, puesto que su cálculo se determina restándole al dato mayor de una serie el dato menor de la misma Rango(R) = Dato mayor (XM) Dato Menor (Xm) R = XM Xm. El rango es la medida de dispersión más sencilla e inexacta dentro de las medidas de dispersión absoluta. Indica la extension de los valores que puede tomar la variable cuyas medidas constituyen los datos Rango = Valor Máximo Valor Mínimo Se utiliza cuando se desea una rápida apreciación de la extensión de los datos es aectado por los valores extremos no toma en cuenta las variaciones al interior de la distribución. DESVIACIÓN MEDIA Su uso es restringido porque existen otras medidas mas precisas. La desviación media es la media de las desviaciones La desviación media de un conjunto de N observaciones x1, x2, x3,...xn, es el promedio de los valores absolutos de las desviaciones (di) con respecto a la media aritmética o la mediana. Si se denomina como DM a la desviación media Observamos que es las desviaciones de cada valor con respecto a la media. Las desviaciones se toman en valor absoluto. La suma obtenida se divide entre el numero de elementos. 13

14 DESVIACIÓN TÍPICA O ESTÁNDAR Estadística Aplicada Es la medida de dispersión más utilizada en las investigaciones por ser la más estable de todas, ya que para su calculo se utilizan todos los desvíos con respecto a la media aritmética de las observaciones, y además, se toman en cuenta los signos de esos desvíos. Se le designa con la letra castellana S. La desviación típica es una orma reinada de la desviación media. Es la raíz cuadrada de la suma de los cuadrados de las desviaciones de cada valor con respecto a la media, dividida entre el numero de valores. INTERPRETACIÓN DE LA DESVIACIÓN TÍPICA La desviación típica como medida absoluta de dispersión, es la que mejor nos proporciona la variación de los datos con respecto a la media aritmética, su valor se encuentra en relación directa con la dispersión de los datos, a mayor dispersión de ellos, mayor desviación típica, y a menor dispersión, menor desviación típica. Formulas Desviación Media N X i X d i i = 1 i = 1 DM = = N N Desviacion Estandar o tipica Datos no agrupados N Ó (xi x ) 2 S = n Datos Agrupados S = Ó i(xi x ) 2 n 14

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple

Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje

Más detalles

Estadística descriptiva: problemas resueltos

Estadística descriptiva: problemas resueltos Estadística descriptiva: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Rango $ 2.405.829 $ 85.042.944 $ 82.637.115 intervalos 1+33 log 42 6,487100845 7 amplitud $ 82.637.115,00 7 $ 11.805.302,14

Rango $ 2.405.829 $ 85.042.944 $ 82.637.115 intervalos 1+33 log 42 6,487100845 7 amplitud $ 82.637.115,00 7 $ 11.805.302,14 INTRODUCCIÓN En este trabajo estadístico se tiene como propósito, entregarnos información sobre la inversión desarrollada en la ciudad de La Serena durante el periodo 2004 Junio 2005, y como esta se distribuye

Más detalles

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Matemática UNIDAD 6. Estadística 1 Medio GUÍA N 5 TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Cada día aparecen gráficos o datos, por ejemplo en la prensa o en televisión. Quién

Más detalles

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante Organización de Computadoras 2014 Apunte 2: Sistemas de Numeración: Punto Flotante La coma o punto flotante surge de la necesidad de representar números reales y enteros con un rango de representación

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º

INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º INSTITUCION EDUCATIVA LUIS PATRON ROSANO DOCUMENTO PARA ESTUDIAR LOGROS PENDIENTES DE ESTADISTICA DE 10º DEFINICIÓN DE PARÁMETRO ESTADÍSTICO Un parámetro estadístico es un número que se obtiene a partir

Más detalles

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética En un examen de matemáticas con tiempo, los estudiantes resuelven un problema particular en diferentes

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES CARRERA: LICENCIATURA EN TURISMO ASIGNATURA: ESTADÍSTICA SOCIAL CURSO: 3er. AÑO AÑO: 2015 CARGA HORARIA SEMANAL: CUATRO

Más detalles

IV. Propósitos generales Asegurar la comprensión y manejo de las matemáticas utilizadas en la estadística.

IV. Propósitos generales Asegurar la comprensión y manejo de las matemáticas utilizadas en la estadística. CARTA DESCRIPTIVA: I. Identificadores de la asignatura MÉTODOS NUMÉRICOS Clave: BAS120096 Créditos: 06 Materia: MÉTODOS NUMÉRICOS Departamento: CIENCIAS DE LA SALUD Instituto: ICB Modalidad: PRESENCIAL

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Cordial saludo, estimados aprendices! Bienvenidos al material de formación Interpretación y análisis de datos: estadística descriptiva

Cordial saludo, estimados aprendices! Bienvenidos al material de formación Interpretación y análisis de datos: estadística descriptiva Cordial saludo, estimados aprendices! Bienvenidos al material de formación Interpretación y análisis de datos: estadística descriptiva Conceptos básicos de estadística La estadística es una rama de la

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

Texas Education Agency Proclamation 2005

Texas Education Agency Proclamation 2005 (a) Introducción. (1) Dentro de un plan de estudios de matemáticas balanceado, los principales puntos de enfoque en el 2º grado son el desarrollo de la comprensión del sistema de valor posicional de base

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Preparación de la carga para su movilización.

Preparación de la carga para su movilización. Preparación de la carga para su movilización. Cálculo de los esquemas de paletización. Por: Herikson García Peña. Bibliografìa: Le système graphique Palett O Graf Fenwick Presentación La carga de productos

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p)

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) Unidad 3 OPCIÓN A 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) La ecuación que relaciona Q p y Q v es: Q p =

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

PRÁCTICA 3 EJERCICIOS RESUELTOS

PRÁCTICA 3 EJERCICIOS RESUELTOS PRÁCTICA 3 Un estadístico podría meter su cabeza en un horno y sus pies en hielo, y decir que en promedio se encuentra bien. EJERCICIOS RESUELTOS EJERCICIO 1 Los psicólogos que trabajan en un Centro de

Más detalles

DESTREZAS BÁSICAS EN MATEMÁTICAS

DESTREZAS BÁSICAS EN MATEMÁTICAS PRUEBA DE EVALUACIÓN 4º ESO DESTREZAS BÁSICAS EN MATEMÁTICAS Pregunta 1.- La proporción entre el área coloreada y el área total de ese cuadrado, puede expresarse mediante la fracción: A. B. C. D. 7 8 4

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

Tema 2. Conceptos topográficos

Tema 2. Conceptos topográficos Tema 2. Conceptos topográficos Se puede definir la Topografía como el conjunto de métodos e instrumentos necesarios para representar gráfica o numéricamente el terreno con todos sus detalles, naturales

Más detalles

TERMOQUÍMICA. Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico

TERMOQUÍMICA. Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico TERMOQUÍMICA La termoquímica es la aplicación de la Primera Ley de la Termodinámica al estudio

Más detalles

DISTRIBUCIÓN DE LA RENTA Y DESIGUALDAD

DISTRIBUCIÓN DE LA RENTA Y DESIGUALDAD DISTRIBUCIÓN DE LA RENTA Y DESIGUALDAD EFICIENCIA Y DISTRIBUCIÓN Enfoques sobre la distribución de la renta: -Distribución funcional o factorial de la renta. -Distribución personal de la renta. -Distribución

Más detalles

Anexo Estadístico Electrónico

Anexo Estadístico Electrónico Anexo Estadístico Electrónico Anexo Estadístico Electrónico, Informe de pobreza en 2 A continuación se describe el contenido del disco compacto que contiene el Anexo Estadístico Electrónico del Informe

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

Comparación de precios de la energía eléctrica con la UE-15 en 2014. Junio 2015

Comparación de precios de la energía eléctrica con la UE-15 en 2014. Junio 2015 Comparación de precios de la energía eléctrica con la UE-15 en 2014 Junio 2015 Resumen ejecutivo - El precio de la electricidad que pagaron la mayoría de pymes españolas en 2014 fue de 283,4 euros el MWh

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios. I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se

Más detalles

Tenga en cuenta entregar los ejercicios con el desarrollo completo de su resolución.

Tenga en cuenta entregar los ejercicios con el desarrollo completo de su resolución. Estadística Atorresi I. 1- los datos que se reúnen son tomados a 163 mujeres que escuchan radio a las 15 hs. aparece 2 gráficos de torta o pictograma según propone botella". un grafico indica que los datos

Más detalles

TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos.

TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos. TEMA 1. ORGANIZACION Y REPRESENTACION DE LOS DATOS DE UNA MUESTRA. 1.1. Métodos para datos cualitativos. a) Organización de datos: tabla b) Representaciones gráficas. 1.2. Métodos para datos cuantitativos.

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

ESTADÍSTICA I GUÍA PARA EXAMEN EXTRAORDINARIO

ESTADÍSTICA I GUÍA PARA EXAMEN EXTRAORDINARIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL SUR ACADEMIA DE MATEMÁTICAS ESTADÍSTICA I GUÍA PARA EXAMEN EXTRAORDINARIO Candanosa Aranda, Carlos Guillén Anguiano, Javier

Más detalles

Laboratorio de Termodinámica Clásica

Laboratorio de Termodinámica Clásica Laboratorio de Termodinámica Clásica Sesión 3 Practica #4 Determinación del coeficiente de compresibilidad isotérmica del aire. Para esta práctica utilizaremos un equipo pasco llamado Aparato de ley adiabática

Más detalles

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares.

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. PARTES DE UN ENTERO 02 1 Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. En presentación de contenidos repasa las partes de una fracción y representa las figuras

Más detalles

file://d:\trabajo\boletin\anteriores\84.htm

file://d:\trabajo\boletin\anteriores\84.htm Página 1 de 5 Si usted no puede visualizar correctamente este mensaje, presione aquí Boletín técnico de INDISA S.A. Medellín, 18 de junio de 2010 No.84 EL CÁLCULO DE LA CONFIABILIDAD EN EL MANTENIMIENTO

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3 UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen, CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof.

UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA. Prof. UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA Y SOCIAL CÁTEDRA DEMOGRAFÍA MÉDICA Prof. Evy Guerrero Análisis e interpretación de los datos Una vez recolectada la información

Más detalles

ESTUDIO CIS N1 2200 DEMANDA DE SEGURIDAD Y VICTIMIZACIÓN FICHA TÉCNICA

ESTUDIO CIS N1 2200 DEMANDA DE SEGURIDAD Y VICTIMIZACIÓN FICHA TÉCNICA Convenio: Municipios de más de 50.000 habitantes de las provincias de Alicante, Almería, Asturias, Baleares, Barcelona, Cádiz, La Coruña, Granada, Madrid, Málaga, Murcia, Las Palmas, Pontevedra, Santa

Más detalles

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012

METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 METODOLOGÍA DE CONSTRUCCIÓN DE GRUPOS SOCIOECONÓMICOS Pruebas SIMCE 2012 Departamento de Pruebas Nacionales División de Evaluación de Logros de Aprendizaje AGENCIA DE CALIDAD DE LA EDUCACIÓN Índice 1.

Más detalles

Tecnología Mecánica. Fac. de Ingeniería Univ. Nac. de La Pampa. Límites, Ajustes y Tolerancias

Tecnología Mecánica. Fac. de Ingeniería Univ. Nac. de La Pampa. Límites, Ajustes y Tolerancias Tecnología Mecánica Límites, y Contenido de 2 Introducción de Definición Variación admisible de la dimensión real de una pieza Por qué cambian las dimensiones? Por qué es necesario acotar esta variación?

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Introducción al estudio de las mediciones

Introducción al estudio de las mediciones y fluidos 1.0 Medición Una medición es el resultado de una operación humana de observación mediante la cual se compara una magnitud con un patrón de referencia. Por ejemplo, al medir el diámetro de una

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

LAYOUT C FORMATO DE EXPORTACIÓN (TEF / TEF INTELAR)

LAYOUT C FORMATO DE EXPORTACIÓN (TEF / TEF INTELAR) Página 1 El Layout C es uno de dos layouts utilizados dentro de Operaciones, Por archivo / Masivos (TEF) en BancaNet Empresarial y Digitem. Este Layout es capaz de operar transacciones con todas las naturalezas

Más detalles

Sistemas Numéricos y Códigos Binarios

Sistemas Numéricos y Códigos Binarios Sistemas Numéricos y Códigos Binarios Marcelo Guarini Departamento de Ingeniería Eléctrica, 5 de Abril, 5 Sistemas Numéricos en Cualquier Base En el sistema decimal, cualquier número puede representarse

Más detalles

Carta de Probabilidad de Weibull

Carta de Probabilidad de Weibull Carta de Probabilidad de Weibull Israel Jair Pérez Pérez* Israel González Barrera*, José Antonio Ruiz Ayerdi*, Christian Bonilla Monzón*, Antonio Romero Hernández*, Juan José Hurtado Moreno** *alumnos

Más detalles

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2012 Resolución de 27 de abril de 2012 (DOCM de 30 de abril) Instrucciones Generales PARTE COMÚN

Más detalles

Uso de pruebas de carga para caracterización de un puente existente Caso de estudio. Ing. Giannina Ortiz Quesada Ing.

Uso de pruebas de carga para caracterización de un puente existente Caso de estudio. Ing. Giannina Ortiz Quesada Ing. Uso de pruebas de carga para caracterización de un puente existente Caso de estudio Ing. Giannina Ortiz Quesada Ing. Mauricio Carranza Introducción o antecedentes La siguiente presentación es parte de

Más detalles

Respuesta: ( 1; 2] [ [3; 1)

Respuesta: ( 1; 2] [ [3; 1) UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA DIRECCION DE POSTGRADO - CARRERA DE FISICA DIPLOMADO EN FISICA MODULO MATEMATICAS PRUEBA DE EVALUACION (16 de Junio de 016)......... Apellido

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

ANEJO 3. ARTÍCULOS MÁS RELEVANTES

ANEJO 3. ARTÍCULOS MÁS RELEVANTES ANEJO 3. ARTÍCULOS MÁS RELEVANTES 105 Cambios en la temperatura y sus efectos en algunas propiedades físicas del suelo Dr M. Said Youssef, Dr A. Sabry, Dr Helmi El Ramli Sumario En el transcurso de los

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

ESCUELA POLITECNICA NACIONAL

ESCUELA POLITECNICA NACIONAL ESCUELA POLITECNICA NACIONAL INTEGRANTES: NATACHA RIVERA LUIS YASELGA DOCENTE: ING. JUAN CARLOS ALMACHI PERIODO: 2016 1. OBJETIVOS 1.1.- GENERAL: Identificar las características de una partícula en un

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO II. SOLUCIONES QUÍMICAS

TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO II. SOLUCIONES QUÍMICAS Ing. Federico G. Salazar Termodinámica del Equilibrio TERMODINÁMICA DEL EQUILIBRIO CAPÍTULO II. SOLUCIONES QUÍMICAS Contenido 1. Propiedades Parciales Molares 2. Entalpía de Mezcla 3. Efectos caloríficos

Más detalles

CAPITULO 1. INTRODUCCIÓN. Un sistema de pensiones trata de resolver un problema que alude al bienestar de la

CAPITULO 1. INTRODUCCIÓN. Un sistema de pensiones trata de resolver un problema que alude al bienestar de la CAPITULO 1. INTRODUCCIÓN Un sistema de pensiones trata de resolver un problema que alude al bienestar de la población. Con el surgimiento de las sociedades modernas y la industrialización, se ve la necesidad

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

Comunicación de Datos

Comunicación de Datos 2.3.1 Microondas terrestres. La antena más común en las microondas es la de tipo parabólico. El tamaño típico es de un diámetro de unos 3 metros. Esta antena se fija rígidamente, y en este caso el haz

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Tema 7. Problemas de ecuaciones de primero y segundo grado

Tema 7. Problemas de ecuaciones de primero y segundo grado Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su

Más detalles

LS5168 Gestión de Proyectos Tecnológicos Juan Antonio Maestro / Javier García. La etapa de Control. Curso 2009-2010

LS5168 Gestión de Proyectos Tecnológicos Juan Antonio Maestro / Javier García. La etapa de Control. Curso 2009-2010 La etapa de Control Curso 2009-2010 Qué es el Control? El control es la etapa en la que se verifica que el desarrollo del proyecto está en línea con el Plan de Proyecto generado en la etapa de Planificación.

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

UNIDAD III MEDIDAS DE TENDENCIA CENTRAL

UNIDAD III MEDIDAS DE TENDENCIA CENTRAL UNIDAD III MEDIDAS DE TENDENCIA CENTRAL ISC. Claudia García Pérez 1 PRESENTACIÓN La representación gráfica de los datos permite realizar una descripción visual de manera general de los datos obtenidos

Más detalles

2ª PRUEBA 26 de febrero de 2016

2ª PRUEBA 26 de febrero de 2016 2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el

Más detalles

INFORME DE TOPOGRAFíA (CI3502) Informe Taller N 1: Método de Cross

INFORME DE TOPOGRAFíA (CI3502) Informe Taller N 1: Método de Cross Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Civil INFORME DE TOPOGRAFíA (CI3502) Informe Taller N 1: Método de Cross Sección 1 Grupo 8 Nombres Alexis Córdova

Más detalles

1. CREES QUE LOS JÓVENES DE TU ENTORNO ACEPTAN A LOS INMIGRANTES Y A PERSONAS DE OTRA COMUNIDAD? O SI O No O NO SABE

1. CREES QUE LOS JÓVENES DE TU ENTORNO ACEPTAN A LOS INMIGRANTES Y A PERSONAS DE OTRA COMUNIDAD? O SI O No O NO SABE 1 ÍNDICE: 1. OBJETIVOS DEL ESTUDIO. 2. RECOGIDA DE DATOS. 2.1. CUESTIONARIO SOBRE TOLERANCIA. 2.2. POBLACIÓN Y MUESTRA. 2.3. TIEMPO DEDICADO A REALIZAR LA ENCUESTA. 2.4. ENTRVISTADORES. 3. DESCRIPCIÓN

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Notas de clase A. Leonardo Bañuelos Saucedo Nayelli Manzanarez Gómez INTRODUCCIÓN TEMA I ANÁLISIS ESTADÍSTICO DE DATOS MUESTRALES La Probabilidad y la Estadística son herramientas

Más detalles

Título: Procedimiento de Almacenamiento de café

Título: Procedimiento de Almacenamiento de café Título: Procedimiento de Almacenamiento de café Código: 1-P-3.4 Fecha: Versión: 2 Página 1 de 6 1. Objetivo y alcance Almacenar el café pergamino / oro a una humedad, temperatura deseada y a condiciones

Más detalles

INSTRUMENTOS DE MEDIDA MECÁNICOS I y II

INSTRUMENTOS DE MEDIDA MECÁNICOS I y II INSTRUMENTOS DE MEDIDA MECÁNICOS I y II Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. En esta práctica se trata de familiarizar al alumno

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente . Los calores de combustión del metano y butano son 890 kj/mol y 876 kj/mol respectivamente Butano: C 4 H 0 Metano: CH 4 a) Cuando se utiliza como combustible Cual generaría más calor para la misma masa

Más detalles

ESTACIÓN MAREOGRÁFICA DE TARIFA. María Jesús García y Jaoquín Molinero

ESTACIÓN MAREOGRÁFICA DE TARIFA. María Jesús García y Jaoquín Molinero MINITERIO DE EDUCACIÓN Y CIENCIA ESTACIÓN MAREOGRÁFICA DE TARIFA y Jaoquín Molinero Área de Medio Marino y Protección Ambiental INDICE 1. UBICACIÓN 2 2) REFERENCIAS 3 3) ESTADÍSTICAS DE VALORES EXTREMOS

Más detalles

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente

Más detalles

Cómo establecer periodos de Calibración. Ing. Francisco Javier Cedillo López

Cómo establecer periodos de Calibración. Ing. Francisco Javier Cedillo López Cómo establecer periodos de Calibración Ing. Francisco Javier Cedillo López OBJETIVO Es compartir con los asistentes, las herramientas y ejemplos de cómo establecer los periodos de calibración de los equipos

Más detalles

OLIMPIADA ESTADÍSTICA 2016:

OLIMPIADA ESTADÍSTICA 2016: OLIMPIADA ESTADÍSTICA 2016: Encuesta sobre Equipamiento y Uso de Tecnologías de la Información y Comunicación en los hogares Equipo: TRESALCUBO Categoría: ESO Centro: Colegio San Jorge (Murcia) Participantes:

Más detalles