APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA. Valor promedio =

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA. Valor promedio ="

Transcripción

1 APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio El valor promedio de una función continua y=f(x) sobre un intervalo [a, b] es Valor promedio = Ejercicio. 1. El costo semanal C (en dólares) de producir x unidades de un producto está dada por: C (x)= x+0.1x 2 El fabricante estima que la producción será entre 100 y 200 unidades. Halle el costo promedio semanal C (x)= x+0.1x 2 = - = (5000x +8x² x³) = - = ( ) = (971000) = 9710 Es el costo promedio semanal cuando la producción es entre 100 y 200 unidades será de 9710 dólares 2. La función demanda para cierto articulo está dada por: P= 500+, donde P: precio y q: unidades demandadas. Encuentre el precio promedio si se demanda en 50 y ) dq 1

2 = = ( ) = ( ) = El precio promedio cuando se demandan entre 50 y 100 unidades será de Unidades Monetarias. 3. El ingreso total de una maquina de videos está dada por: I=50e 0.2t Encuentre el ingreso promedio entre el intervalo de 0 y 4 horas. = dt = dt = x = - = ( ) = ( ) = El ingreso promedio de la máquina de video en un intervalo de 0 y 4 horas será de Unidades Monetarias 2

3 Ingreso Total Sea f(t) una tasa de flujo de ingreso anual, entonces el ingreso total para k años está dado por Ingreso total = Valor Presente de un flujo continuo de ingreso Si f(t) es la tasa del flujo continuo de ingreso que gana una tasa de interés r, compuesta continuamente, entonces el valor presente del flujo continuo de ingreso es Valor-presente = Donde t = 0 a t = k es el intervalo del tiempo Valor Futuro de un flujo continuo de ingreso Si f(t) es la tasa del flujo continuo durante k años, ganando una tasa de interés r, compuesta continuamente, entonces el valor futuro del flujo continuo de ingreso es Valor-futuro = Problemas de Aplicación 1. Un flujo continuo de ingreso tiene una tasa de flujo anual en el tiempo t, dada por f(t) = 9 000e 0.12t (miles de pesos al año). Si el dinero crece a una tasa de 6% compuesto continuamente, para los próximos 10 años encuentre a. El Ingreso total Por definición el ingreso total esta dado por, por datos f(t) = 9 000e 0.12t y k = 10 remplazando El ingreso total del flujo continuo será de mil pesos por año b. El valor presente 3

4 c. El valor futuro 2. Un flujo continuo de ingreso tiene una tasa de flujo anual en el tiempo t dada por f(t) = e 0.04t (millones de pesos al año). Si el dinero crece a una tasa del 8% compuesta encuentre para los próximos 8 años a. El Ingreso total Por definición el ingreso total esta dado por, por datos f(t) = f(t) = e 0.04t y k = 8 remplazando El ingreso total del flujo continuo será de millones de pesos b. El valor presente Por definición el ingreso total esta dado por 4

5 , por datos f(t) = f(t) = e 0.04t, k = 8 y r=0.08 remplazando El valor presente del flujo continuo es de millones de pesos c. El valor futuro Por definición el ingreso total esta dado por, por datos, r=0.08 y k=8, remplazando El valor futuro del flujo continuo en 8 años a una tasa del 8% será de millones de pesos 5

6 Superávit de Consumidor El precio de equilibrio es aquel en que la demanda de un producto es igual a la oferta. Algunos consumidores están dispuestos a comprar x 3 unidades si el precio fuera $p 3. Los consumidores que están dispuestos a pagar más de $p 1 se benefician por el precio más bajo. La ganancia total para todos aquellos dispuestos a pagar más de $p 1 se conoce como superávit del consumidor cuya fórmula está dada por, donde f(x) es la demanda, p 1 es el precio de equilibrio y x 1 es la cantidad en equilibrio, p 1 q 1 representa el total que gastaron los consumidores y que los productores recibieron como ingreso. Ejercicio 1. La función demanda para x unidades de un producto es p = 100/(x+1) dólares. Si el precio de equilibrio es $20, cuál es el superávit del consumidor? Por datos f(x)=100/(x+1) y p 1 =20, debemos hallar q 1 Remplazando Entonces el punto de equilibrio es (4, 20), el superávit del consumidor es El superávit del consumidor es aproximadamente de 80 dólares 6

7 Superávit del Productor Cuando se vende un producto al precio de equilibrio, algunos productores también se benefician ya que ellos estaban dispuestos a vender el producto a un precio más bajo. El área entre la línea p=p 1 y la curva de la oferta x=0 y x=x 1 da como resultado el superávit del productor. Si la función de la oferta es p = g(x), el superávit de productor esta dado por la diferencia entre el área entre la gráfica p=g(x) y el eje de las x entre 0 a x 1., p 1 x 1 representa el ingreso total en el punto de equilibrio. 7

8 INTEGRACIÓN POR PARTES La integración por partes es una técnica de integración donde se usa una fórmula que se origina de la regla del producto para la derivada La integración por parte es muy útil si la integral que se trata de calcular se puede manejar como el producto de un función u y el diferencial dv, de una segunda función de modo que se pueda encontrar las dos integrales y Ejercicios. Integre 1. Hacemos u=x y dv=e x dx entonces du=1dx y v=e x fórmula remplazando en la 2. Hacemos u=ln(x) y dv=xdx entonces du= y v= remplazando en la fórmula 3. Hacemos u=ln(x 2 ) y dv=dx entonces du= fórmula y v=x remplazando en la 4. Hacemos u=x 2 fórmula y dv=e 2x dx entonces du=2xdx y v= e 2x remplazando en la 8

9 Para desarrollar la integral, integramos por parte, hacemos u=x y dv=e 2x dx entonces du=dx y v= e 2x remplazando 5. Hacemos u=x 2 entonces du=2xdx y dv=x dx entonces v= 1)3/2 remplazando 9

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio Problemas de Aplicación 1. Suponga que el costo en dólares de un producto está dado por C(x)= 400+x+0.3x 2, donde

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1)

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1) INCREMENTO Y TASAS El cálculo diferencial es el estudio del cambio que ocurre en variables dependientes cuando hay variaciones en variables independientes Por ejemplo El cambio del costo de operación de

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios Resuelva cada Integral Problemas de Aplicación 1. El costo marginal ( en dólares) de una compañía que fabrica zapatos esta dado por, en donde x es el

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Matemática I - Problemas de Máximos y Mínimos

Matemática I - Problemas de Máximos y Mínimos Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes

Más detalles

INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS.

INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. 1. ÁREA LIMITADA POR UNA FUNCIÓN. INTEGRAL DEFINIDA. Si tenemos una función f(x) con una forma conocida, por ejemplo una recta, una semicircunferencia,... podemos calcular

Más detalles

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral Moisés Villena Muñoz Cap. Aplicaciones de la Integral.1 ÁREAS DE REGIONES PLANAS. APLICACIONES ECONÓMICAS..1. CAMBIO NETO... EXCESO DE UTILIDAD NETA... GANANCIAS NETAS... EXCEDENTES DE CONSUMIDORES Y EXCEDENTE

Más detalles

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados,

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Análisis y evaluación de proyectos

Análisis y evaluación de proyectos Análisis y evaluación de proyectos UNIDAD 5.- MÉTODOS DE EVALUACIÓN DEL PROYECTO José Luis Esparza A. Métodos de Evaluación MÉTODOS DE EVALUACIÓN QUE TOMAN EN CUENTA EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO.

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

8. Integrales Indefinidas y métodos de integración

8. Integrales Indefinidas y métodos de integración 8. Integrales Indefinidas y métodos de integración 8.1. Definición de función primitiva Integral definida Funciones primitivas Sean dos funciones f(x) y F(x), tales que : F'(x)=f(x), es decir la derivada

Más detalles

CAPITULO 5: INTRODUCCIÓN A LA INTEGRACIÓN

CAPITULO 5: INTRODUCCIÓN A LA INTEGRACIÓN CAPITULO 5: INTRODUCCIÓN A LA INTEGRACIÓN En los capítulos anteriores se analizó el cálculo diferencial, el cual trata sobre la tasa de cambio de las funciones. Diferenciación es el proceso de hallar la

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS 2. DERIVADAS DE FUNCIONES 2.1 Noción de derivada de una función

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Cálculo de áreas de superficies planas un de curva

Más detalles

APLICACIÓN. TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos.

APLICACIÓN. TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos. APLICACIÓN TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos. Excedente del consumidor (EC): podemos definirlo como el beneficio o valor total que reciben

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Ayudantía N º2. dq dp. remplazando por la formula de Elasticidad y despejando

Ayudantía N º2. dq dp. remplazando por la formula de Elasticidad y despejando Introducción a la Economía Fecha: 27 de Marzo, 2008 Profesor: Ricardo Paredes Ayudante: Rosario Hevia Ayudantía N º2 PARTE I: REPASO DE CONCEPTOS Elasticidad: medida de la sensibilidad de la cantidad demandada

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Definición de mercado, elasticidades y excedentes

Definición de mercado, elasticidades y excedentes Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology rofesores Berndt, Chapman, Doyle y Stoker CLASE DE REASO Nº 1 Definición de mercado, elasticidades y excedentes Viernes -

Más detalles

MATEMATICAS APLICADAS CLASE 4

MATEMATICAS APLICADAS CLASE 4 MATEMATICAS APLICADAS CLASE 4 DISCUSIÓN DEL CASO PREGUNTA Si fueras un alto ejecutivo de una empresa en la cual existen evidencias que la relacionan a otra compañía o persona para que esta última obtenga

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Cálculo Diferencial - Parcial No. 2

Cálculo Diferencial - Parcial No. 2 Cálculo Diferencial - Parcial No. 2 Departamento de Matemáticas - Universidad de los Andes Marzo 18 de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO Documento elaborado por Jaime Aguilar Moreno Docente área económica Universidad del Valle Sede Buga CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO OBJETIVO DEL CAPÍTULO Lograr que el estudiante

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CV = COSTOS VARIABLES (INCLUIDOS COSTOS Y GASTOS)

Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CV = COSTOS VARIABLES (INCLUIDOS COSTOS Y GASTOS) TEMA 15: EJERCICIOS DEL PUNTO DE EQUILIBRIO. EJERCICIO 1 Habiéndose clasificado los costos y gastos en fijos y variables se identificarán: CF = COSTO FIJOS (INCLUIDOS COSTOS Y GASTOS) CV = COSTOS VARIABLES

Más detalles

APÉNDICE E. Cálculo de la capacidad volumétrica del sitio. E.1 Cálculo de áreas

APÉNDICE E. Cálculo de la capacidad volumétrica del sitio. E.1 Cálculo de áreas Apéndices 79 APÉNDICE E Cálculo de la capacidad volumétrica del sitio E.1 Cálculo de áreas El área de cualquier figura que se haya levantado puede calcularse a partir de:? Las anotaciones de campo? El

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Para calcular el punto de equilibrio debemos conocer los costos que manejamos en nuestro producto.

Para calcular el punto de equilibrio debemos conocer los costos que manejamos en nuestro producto. Qué es el punto de equilibrio? Es el nivel de ventas que permite cubrir los costos, tanto fijos como variables. Dicho de manera más simple, es el punto en el cual la empresa no gana ni pierde, es decir,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Francisco Palacios Escuela Politécnica Superior de Ingeniería

Más detalles

Aplicaciones del Cálculo Diferencial e Integral. Msc. Gerardo Garita Orozco Universidad Latina

Aplicaciones del Cálculo Diferencial e Integral. Msc. Gerardo Garita Orozco Universidad Latina Aplicaciones del Cálculo Diferencial e Integral Msc. Gerardo Garita Orozco Universidad Latina ÍNDICE 1.- Qué es el cálculo diferencial 2.- Aplicaciones de las derivadas en la construcción de gráficos 3.-Criterio

Más detalles

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. PRUEBA DE ACCESO A LA UNIVERSIDAD 0 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK 0ko

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Guía - Funciones de Varias Variables (II)

Guía - Funciones de Varias Variables (II) Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física Mayo de 2015 Guía - Funciones de Varias Variables (II) Regla de la cadena 1. En los siguientes problemas, obtenga

Más detalles

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos:

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: TEMA N 1. INTERES SIMPLE Y COMPUESTO Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: Capitalización: Es aquella entidad financiera mediante la cual los intereses

Más detalles

Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1.

Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1. Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1. Costos 1. Una empresa tiene isocuantas estrictamente convexas y quiere minimizar el costo de producir q unidades.

Más detalles

IN2201 - Economía del bienestar

IN2201 - Economía del bienestar IN2201 - Economía del bienestar Gonzalo Maturana DII - U. de Chile Otoño 2010 Gonzalo Maturana (DII - U. de Chile) IN2201 - Economía del bienestar Otoño 2010 1 / 20 1 Economía del bienestar 2 Excedente

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

Repaso de Matemáticas

Repaso de Matemáticas Repaso de Matemáticas Teoría Macroeconomica III Marcel Jansen Universidad Autónoma de Madrid En estas notas resumiremos algunas de las herramientas matemáticas que pueden encontrar útiles para este curso.

Más detalles

Benavides Muñoz Holger. Área de Ingeniería Hidráulica y Saneamiento. Unidad de Ingeniería Civil, Geología y Minas.

Benavides Muñoz Holger. Área de Ingeniería Hidráulica y Saneamiento. Unidad de Ingeniería Civil, Geología y Minas. Aplicación de métodos numéricos en el análisis financiero. Determinación de la TR por el método de Newton Raphson Benavides Muñoz Holger Área de ngeniería Hidráulica y Saneamiento. Unidad de ngeniería

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

Llamamos a F una antiderivada de f en el intervalo I si D x F(x) = f (x) en I; esto es, si F (x) = f (x) para toda x en I.

Llamamos a F una antiderivada de f en el intervalo I si D x F(x) = f (x) en I; esto es, si F (x) = f (x) para toda x en I. Sección 3.8 Antiderivadas 197 C Después de derivar y hacer el resultado igual a cero, muchos problemas prácticos de máximos y mínimos conducen a una ecuación que no puede resolverse de manera exacta. Para

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

ECONOMIA Profesor: Econ. Milton Oroche Carbajal Alumno.. LA DEMANDA

ECONOMIA Profesor: Econ. Milton Oroche Carbajal Alumno.. LA DEMANDA 1 LA DEMANDA Se llama cantidad demandada de un bien a la cantidad de ese bien que las unidades de consumo (familias) desean comprar La demanda es igual comprar y no es otra cosa que la cantidad de bienes

Más detalles

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE LA FUNCION DE PRODUCCION Y LA MAXIMIZACION DE BENEFICIOS lorenzo castro gómez 1 LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE El objeto del análisis insumo-producto es determinar la cantidad óptima

Más detalles

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

En este PDF encontrará los siguientes temas que debe estudiar para la clase:

En este PDF encontrará los siguientes temas que debe estudiar para la clase: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Función de oferta, superávit de consumidores y productores, análisis marginal: Costo marginal, Ingreso marginal, Utilidad marginal

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior.

Funciones de dos variables: Límites. Continuidad. Derivadas parciales. Derivadas de orden superior. de orden superior Funciones de dos variables:. Continuidad.. Derivadas de orden superior. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. de orden superior Contenidos 1 Introducción

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

Funciones lineales y no lineales (páginas 560 563)

Funciones lineales y no lineales (páginas 560 563) A NOMRE FECHA PERÍODO Funciones lineales y no lineales (páginas 560 563) Las funciones lineales tienen gráficas que son líneas rectas. Estas gráficas representan tasas de cambio constantes. Las funciones

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos

Más detalles

VII. La Economía Abierta-Modelo Clásico

VII. La Economía Abierta-Modelo Clásico 1 VII. La Economía Abierta-Modelo Clásico A. Economía abierta 1. Significa que consideramos comercio internacional en el modelo. 2. Dado comercio internacional, tenemos otro precio, el tipo de cambio.

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

, con 0 x 1, representa la igualdad perfecta en la distribución de los ingresos. Esto es que cualquier punto de la línea indicaría que el

, con 0 x 1, representa la igualdad perfecta en la distribución de los ingresos. Esto es que cualquier punto de la línea indicaría que el Función de Lorenz Decimos que una función continua siguientes condiciones: R L :, es de Lorenz si satisface las ) ) L, L L, para todo x, La función de Lorenz se utiliza para modelar la distribución de

Más detalles

a) El interés se paga una sola vez a fin de año. = (1+ ) =$10000(1+0.24) = $12400

a) El interés se paga una sola vez a fin de año. = (1+ ) =$10000(1+0.24) = $12400 Interés nominal e interés efectivo En los negocios se habla de declaraciones anuales, utilidad anual, etc., y aunque las declaraciones financieras pueden calcularse en tiempos menores de un año, la referencia

Más detalles

ESTUDIO DE FACTIBILIDAD

ESTUDIO DE FACTIBILIDAD ESTUDIO DE FACTIBILIDAD Es mejor hacer un estudio de factibilidad antes de iniciar un negocio/servicio por que esta investigación puede ayudar a evitar que un negocio/servicio fracase, ayuda a las personas

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

Aplicará los métodos de integración en la solución de problemas sobre la función de utilidad.

Aplicará los métodos de integración en la solución de problemas sobre la función de utilidad. Unidad 1 Aplicaciones de cálculo integral Objetivos Al terminar la unidad, el alumno: Aplicará los métodos de integración en la solución de problemas sobre la función de utilidad. Empleará las técnicas

Más detalles

Plan de Estudios de la Carrera de Licenciatura en Turismo. Código MAT 1. Ciclo Académico: Área Curricular: Básica UVA 4

Plan de Estudios de la Carrera de Licenciatura en Turismo. Código MAT 1. Ciclo Académico: Área Curricular: Básica UVA 4 Nombre de la asignatura: MATEMÁTICA 1 a) Generalidades: Pre-requisito Bachill erato Código MAT 1 Ciclo Académico: Área Curricular: 1 Básica UVA 4 Duración del ciclo en semanas Duración Hora/clase en minutos

Más detalles

PROCESO DE CÁLCULO PARA OPERACIONES ACTIVAS FINANCIERA EFECTIVA S.A.

PROCESO DE CÁLCULO PARA OPERACIONES ACTIVAS FINANCIERA EFECTIVA S.A. I. Análisis A continuación se detalla las fórmulas de cálculo de cuotas para crédito de consumo semanal y mensual que figura en el sistema SFI. Calculo de Tasa de Interés Diario Interés Diario (Id) = (

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN www.fisicanet.com www.fisicaweb.com DERIVADA DE UNA FUNCIÓN fisicanet@interlap.com.ar Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.

Más detalles

Ejercicio: Calcular el IPC de los años 2, 3, 4 y 5, tomando como referencia o año base el precio del año1. AÑO 1 2 3 4 5 PRECIO 3 4 5 4,5 7

Ejercicio: Calcular el IPC de los años 2, 3, 4 y 5, tomando como referencia o año base el precio del año1. AÑO 1 2 3 4 5 PRECIO 3 4 5 4,5 7 3.2.4. Índice de Precios al Consumo (IPC) El IPC es un indicador del nivel general de precios de un país. El IPC es elaborado por el Instituto Nacional de Estadística (INE). Para elaborarlo parte del conjunto

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

Universidad de Alcalá Departamento de Fundamentos de Economía e Historia Económica Macroeconomía II Práctica: El modelo IS-LM 3 de marzo de 2008

Universidad de Alcalá Departamento de Fundamentos de Economía e Historia Económica Macroeconomía II Práctica: El modelo IS-LM 3 de marzo de 2008 Universidad de Alcalá Departamento de Fundamentos de Economía e Historia Económica Macroeconomía II Práctica: El modelo IS-LM 3 de marzo de 2008 1) Cuál de las siguientes es una definición correcta de

Más detalles