2. SISTEMAS LINEALES DE PRIMER ORDEN (I)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. SISTEMAS LINEALES DE PRIMER ORDEN (I)"

Transcripción

1 2. SISTEMAS LINEALES DE PRIMER ORDEN (I) 2.1 INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de primer orden con una variable de entrada, " x ( ", y una variable salida, " y( " se modela matemáticamente con una ecuación que en función de parámetros de significado dinámico se escribe en la siguiente forma: dy( τ + y( = Kx( (2.1) Siendo, τ una constante de tiempo y K la ganancia en estado estacionario del sistema. Estos dos parámetros se calculan con ecuaciones en función de características físicas del sistema. La constante de tiempo expresa un atraso dinámico y la ganancia es el cambio último en la variable de salida con respecto al cambio último en la variable de entrada. La ecuación (2.1) se escribe, usualmente, en términos de las variables desviación con respecto a sus valores en el estado inicial, es decir en la forma estándar para análisis dinámico o de sistemas de control: dy ( τ + Y ( = KX ( (2.2) Siendo, Y ( = y( y(0) X ( = x( x(0) La ecuación (2.2) es diferencial lineal de primer orden cuya solución se puede hallar t mediante un factor integrante que para este caso es igual a exp = exp. Al τ τ multiplicar la ecuación (2.2) por este factor, resulta fácilmente integrable y evaluando la solución general obtenida para las condiciones iniciales de las variables de entrada y salida se encuentra la solución correspondiente. A continuación se desarrollan las respuestas paso, rampa y seno de un sistema lineal de primer orden

2 RESPUESTA PASO DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio paso constante, es decir que X ( = x, entonces se puede escribir que: dy ( τ + Y ( = K x (2.3) Al resolver la ecuación (2.3) se obtiene como solución la siguiente respuesta para Y(: t Y ( = K x 1 exp (2.4) τ La ecuación (2.4) se obtiene aplicando el factor integrante a (2.3) y una integración indefinida da como solución general t Y ( = K x + A1 exp (2.5) τ Evaluando la ecuación (2.5) para la condición inicial Y ( 0) = 0, se obtiene que el valor de la constante de integración es A1 = K x y, con ello, la solución dada por (2.4) La Figura 2.1 muestra el perfil gráfico correspondiente a la respuesta (2.4). La expresión exponencial permite describir al comportamiento de un sistema de primer orden ante un cambio paso constante en su variable de entrada como una respuesta monotónica estable porque alcanza un valor último constante. A partir de las ecuaciones (2.3) y (2.4) se pueden deducir algunas características acerca de las propiedades dinámicas de un sistema de primer orden así: Ganancia en estado estacionario, K: Expresa el cambio último en la variable de salida o respuesta del sistema para un determinado cambio paso en la variable de entrada, es decir que

3 29 Y ( = K x (2.6) último En su último estado el sistema se ha estabilizado porque su respuesta se mantiene constante, es decir, la derivada de su variable de salida se hace igual a cero. Al considerar esto en la ecuación (2.3) se deduce la ecuación (2.6) Figura 2.1 Respuesta Paso de un Sistema de Primer Orden (K = 3; τ = 1; x = 2) Constante de Tiempo, τ: Esta constante expresa el tiempo definido por la relación entre la capacidad que tiene el sistema de transportar a una entidad (masa, energía, cantidad de movimiento, etc) con respecto a la rapidez de cambio o capacitancia de dicha entidad en la respuesta del sistema, es decir que: Capacidad τ = (2.7) Capaci tan cia

4 30 Si la ecuación (2.4) se evalúa para un tiempo igual a la constante de tiempo, se deduce un significado muy importante señalado sobre la Figura 2.1 y que es el tiempo, en el período no estacionario del sistema, en que la respuesta del sistema ha alcanzado el 63.2 % de su respuesta última. Se escribe, por lo tanto, que Y ( τ ) = 0.632Y ( (2.8) último Si se evalúa la ecuación (2.4) para un tiempo igual a cinco veces la constante de tiempo, se obtiene una respuesta, aproximadamente, igual al 99.2% de la respuesta última, lo que para muchas situaciones es considerado como el tiempo transcurrido para alcanzar la estabilidad o el valor último 2.3 RESPUESTA RAMPA DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio rampa, es decir que X ( = rt, entonces se puede escribir que: dy ( τ + Y ( = Krt (2.9) Al resolver la ecuación (2.9) se obtiene como solución la siguiente respuesta para Y(: t Y ( = Kr τ exp + t τ (2.10) τ La ecuación (2.10) se obtiene aplicando el factor integrante a (2.9) y una integración indefinida da como solución general t Y ( = Kr( t τ ) + A1 exp (2.11) τ

5 31 Evaluando la ecuación (2.11) para la condición inicial Y ( 0) = 0, se obtiene que el valor de la constante de integración es A 1 = Krτ y, con ello, la solución dada por (2.10) La Figura 2.2 muestra, gráficamente, el perfil de la respuesta rampa de un sistema lineal de primer orden. Se puede observar un comportamiento lineal y paralelo a la rampa de entrada después de un determinado tiempo, que aproximadamente es cinco veces la constante de tiempo Figura 2.2 Respuesta Rampa de un Sistema de Primer Orden (K = 3, τ = 3, r = 2) Se resalta en la Figura 2.2 el atraso de la respuesta con respecto a la rampa de entrada y se demuestra con la ecuación (2.10) que dicho atraso es igual al tiempo correspondiente a la constante de tiempo 2.4 RESPUESTA SENO DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio seno, es decir que X ( = ASen( w, entonces se puede escribir que:

6 32 dy ( τ + Y ( = KASen( w (2.12) Al resolver la ecuación (2.12) se obtiene como solución la siguiente respuesta para Y(: KAwτ t KA Y ( = exp + Sen( wt + θ ) (2.13) 2 1+ ( wτ ) τ 2 1+ ( wτ ) Siendo, θ = tan 1 ( wτ ) La ecuación (2.13) se obtiene aplicando el factor integrante a (2.12) y una integración indefinida da como solución general KA t Y ( = [ Sen( w ( wτ ) Cos( w ] + A1 exp (2.14) 2 1+ ( wτ ) τ Evaluando la ecuación (2.14) para la condición inicial Y ( 0) = 0, se obtiene que el KAwτ valor de la constante de integración es A1 = y, con ello, la solución dada 2 1+ ( wτ ) por (2.13) La Figura 2.3 muestra el perfil gráfico de la respuesta seno de un sistema lineal de primer orden. Se observa una corta región inicial con una ligera inflexión que se explica por la influencia del término exponencial en la expresión (2.13) que corresponde a la respuesta del sistema. Cuando este primer término exponencial es de un valor despreciable, la respuesta muestra un perfil definidamente sinusoidal que se distingue por las siguientes características: Su frecuencia es igual a la del seno de entrada Su amplitud es el coeficiente del término sinusoidal y es dependiente de la frecuencia del seno de entrada, además de los otros parámetros incluidos en el mismo, es decir que:

7 33 KA A respuesta = (2.15) 2 1+ ( wτ ) Es atrasada con respecto al seno de entrada, lo que se mide mediante un ángulo fase que también es un valor que depende de la frecuencia del seno de entrada Figura 2.3 Respuesta Seno de un Sistema de Primer Orden (K = 3, τ = 2, A = 2, w= 0.5) Cada una de estas características es importante porque constituyen los fundamentos para analizar la dinámica de un sistema cualquiera en el dominio de la frecuencia que a su vez se utiliza para el diseño de sistemas de control 2.5 MODELAMIENTO DE UN SISTEMA DE PRIMER ORDEN Un sistema con una dinámica lineal de primer orden se puede plantear considerando algunas simplificaciones como en el siguiente reactor de mezcla completa donde se

8 34 desarrolle una reacción de una cinética de primer orden con respecto al reaccionante A y en la que este se transforma en un producto B, es decir que: Reacción Química: A B Ecuación de velocidad de reacción: r ( = kc( Para el modelamiento se asume que: No hay efectos calóricos en el sistema de reacción La concentración de A no influye en la densidad del fluído La constante de velocidad de reacción es constante e igual a 0.2 min -1 La corriente de entrada tiene una concentración " c i ( " y su valor inicial en estado estacionario es de c i (0) = 1.25 lbmol/pie 3. El volumen de la masa reaccionante es constante e igual a 5 litros El flujo de la corriente de entrada es constante e igual a 1 litro / minuto Se requiere del modelamiento matemático del reactor y su simulación para cambios pasos, rampa y sinusoidal de la concentración en A de la corriente de entrada. La Figura 2.4 Figura 2.4 Reactor de Mezcla Completa Modelo matemático Un balance de materia del componente A en el reactor es: d ( Vc( ) = Fc ( Fc( kvc( (2.16) i

9 35 Un análisis de la ecuación (2.16) nos muestra que en el modelo se tienen dos variables, una de salida y otra de entrada, lo que permite simular su solución para un cambio en la variable de entrada. No se plantea el balance de energía porque las simplificaciones introducidas consideran que no hay efectos calóricos. Una transposición de términos en la ecuación (2.16), permite expresarla de tal manera que se deduzcan las expresiones para calcular los parámetros dinámicos del sistema de acuerdo a la ecuación general de un sistema de primer orden. Al arreglar la ecuación (2.16) en la forma general de la ecuación (2.1): V F + KV dc( + c( = F ci ( F + KV (2.17) Se obtienen las siguientes ecuaciones para calcular la constante de tiempo y la ganancia en estado estacionario del reactor, conociendo sus parámetros físicos. Constante de tiempo, minutos: Ganancia en estado estacionaria, adimensional: V τ = F + KV (2.18) K F = s F KV (2.19) La ecuación (2.17) escrita en su forma estándar para un sistema lineal de primer orden y en términos de las variables desviación es: dc( τ + C( = K sci ( (2.20) Condiciones iniciales y parámetros dinámicos Al evaluar la ecuación (2.17) en su estado estacionario, se obtiene el valor inicial de la concentración en el reactor que es de c(0) = lbmol/pie 3. Con las ecuaciones (2.18) y (2.19) se obtienen que el valor de la constante de tiempo es de 2.5 minutos y la ganancia en estado estacionario es de 0.5

10 SOLUCION NUMERICADE UN SISTEMA DE PRIMER ORDEN La solución numérica de la ecuación diferencial característica de un sistema lineal de primer orden se puede obtener aplicando métodos como el de Euler o los de Runge Kutta. En este tratado se utilizarán dichos métodos valiéndose de los códigos disponibles en Matlab para su desarrollo 2.7 MATLAB: MODELO LINEAL DE PRIMER ORDEN Para la simulación con Matlab de las respuestas paso, rampa y seno de un sistema lineal de primer orden, mediante las ecuaciones (2.3) (2.9) y (2.12), se construyen los archivos, pplineal.m, rplineal.m y splineal.m, que definen, respectivamente, la ecuación diferencial para cada uno de los casos y que aparecen en la sección 2.8, mas adelante. Cada uno de estos archivos se guarda por separado En el código en Matlab después de declarar la función para la definición de un sistema de ecuaciones diferenciales (mediante el símbolo dy) y las variables incluidas, se escribe la ecuación diferencial despejada con respecto al término derivada. La solución de una ecuación diferencial se realiza mediante la utilización de comandos como ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb. En los siguientes códigos se solucionarán las ecuaciones diferenciales mediante el comando ode45 que se aplica a soluciones no rigurosas y desarrolla una combinación de los métodos de Runge-Kutta 4 y 5. La sintaxis del comando ode45 es: [t,y] = ode45( Archivo, Intervalo de Tiempo, Condiciones Iniciales) (2.21) El intervalo de tiempo se puede introducir como una variable definida anteriormente o directamente escribiendo dentro de un corchete el tiempo inicial y el final. Las condiciones iniciales, de igual manera, se escriben dentro de un corchete para cada una de las variables de salida Los otros comandos siguen la misma sintaxis y desarrollan métodos numéricos de Runge-Kutta de otros órdenes. Los que se invocan como ode15s y ode23s se aplican a ecuaciones diferenciales que exigen soluciones rigurosas. La respuesta de un sistema lineal de primer orden se simula con un archivo de nombre solplin.m construido. La estructura de su construcción es como sigue:

11 37 1. Se selecciona el tipo de respuesta que se quiere simular y se introducen los parámetros dinámicos del sistema y los de la simulación dinámica 2. Según el tipo de respuesta señalado en el numeral (1), a continuación el programa solicita los parámetros requeridos de acuerdo a ello 3. Solucionada la ecuación diferencial, el programa muestra algunas características de la respuesta para algunos casos incluyendo el perfil gráfico. La puesta en marcha del archivo solplin.m requiere que los tres archivos que se referencian dentro de él se encuentren grabados en el mismo sistema de computación Solución del modelo para el reactor de mezcla completa Se deja como ejercicio para el estudiante que modifique el programa solplin.m para aplicarlo a la solución del modelo planteado para el reactor de mezcla completa, de tal manera que el usuario introduzca los parámetros físicos característicos del sistema y el programa calcule sus parámetros dinámicos. Las condiciones iniciales de las variables desviación son de cero. Se plantea la simulación de las respuestas paso, rampa y seno cambiando los parámetros físicos del reactor y del tipo de respuesta, es decir, la magnitud del cambio paso, la pendiente de la rampa, la amplitud o la frecuencia de la onda sinusoidal 2.8 MATLAB - PROGRAMAS CODIFICADOS Archivo pplineal.m function dy = pplineal(t,y) global K X tau dy = (K*X - y)/tau; Archivo rplineal.m function dy = rplineal(t,y) global K r tau dy = (K*r*t - y)/tau; Archivo sslineal.m function dy = splineal(t,y) global K tau A w dy = (K*A*sin(w*-y)/tau;

12 38 Archivo solplin.m function f = solplin(t,y) clc global R K tau X r A w Rango Inicio disp(' SIMULACION DE UN SISTEMA LINEAL DE PRIMER ORDEN'); disp(' TIPO DE RESPUESTA DEL SISTEMA') R = input('escriba la respuesta a simular con números así: 1 = PASO, 2 = RAMPA, 3 = SENO '); disp(' PARAMETROS DINAMICOS DEL SISTEMA') K = input('ganancia en estado estacionario = '); tau = input('constante de tiempo = '); disp(' PARAMETROS DE LA SIMULACION DINAMICA') Rango = input('tiempo de simulación = '); Inicio = input('condición Inicial = '); switch R case 1

13 39 disp(' CAMBIO PASO EN LA VARIABLE DE ENTRADA') X = input('introduzca el valor del cambio paso en la variable de entrada = '); [t,y] = ode45('pplineal', Rango, Inicio); disp(' RESULTADOS') disp('respuesta Monotónica Estable'); ; disp('respuesta Ultima') K*X plot(t,y) title('respuesta Paso de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') case 2 disp(' CAMBIO RAMPA EN LA VARIABLE DE ENTRADA') r = input('introduzca el valor de la pendiente de la rampa de entrada = '); [t,y] = ode45('rplineal', Rango, Inicio); disp(' RESULTADOS') disp('atraso de la respuesta lineal') tau plot(t,r*t,t,y/k,'r')

14 40 case 3 title('respuesta Rampa de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') disp(' CAMBIO SENO EN LA VARIABLE DE ENTRADA') A = input('amplitud de la entrada seno = '); w = input('frecuencia de la entrada seno = '); [t,y] = ode45('splineal',rango,inicio); disp(' RESULTADOS') disp('amplitud del perfil sinusoidal de la respuesta'); K*A/sqrt(1+(w*tau)^2) disp('fase de la respuesta con respecto a la entrada'); atan(-w*tau) plot(t,a*sin(w*,t,y,'r') title('respuesta Seno de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') end

17. DOMINIO FRECUENCIA CRITERIO DE BODE

17. DOMINIO FRECUENCIA CRITERIO DE BODE 327 17. DOMINIO FRECUENCIA CRITERIO DE BODE 17.1 INTRODUCCION Las técnicas para analizar la respuesta de un sistema en el dominio de la frecuencia son las más populares para el análisis y diseño del control

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic.

5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic. 5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic. Para poder obtener los resultados que arrojan las ecuaciones programadas de sobrepresión, es necesaria la creación de una base de datos que contenga

Más detalles

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Control I Dinámica de los Sistemas Físicos 1. Introducción Los sitemas continuos habitualmente se representan mediante

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Marzo 2008, versión

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. INDICE 1.-INTRODUCCIÓN/DEFINICIONES 2.-CONCEPTOS/DIAGRAMA DE BLOQUES 3.-TIPOS DE SISTEMAS DE CONTROL 4.-TRANSFORMADA DE LAPLACE 1.- INTRODUCCIÓN/DEFINICIONES:

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA C A P Í T U L O 3 FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA Todos los procesos de tratamiento de aguas residuales se pueden analizar por medio de una caja negra y balances

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Aplicación de los modelos de credit scoring para instituciones microfinacieras.

Aplicación de los modelos de credit scoring para instituciones microfinacieras. Econ. Reynaldo Uscamaita Huillca Aplicación de los modelos de credit scoring para instituciones microfinacieras. OBJETIVO Proporcionar al ejecutivo del sistema financiero un modelo solido que permita tomar

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Departamento Física de la Materia Condensada Comisión Nacional de Energía Atómica Escuela de Ciencia y Tecnología - UNSAM Polimorfismo afecta

Más detalles

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I)

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de segundo orden con una variable de entrada, " x ( t)", y una variable salida, " y( t)" se modela matemáticamente

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN ELECTRÓNICA Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA Alumnos: Johan Carvajal Godinez Vladimir Meoño Molleda

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

1 Acondicionamiento de termopares

1 Acondicionamiento de termopares 1 Acondicionamiento de termopares El siguiente circuito es un amplificador para termopares. La unión de referencia está a temperatura ambiente (T A comprendida entre 5 C y 40 C) y se compensa mediante

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

MODELADO Y ANÁLISIS DE CONTROLABILIDAD DE UNA TORRE DESECADO POR ATOMIZACIÓN. Madalyd Yurani Vera Peña 1, Hernán Alvarez 1

MODELADO Y ANÁLISIS DE CONTROLABILIDAD DE UNA TORRE DESECADO POR ATOMIZACIÓN. Madalyd Yurani Vera Peña 1, Hernán Alvarez 1 MODELADO Y ANÁLISIS DE CONTROLABILIDAD DE UNA TORRE DESECADO POR ATOMIZACIÓN Madalyd Yurani Vera Peña 1, Hernán Alvarez 1 En este trabajo se aplica la controlabilidad de estado como parte de la metodología

Más detalles

La evapotranspiración: concepto y métodos para su determinación. Capítulo I

La evapotranspiración: concepto y métodos para su determinación. Capítulo I La evapotranspiración: concepto y métodos para su determinación Capítulo I I. La evapotranspiración: concepto y métodos para su determinación I.1 Evapotranspiración La evaporación es el proceso por el

Más detalles

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 Profesor: Juan Carlos Fernández Morelos Ayudante: Luisa Márquez Rentería Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 1. Indicar el orden de las siguientes ecuaciones e indicar si son lineales o

Más detalles

Magister Edgard Vidalon Vidalon

Magister Edgard Vidalon Vidalon UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS Movimiento Lunar Magister Edgard Vidalon Vidalon LIMA PERU 2010 0.1 Introducción Se dice que el movimiento de la Luna alrededor de la Tierra es una

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

MODELO DE CONTAMINACIÓN DEL AIRE

MODELO DE CONTAMINACIÓN DEL AIRE ENFOQUTE. : 62-73 Copyright 200 Universidad Tecnológica Equinoccial ISSN: 390-6542 MODELO DE CONTMINCIÓN DEL IRE Iván Naula RESUMEN El presente documento estudia un modelo matemático de contaminación del

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Introducción a los sistemas de control Sistema Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado A un sistema se le puede considerar como una caja negra

Más detalles

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ). Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética

Más detalles

Figura 10.1. Librerias (Izquierda) y Espacio de trabajo de Simulink (Derecha)

Figura 10.1. Librerias (Izquierda) y Espacio de trabajo de Simulink (Derecha) 10. SIMULINK 10.1 INTRODUCCION Simulink es un software que funciona bajo la plataforma de Matlab y es una herramienta muy útil para modelar, simular y analizar sistemas, tanto lineales como no lineales.

Más detalles

1. DEFINICION DE ENERGIA ESPECIFICA

1. DEFINICION DE ENERGIA ESPECIFICA ENERGIA ESPECIFICA 1. DEFINICION DE ENERGIA ESPECIFICA El concepto de energía específica, desarrollado en 191 por Bakmeteff, deriva de la ecuación de Bernoulli antes mostrada. Cuando la distribución de

Más detalles

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS Ing. Miguel G. Alarcón Agosto de 2011 Temario Sistema Físico. Modelado del Sistema Real. Sistemas Eléctricos. Sistemas Mecánicos. Sistemas Térmicos. Qué

Más detalles

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui

TEMA II.6. Variación de la Presión con la Elevación. Dr. Juan Pablo Torres-Papaqui TEMA II.6 Variación de la Presión con la Elevación Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales

Más detalles

CARACTERIZACIÓN DEL TRÁNSITO

CARACTERIZACIÓN DEL TRÁNSITO CARACTERIZACIÓN DEL TRÁNSITO CONTENIDO Definiciones Período de diseño del pavimento Caracterización de las cargas del tránsito Equivalencia de cargas por eje Equivalencias de carga por vehículo Conversión

Más detalles

5.24. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS

5.24. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS 5.4. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS El estudio de los movimientos oscilatorios siempre ha sido motivo de conflicto, sobre todo para los alumnos. Cuál es ese conflicto? En los cursos de Mecánica,

Más detalles

Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo

Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo Asociación Española de Ingeniería Mecánica XIX CONGRESO NACIONAL DE INGENIERÍA MECÁNICA Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA

3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA 3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA 1. OBJETIVOS 1.1. Simular, en estado estacionario, un reactor continuo de mezcla completa exotérmico asistido por HYSYS 1.2. Controlar la temperatura del reactor

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Rosamil Rey, Ph.D. CHEM 4160

Rosamil Rey, Ph.D. CHEM 4160 Rosamil Rey, Ph.D. CHEM 4160 Los métodos analíticos se pueden clasificar en: Métodos Clásicos Métodos Instrumentales Métodos Clásicos Precipitación Extracción Destilación Medidas gravimétricas Medidas

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario MATEMÁTICA TICA SUPERIOR APLICADA Utilización n de Resolvedores de MATLAB para Ecuaciones Diferenciales Ordinarias Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa Cruz

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER

SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER Autor: Abel Chiné Hidalgo Director: Alberto Gonzalo Especialidad: Química Industrial Convocatoria: Junio 2012 AGRADECIMIENTOS: En primer

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

TRANSMISIÓN DIGITAL PRÁCTICA 1

TRANSMISIÓN DIGITAL PRÁCTICA 1 TRANSMISIÓN DIGITAL PRÁCTICA Curso 7-8 Transmisión Digital Práctica Introducción Esta primera práctica trata de familiarizar al alumno con el lenguaje de programación Matlab, permitiéndole afrontar materias

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Reactores Capítulo 11 04 de Marzo de 2014

Reactores Capítulo 11 04 de Marzo de 2014 Reactores Capítulo 11 04 de Marzo de 2014 B.Q María Chaves Villalobos Generalidades Cuando los Fluidos son no homogéneos, ocurren fenómenos para minimizar las diferencias de concentraciones El tiempo para

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0 ECUACIÓN DE LA RECTA Y PENDIENTE GUIA DE EJERCICIOS ) Encontrar la pendiente de la recta determinada por cada uno de los guientes pares de números: a) (, ) y (5, ) b) (, -3) y (-, ) c) (, 6) y (8, 56)

Más detalles

Transformada de Laplace: Análisis de circuitos en el dominio S

Transformada de Laplace: Análisis de circuitos en el dominio S Transformada de Laplace: Análisis de circuitos en el dominio S Trippel Nagel Juan Manuel Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

Problema 1: Cinemática

Problema 1: Cinemática 7 ma OMF 0 de septiembre de 203 Problema : Cinemática Pregunta : La velocidad de A al chocar con B podemos calcularla mediante conservación de la energía. Como toda la energía potencial se transforma en

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Tema 0: Funciones y gráficas

Tema 0: Funciones y gráficas Matemáticas I Tema 0: Funciones y gráficas 24/9/2012 Edgar Martínez-Moro. Índice Objetivos de aprendizaje Funciones Función inversa Funciones lineales Inversa de una función lineal Ajustando funciones

Más detalles

Sistema de Control de un péndulo Simple

Sistema de Control de un péndulo Simple Sistema de Control de un péndulo Simple Profesor: Gerardo Bonilla Mota Materia: Teoría de control Alumno: Hans Alexander Luna Eisermann Id: 00012332 Sistema de Control de un péndulo Simple Introducción:

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

Conciencia Tecnológica ISSN: 1405-5597 contec@mail.ita.mx Instituto Tecnológico de Aguascalientes México

Conciencia Tecnológica ISSN: 1405-5597 contec@mail.ita.mx Instituto Tecnológico de Aguascalientes México Conciencia Tecnológica ISSN: 1405-5597 contec@mail.ita.mx Instituto Tecnológico de Aguascalientes México Jaime Leal, José E.; Medina Valtierra, J. "SIMULEX". Simulador en excel para cinética química homogénea

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue:

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue: El Solver de Excel El Solver se utiliza para determinar el valor máximo o mínimo de una celda modificando otras celdas; por ejemplo, el beneficio máximo que puede generarse modificando los gastos de publicidad.

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM J. Angel Moreno, Felipe L. Hernández División de Mediciones Electromagnéticas km 4,5 Carr. a los Cués,

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

CAPÍTULO 6 INSTRUMENTO VIRTUAL

CAPÍTULO 6 INSTRUMENTO VIRTUAL Diseño y implementación de un medidor de frecencia para frecuencias bajas CAPÍTULO 6 INSTRUMENTO VIRTUAL Como se ha ido señalando a lo largo de esta memoria, el objetivo del proyecto no es otro que el

Más detalles

Álgebra Lineal Tutorial básico de MATLAB

Álgebra Lineal Tutorial básico de MATLAB Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de

Más detalles

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado INDICE Prefacio XIX Prefacio al Software de Computadora para Sistemas de Control XXII 1. Introducción 1 1.1. Introducción 1 1.1.1. Componentes básicos de un sistema de control 2 1.1.2. Ejemplos de aplicaciones

Más detalles

Complemento Microsoft Mathematics

Complemento Microsoft Mathematics Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

TEMAS DE ESTUDIO FÍSICA

TEMAS DE ESTUDIO FÍSICA TEMAS DE ESTUDIO Estimados aspirantes a ingresar a las carreras de: INGENIERÍA AMBIENTAL, ELECTRICIDAD, INGENIERÍA INDUSTRIAL, INGENIERÍA DE SISTEMAS, INGENIERÍA ELECTRÓNICA, INGENIERÍA ELÉCTRICA, INGENIERÍA

Más detalles

Termodinámica I: Calores específicos

Termodinámica I: Calores específicos Termodinámica I: Calores específicos I Semestre 2012 CALORES ESPECÍFICOS Se requieren distintas cantidades de energía para elevar un grado la temperatura de masas idénticas de diferentes sustancias. Es

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles