Ejercicios Propuestos Campos en la materia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios Propuestos Campos en la materia."

Transcripción

1 Ejercicios Propuestos Campos en la materia. 1. Un dipolo eléctrico es un par de cargas de la misma magnitud y signos opuestos, situadas en puntos diferentes. Así, la carga total del dipolo es cero. (a) Demuestre que el potencial eléctrico medido a distancias mucho mayores que el brazo está dado por: V () = 3 (5.144) (b) Demuestre, usando el gradiente, que el campo eléctrico está dado por: E() = 2 +3 ( ) 3 ˆ (5.145) (c) Suponiendo que las dimensiones del dipolo son despreciables, demuestre que la energía potencial puede escribirse como U() = E() (5.146) 2. Un dipolo eléctrico está formado por dos cargas de igual magnitud, pero de signo contrario, separadas por una distancia 2. Determine el campo eléctrico en el punto P debido al dipolo eléctrico mostrado en la figura 5.16.

2 278 Ejercicios propuestos campos en la materia. Figura 5.16: (Problema 02). 3. Suponga que una molécula de agua (H 2 O) tiene un momento bipolar eléctrico igual dado por P = (ˆ + ˆ)[C]. Si colocamos la molécula en la presencia de un campo eléctrico dado por E = ˆ [N/C], encuentre: (a) El torque ejercido sobre la molécula de agua, (b) La energía potencial, (c) La fuerza resultante sobre el dipolo. 4. Suponga un dieléctrico como el de la figura 5.17, el que está polarizado uniformemente con polarización P. Encuentre la densidad superficial de polarización sobre las caras 1, 2 y 3. Figura 5.17: (Problema 04). 5. Suponga una polarización inhomogénea dada por P( ) = (5 2 + )ˆ + 20ˆ 10ˆ.

3 Ejercicios propuestos campos en la materia. 279 Calcule la densidad volumétrica de carga de polarización ρ P ( ). Evalúe en el punto ( ) = (2 0 3). 6. A un capacitor de placas paralelas se le introduce una placa conductora de espesor y área A, si las placas del capacitor tienen la misma área A y una separación entre ellas, como se muestra en la figura Cuál es el valor de la capacitancia del sistema?. Figura 5.18: (Problema 06). 7. Un capacitor con placas paralelas cuya área es 200 [ 2 ] tiene un relleno de caucho (neopreno con κ =6 7 y E = [V/]) que tiene 12 [] de espesor. (a) Calcule la capacitancia. (b) Calcule el voltaje máximo. 8. Un capacitor tiene placas paralelas cuya área es 0 12 [ 2 ]. Cuando las placas están en el aire, la capacitancia es de 16 [F]. (a) Calcule el valor de la capacitancia si el espacio entre las placas se llena con mica de rubí (κ =5 4 y la rigidez dieléctrica es E = [V/]). (b) Cuál es la máxima diferencia de potencial que se puede aplicar a las placas sin causar la ruptura eléctrica? (sin dieléctrico). 9. Un capacitor cilíndrico relleno de teflón (κ =2 1) tiene una capacitancia por unidad de longitud de 60 [F/]. Si el diámetro interior del conductor exterior es de 2[], cuál es el diámetro del conductor interior?. 10. Un capacitor de placas paralelas y dieléctrico de aire (κ =1 0 y la rigidez dieléctrica es E = [V/]) puede almacenar una energía máxima U. Cuál es la máxima energía que puede almacenar el capacitor si el espacio se llena con vidrio pyrex (κ =5 6 y la rigidez dieléctrica es E = [V/])?.

4 280 Ejercicios propuestos campos en la materia. 11. Un capacitor con placas paralelas y dieléctrico de aire (κ =1 0 y la rigidez dieléctrica es E = [V/]) se puede cargar hasta Q 0 sin que ocurra una descarga eléctrica. Al introducir una placa de vidrio pyrex (κ =5 6 y la rigidez dieléctrica es E = [V/]), la carga máxima es Q sin que ocurra una descarga. Cuál es la razón Q/Q 0?. 12. Un capacitor con placas paralelas se llena con dos materiales dieléctricos diferentes del mismo espesor, como se ilustra en la figura Calcular su capacitancia. Figura 5.19: (Problema 12). 13. A un capacitor con placas paralelas, de separación y capacitancia C 0, se le introduce una placa dieléctrica de espesor ( < ). Encuentre la expresión de la nueva capacitancia. Evalúe la expresión para = 0 5[], C 0 =0 2[]. = 16 [F], κ = 6 9 y 14. Un condensador de placas paralelas es construido usando un dieléctrico cuya constante varía con la posición. Las placas tienen un área A. La placa inferior está en =0y la placa superior está en = 0. La constante dieléctrica es una función de la posición y de acuerdo a (a) Cuál es la capacitancia? 3 κ =1+ (5.147) 0 (b) Use la ley de Gauss para encontrar la densidad de carga volumétrica inducida ρ() dentro del dieléctrico. 15. Determine la fuerza con que se repelen dos cargas positivas puntuales 1 y 2 que se encuentran sumergidas en el interior de un dieléctrico de permitividad ε.

5 Ejercicios propuestos campos en la materia Consideremos un ión esférico de carga Q sumergido en un líquido dieléctrico lineal, homogéneo e isotrópico, siendo ε la permitividad del medio. Calcule el valor del campo eléctrico a una distancia del centro del ión. 17. Considerando el átomo de Bohr, demuestre que le momento magnético está dado por = γ, donde γ es la razón giromagnética clásica. 18. Defina materiales diamagnéticos, paramagnéticos y ferromagnéticos. Identifique algunos ejemplos para cada tipo de material, diferencias con respecto a los otros y grafique esquemáticamente magnetización versus campo. 19. Identifique en la curva de histéresis de un material ferromagnético: (a) La magnetización de saturación. (b) La magnetización remanente. (c) El campo coercitivo o coercividad. (d) Comente que significa cada uno de los valores identificados. 20. Un imán está constituido por una barra cilíndrica de 15 [] de largo. Podemos obtener un solenoide equivalente enrollando sobre un cilindro de cartón, de las mismas dimensiones, 150 espiras y haciendo pasar por ellas una intensidad de corriente de 3[A]. Determine la magnetización M del imán. 21. Por un hilo conductor recto y muy largo circula una corriente de 10 [A]. Calcule la inducción magnética B, la intensidad del campo magnético H y la magnetización M en un punto que se encuentra a 20 [] de él, según se encuentre sumergido: (a) En el vacío. (b) En un medio con permeabilidad magnética m. 22. Un anillo de Rowland de 8[] de radio medio está constituido por un enrollado de 800 vueltas de un hilo conductor sobre un núcleo de permeabilidad relativa Si se hace pasar una corriente de 5[A], (a) Calcule el valor de la inducción magnética B en su interior. (b) Calcule el valor de la intensidad de campo magnético H en su interior. (c) Calcule la magnetización M del anillo.

6 282 Ejercicios propuestos campos en la materia.

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas.

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas. CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. P1.- Un condensador esférico está compuesto por dos esferas concéntricas, la interior de radio r y la exterior (hueca) de radio interior

Más detalles

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 9. Capacitancia. i. Limitaciones al cargar un capacitor. ii. El capacitor. iii. Calculo

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

CONDENSADORES. 2 condensador. Rpta. pierde

CONDENSADORES. 2 condensador. Rpta. pierde CONDENSADORES 1. En una asociación de tres condensadores en serie con cargas Q 1, Q 2 y Q 3 la carga Q del condensador equivalente es igual a: a) Q=Q 1 +Q 2 +Q 3 b) Q=Q 1 =Q 2 =Q 3 c) (Q 1 +Q 2 +Q 3 )/2

Más detalles

Introducción. Condensadores

Introducción. Condensadores . Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores

Más detalles

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA Prof O Contreras Al considerar campos dentro de materiales, el campo Eléctrico induce a nivel atómico, Dipolos de Momento Dipolar Eléctrico Si el número de

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

Capítulo II. Ecuaciones de los circuitos magnéticos

Capítulo II. Ecuaciones de los circuitos magnéticos Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel

Más detalles

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito.

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito. Eng. Tèc. Telecom. So i Imatge TEORIA TEST (30 %) 16-gener-2006 PERM: 2 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto;

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

Magnetismo. Física Sexta edición. Capítulo 29 29. magnético. Campos La Densidad. de flujo y permeabilidad Campo

Magnetismo. Física Sexta edición. Capítulo 29 29. magnético. Campos La Densidad. de flujo y permeabilidad Campo Magnetismo y campo magnético Capítulo 29 29 Física Sexta edición Paul Paul E. E. Tippens Magnetismo Campos magnéticos La teoría a moderna del magnetismo Densidad de flujo y permeabilidad Campo magnético

Más detalles

CAPÍTULO IV Dieléctricos

CAPÍTULO IV Dieléctricos Fundamento teórico CAPÍTULO IV Dieléctricos I.- l dipolo Ia.- Momento dipolar Un sistema formado por dos cargas iguales en módulo y de signo opuesto, +q y q, con vectores posición r + y r respectivamente,

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO TEMARIO A. ELECTRICIDAD 1. CARGAS ELÉCTRICAS Y LEY DE COULOMB. I Reseña histórica de la electricidad 2. Concepto de carga eléctrica. 3. Tipos de cargas.

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 4: CAPACITANCIA Determinar, a partir de su geometría, la capacitancia

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Electricidad y calor. Webpage: 2007 Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage:  2007 Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temario B. Electricidad 6. Cargas eléctricas y la Ley de Coulomb. (4horas) 1. Concepto

Más detalles

CUESTIONARIO 1 DE FISICA 3

CUESTIONARIO 1 DE FISICA 3 CUESTIONARIO 1 DE FISICA 3 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia Física II Electromagnetismo-Física B C/014 Guía N 4: Problema 1. Un electrón se mueve en un campo magnético B con una velocidad: experimenta una fuerza de 5 5 v (4 10 i 7.1 10 j) [ m / s] F (.7 10 13i

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético.

4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 4. Campo magnético. Fuerza de Lorentz. Teorema de Ampère. Inducción electromagnética. Corrientes de Foucault. Energía en un campo magnético. 64. Una sola espira circular de radio 8,5 cm ha de producir

Más detalles

Unidad 9. Fuerza magnética y Campo Magnético

Unidad 9. Fuerza magnética y Campo Magnético Unidad 9. Fuerza magnética y Campo Magnético Física 2 Basado en Bauer/Westfall 2011, Resnick 1995 y Ohanian/Markert, 2009 El alambre recto conduce una corriente I grande, y hace que las pequeñas partículas

Más detalles

OTRAS PROPIEDADES: TÉRMICAS, ELÉCTRICAS, DIELÉCTRICAS, AISLANTES Y MAGNÉTICAS DE LOS MATERIALES

OTRAS PROPIEDADES: TÉRMICAS, ELÉCTRICAS, DIELÉCTRICAS, AISLANTES Y MAGNÉTICAS DE LOS MATERIALES OTRAS PROPIEDADES: TÉRMICAS, ELÉCTRICAS, DIELÉCTRICAS, AISLANTES Y MAGNÉTICAS DE LOS MATERIALES El comportamiento físico de los materiales se encuentra descrito por una gran variedad de propiedades eléctricas,

Más detalles

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura:

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura: ampo eléctrico 1 Se tienen dos cargas eléctricas puntuales, una de 3 µ y la otra de - 3 µ, separadas una distancia de 0 cm alcula la intensidad del campo eléctrico y el potencial eléctrico en los siguientes

Más detalles

Campo magnético creado por cargas puntuales móviles.

Campo magnético creado por cargas puntuales móviles. Introducción Volvamos ahora considerar los orígenes del campo magnético B. Las primeras fuentes conocidas del magnetismo fueron los imanes permanentes. Un mes después de que Oersted anunciarse su descubrimiento

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

CRONOGRAMA DE FÍSICA SEMESTRE 3º

CRONOGRAMA DE FÍSICA SEMESTRE 3º REPÚBLICA BOLIVARIANA DE VENEZUELA U.E. ADA BYRON MARACAY CRONOGRAMA DE FÍSICA SEMESTRE 3º OBJETIVOS GENERALES 1. Establecer la diferencia y semejanzas entre las interacciones eléctricas y las gravitaciones,

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III

FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24211, I CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 5 Y 6 (SEMANA 6) TEMA: CONDENSADORES

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

FUERZA Y CAMPO ELÉCTRICO

FUERZA Y CAMPO ELÉCTRICO FUERZA Y CAMPO ELÉCTRICO PREGUNTAS 1. Se tienen tres esferas conductoras A, B y C idénticas y aisladas. La esfera A se encuentra cargada con 60 µc y B y C totalmente descargadas. Si seguimos el siguiente

Más detalles

TEMA 6 MAGNETISMO Y ELECTROMAGNETISMO

TEMA 6 MAGNETISMO Y ELECTROMAGNETISMO TEMA 6 MAGNETISMO Y ELECTROMAGNETISMO El magnetismo tiene que ver con fenómenos de atracción y repulsión que se dan en los imanes y con los materiales ferromagnéticos. El electromagnetismo tiene que ver

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE

TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE Departamento De F ısica y Geolog ıa, Universidad De Pamplona 1. Dos cargas puntuales de 2C y 3C est an separadas por una distancia 1m. Calcular el campo

Más detalles

Problemas de Electromagnetismo I 2º Grado de Física. L. Soriano

Problemas de Electromagnetismo I 2º Grado de Física. L. Soriano Problemas de Electromagnetismo I 2º Grado de Física Tema 1.- CALCULO VECTORIAL 1.1 Usar métodos vectoriales para determinar la ecuación de la recta que pasa por (-1,1,0) y (0,0,1). 1.2 Un ave va volando

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS

CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS Objetivo: Verificar la relación que existe entre la carga eléctrica, el voltaje eléctrico y la capacitancia eléctrica de un capacitor de placas paralelas. Material:

Más detalles

POTENCIAL ELÉCTRICO +Q A B -Q

POTENCIAL ELÉCTRICO +Q A B -Q POTENCIAL ELÉCTRICO 1. La figura muestra una región del espacio donde existe un campo eléctrico uniforme E 0 y las líneas equipotenciales son paralelas y separadas entre si 10 cm. a) Que trabajo realiza

Más detalles

Bolilla 10: Magnetismo

Bolilla 10: Magnetismo Bolilla 10: Magnetismo 1 Bolilla 10: Magnetismo La fuerza magnética es una de las fuerzas fundamentales de la naturaleza. Si bien algunos efectos magnéticos simples fueron observados y descriptos desde

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

La fem inducida es F 0 0 0,251

La fem inducida es F 0 0 0,251 Campo Magnético 01. El flujo magnético que atraviesa una espira es t -t en el intervalo [0, ]. Representa el flujo y la fem inducida en función del tiempo, determinando el instante en que alcanzan sus

Más detalles

6. Planos de tierra. 6.1 Parámetros del suelo. 0 = 8,854 x 10 12 F m y el valor absoluto = r x 0.

6. Planos de tierra. 6.1 Parámetros del suelo. 0 = 8,854 x 10 12 F m y el valor absoluto = r x 0. 6. Planos de tierra 6.1 Parámetros del suelo En un radiador vertical, tan importante como el propio monopolo, o incluso más, es la tierra o el suelo sobre el que se apoya, ya que es el medio en el que

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde 1.- Cómo son las líneas de fuerza del campo eléctrico producido por un hilo rectilíneo, infinito y uniformemente cargado? (Junio 2000) En cada punto el campo, sería perpendicular al cable pues cada elemento

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

APUNTE: ELECTRICIDAD-1 MAGNETISMO Y ELECTROMAGNETISMO

APUNTE: ELECTRICIDAD-1 MAGNETISMO Y ELECTROMAGNETISMO APUNTE: ELECTRICIDAD-1 MAGNETISMO Y ELECTROMAGNETISMO Área de EET Página 1 de 24 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -.

Más detalles

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual. 1.- Carga eléctrica. Propiedades. 2.- Ley de Coulomb. Campo de una carga puntual. 3.- Principio de superposición. 4.- Distribuciones continuas de carga. 5.- Ley de Gauss. Aplicaciones. 6.- Potencial electrostático.

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad 1. El extremo A de un imán recto, A, repele al extremo C de otro imán recto, CD. Si suspendemos el imán CD mediante un hilo, su extremo D apunta hacia el sur geográfico.

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA C6. 1 Calcular el campo eléctrico E en el centro del cuadrado, así como la diferencia de potencial entre los puntos A y B. Resp.: E = ; V A -V B = 0 C6. 2 En

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO Introducción La capacitancia es el resultado de la diferencia de potencial entre los conductores y origina que ellos se carguen de la misma

Más detalles

1. El Generador de Inducción Trifásico

1. El Generador de Inducción Trifásico Generador de Inducción Trifásico Curva Par-Velocidad y Operación Aislada Curso: Laboratorio de Máquinas Eléctricas I Sigla: IE-0416 Documento: ie0416.practica #14.2007-2.doc Elaborado por: Ing. Mauricio

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

Magnetismo e Inducción electromagnética. PAEG

Magnetismo e Inducción electromagnética. PAEG 1. Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se inducirá

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

Departamento de Física y Química. PAU Física. Modelo 2010/2011.

Departamento de Física y Química. PAU Física. Modelo 2010/2011. 1 PAU Física. Modelo 2010/2011. OPCIÓN A Cuestión 1.- Un cuerpo de masa 250 g unido a un muelle realiza un movimiento armónico simple con una recuencia de 5 Hz Si la energía total de este sistema elástico

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

SIFEIS CONCAYNT SIFeIS CONCAYNT

SIFEIS CONCAYNT SIFeIS CONCAYNT SIFeIS UNIDAD 1 CONCEPTOS BÁSICOS 1. ESTRUCTURA ATOMICA. 2. CONCEPTO DE ELECTRICIDAD Y SU CLASIFICACION. 3. MATERIALES CONDUCTORES Y AISLADORES. 4. EL SISTEMA INTERNACIONAL DE UNIDADES Y SUS CONVERSIONES.

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

Diseño y Ejecución de una Puesta a Tierra de Baja Resistencia. Qqueshuayllo Cancha, Wilbert Rene.

Diseño y Ejecución de una Puesta a Tierra de Baja Resistencia. Qqueshuayllo Cancha, Wilbert Rene. CAPITULO 1: FUNDAMENTO FISICO DE UNA PUESTA A TIERRA 1.1 Introducción Por puesta a tierra se entiende como la conexión de un conductor eléctrico (electrodo) enterrado en el suelo con la finalidad de dispersar

Más detalles

UNIDAD 4. CAMPO MAGNÉTICO

UNIDAD 4. CAMPO MAGNÉTICO UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad

Más detalles

Tema 5.-Campo magnético

Tema 5.-Campo magnético Tema 5: Campo magnético Física II Ingeniería de Tecnologías Industriales Primer Curso Curso 010/011 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Revisión histórica del electromagnetismo

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

CURVA DE IMANTACIÓN (HISTÉRESIS DE UN TRANSFORMADOR)

CURVA DE IMANTACIÓN (HISTÉRESIS DE UN TRANSFORMADOR) PRACTICA DE LABORATORIO CURVA DE IMANTACIÓN (HISTÉRESIS DE UN TRANSFORMADOR) 1. OBJETIVOS Mostar la primera imantación así como las siguientes de un material ferro magnético Calcular la energía retenida

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

TEMA 6 CORRIENTE ALTERNA

TEMA 6 CORRIENTE ALTERNA TEMA 6 CORRIENTE ALTERNA CARACTERÍSTICAS DE LA CORRIENTE ALTERNA Un circuito de corriente alterna consta de una combinación de elementos: resistencias, condensadores y bobinas y un generador que suministra

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

Experimento #5 Introducción al Magnetismo

Experimento #5 Introducción al Magnetismo Experimento #5 Introducción al Magnetismo I. Objetivos: Calcular la constante de permeabilidad µ o utilizando una bobina. Comprender como una corriente induce un campo magnético Calcula el Campo Magnético

Más detalles

IEM-315-T Ingeniería Eléctrica

IEM-315-T Ingeniería Eléctrica IEM-315-T Ingeniería Eléctrica Circuitos RC y RL. Circuitos de Segundo Orden. Capacitores y Circuitos RC. El Capacitor. El capacitor es un elemento pasivo capaz de almacenar y suministrar cantidades finitas

Más detalles

Tema 2. Condensadores en vacío. Ley de Gauss.

Tema 2. Condensadores en vacío. Ley de Gauss. 1º E.U.I.T.I.Z. urso 006-007. Electricidad y Electrometría. Problemas Tema 1/7 Tema. ondensadores en vacío. Ley de Gauss. - Transferencia de carga entre condensadores. 1.- Para cargar dos conductores aislados,

Más detalles

Campo Magnético 1.- Academia, Librería, Informática Diego

Campo Magnético 1.- Academia, Librería, Informática Diego Campo Magnético 1.- brújula que se orienta según la dirección N S del campo magnético terrestre, que supondremos aproximadamente horizontal. En paralelo a la brújula y a una distancia d = 5 cm por encima

Más detalles

IMANES. B. Determinación de la imagen lineomotriz del campo magnético de un imán

IMANES. B. Determinación de la imagen lineomotriz del campo magnético de un imán PRÁCTICA 1 IMANES OBJETIVOS A. Estudio de las fuerzas de interacción entre polos magnéticos B. Determinación de la imagen lineomotriz del campo magnético de un imán INTRODUCCIÓN A. Un imán es un cuerpo,

Más detalles

Guía de Ejercicios de Inducción Electromagnética

Guía de Ejercicios de Inducción Electromagnética UNIVERSIDAD PEDAGÓGICA EXPERIMENTA IBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO UIS BETRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURAES PROGRAMA DE FÍSICA EECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles