2. SISTEMAS LINEALES DE PRIMER ORDEN (I)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. SISTEMAS LINEALES DE PRIMER ORDEN (I)"

Transcripción

1 2. SISTEMAS LINEALES DE PRIMER ORDEN (I) 2.1 INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de primer orden con una variable de entrada, " x ( ", y una variable salida, " y( " se modela matemáticamente con una ecuación que en función de parámetros de significado dinámico se escribe en la siguiente forma: dy( τ + y( = Kx( (2.1) Siendo, τ una constante de tiempo y K la ganancia en estado estacionario del sistema. Estos dos parámetros se calculan con ecuaciones en función de características físicas del sistema. La constante de tiempo expresa un atraso dinámico y la ganancia es el cambio último en la variable de salida con respecto al cambio último en la variable de entrada. La ecuación (2.1) se escribe, usualmente, en términos de las variables desviación con respecto a sus valores en el estado inicial, es decir en la forma estándar para análisis dinámico o de sistemas de control: dy ( τ + Y ( = KX ( (2.2) Siendo, Y ( = y( y(0) X ( = x( x(0) La ecuación (2.2) es diferencial lineal de primer orden cuya solución se puede hallar t mediante un factor integrante que para este caso es igual a exp = exp. Al τ τ multiplicar la ecuación (2.2) por este factor, resulta fácilmente integrable y evaluando la solución general obtenida para las condiciones iniciales de las variables de entrada y salida se encuentra la solución correspondiente. A continuación se desarrollan las respuestas paso, rampa y seno de un sistema lineal de primer orden

2 RESPUESTA PASO DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio paso constante, es decir que X ( = x, entonces se puede escribir que: dy ( τ + Y ( = K x (2.3) Al resolver la ecuación (2.3) se obtiene como solución la siguiente respuesta para Y(: t Y ( = K x 1 exp (2.4) τ La ecuación (2.4) se obtiene aplicando el factor integrante a (2.3) y una integración indefinida da como solución general t Y ( = K x + A1 exp (2.5) τ Evaluando la ecuación (2.5) para la condición inicial Y ( 0) = 0, se obtiene que el valor de la constante de integración es A1 = K x y, con ello, la solución dada por (2.4) La Figura 2.1 muestra el perfil gráfico correspondiente a la respuesta (2.4). La expresión exponencial permite describir al comportamiento de un sistema de primer orden ante un cambio paso constante en su variable de entrada como una respuesta monotónica estable porque alcanza un valor último constante. A partir de las ecuaciones (2.3) y (2.4) se pueden deducir algunas características acerca de las propiedades dinámicas de un sistema de primer orden así: Ganancia en estado estacionario, K: Expresa el cambio último en la variable de salida o respuesta del sistema para un determinado cambio paso en la variable de entrada, es decir que

3 29 Y ( = K x (2.6) último En su último estado el sistema se ha estabilizado porque su respuesta se mantiene constante, es decir, la derivada de su variable de salida se hace igual a cero. Al considerar esto en la ecuación (2.3) se deduce la ecuación (2.6) Figura 2.1 Respuesta Paso de un Sistema de Primer Orden (K = 3; τ = 1; x = 2) Constante de Tiempo, τ: Esta constante expresa el tiempo definido por la relación entre la capacidad que tiene el sistema de transportar a una entidad (masa, energía, cantidad de movimiento, etc) con respecto a la rapidez de cambio o capacitancia de dicha entidad en la respuesta del sistema, es decir que: Capacidad τ = (2.7) Capaci tan cia

4 30 Si la ecuación (2.4) se evalúa para un tiempo igual a la constante de tiempo, se deduce un significado muy importante señalado sobre la Figura 2.1 y que es el tiempo, en el período no estacionario del sistema, en que la respuesta del sistema ha alcanzado el 63.2 % de su respuesta última. Se escribe, por lo tanto, que Y ( τ ) = 0.632Y ( (2.8) último Si se evalúa la ecuación (2.4) para un tiempo igual a cinco veces la constante de tiempo, se obtiene una respuesta, aproximadamente, igual al 99.2% de la respuesta última, lo que para muchas situaciones es considerado como el tiempo transcurrido para alcanzar la estabilidad o el valor último 2.3 RESPUESTA RAMPA DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio rampa, es decir que X ( = rt, entonces se puede escribir que: dy ( τ + Y ( = Krt (2.9) Al resolver la ecuación (2.9) se obtiene como solución la siguiente respuesta para Y(: t Y ( = Kr τ exp + t τ (2.10) τ La ecuación (2.10) se obtiene aplicando el factor integrante a (2.9) y una integración indefinida da como solución general t Y ( = Kr( t τ ) + A1 exp (2.11) τ

5 31 Evaluando la ecuación (2.11) para la condición inicial Y ( 0) = 0, se obtiene que el valor de la constante de integración es A 1 = Krτ y, con ello, la solución dada por (2.10) La Figura 2.2 muestra, gráficamente, el perfil de la respuesta rampa de un sistema lineal de primer orden. Se puede observar un comportamiento lineal y paralelo a la rampa de entrada después de un determinado tiempo, que aproximadamente es cinco veces la constante de tiempo Figura 2.2 Respuesta Rampa de un Sistema de Primer Orden (K = 3, τ = 3, r = 2) Se resalta en la Figura 2.2 el atraso de la respuesta con respecto a la rampa de entrada y se demuestra con la ecuación (2.10) que dicho atraso es igual al tiempo correspondiente a la constante de tiempo 2.4 RESPUESTA SENO DE UN SISTEMA DE PRIMER ORDEN Al considerar que en la ecuación diferencial (2.2), la variable de entrada es perturbada con un cambio seno, es decir que X ( = ASen( w, entonces se puede escribir que:

6 32 dy ( τ + Y ( = KASen( w (2.12) Al resolver la ecuación (2.12) se obtiene como solución la siguiente respuesta para Y(: KAwτ t KA Y ( = exp + Sen( wt + θ ) (2.13) 2 1+ ( wτ ) τ 2 1+ ( wτ ) Siendo, θ = tan 1 ( wτ ) La ecuación (2.13) se obtiene aplicando el factor integrante a (2.12) y una integración indefinida da como solución general KA t Y ( = [ Sen( w ( wτ ) Cos( w ] + A1 exp (2.14) 2 1+ ( wτ ) τ Evaluando la ecuación (2.14) para la condición inicial Y ( 0) = 0, se obtiene que el KAwτ valor de la constante de integración es A1 = y, con ello, la solución dada 2 1+ ( wτ ) por (2.13) La Figura 2.3 muestra el perfil gráfico de la respuesta seno de un sistema lineal de primer orden. Se observa una corta región inicial con una ligera inflexión que se explica por la influencia del término exponencial en la expresión (2.13) que corresponde a la respuesta del sistema. Cuando este primer término exponencial es de un valor despreciable, la respuesta muestra un perfil definidamente sinusoidal que se distingue por las siguientes características: Su frecuencia es igual a la del seno de entrada Su amplitud es el coeficiente del término sinusoidal y es dependiente de la frecuencia del seno de entrada, además de los otros parámetros incluidos en el mismo, es decir que:

7 33 KA A respuesta = (2.15) 2 1+ ( wτ ) Es atrasada con respecto al seno de entrada, lo que se mide mediante un ángulo fase que también es un valor que depende de la frecuencia del seno de entrada Figura 2.3 Respuesta Seno de un Sistema de Primer Orden (K = 3, τ = 2, A = 2, w= 0.5) Cada una de estas características es importante porque constituyen los fundamentos para analizar la dinámica de un sistema cualquiera en el dominio de la frecuencia que a su vez se utiliza para el diseño de sistemas de control 2.5 MODELAMIENTO DE UN SISTEMA DE PRIMER ORDEN Un sistema con una dinámica lineal de primer orden se puede plantear considerando algunas simplificaciones como en el siguiente reactor de mezcla completa donde se

8 34 desarrolle una reacción de una cinética de primer orden con respecto al reaccionante A y en la que este se transforma en un producto B, es decir que: Reacción Química: A B Ecuación de velocidad de reacción: r ( = kc( Para el modelamiento se asume que: No hay efectos calóricos en el sistema de reacción La concentración de A no influye en la densidad del fluído La constante de velocidad de reacción es constante e igual a 0.2 min -1 La corriente de entrada tiene una concentración " c i ( " y su valor inicial en estado estacionario es de c i (0) = 1.25 lbmol/pie 3. El volumen de la masa reaccionante es constante e igual a 5 litros El flujo de la corriente de entrada es constante e igual a 1 litro / minuto Se requiere del modelamiento matemático del reactor y su simulación para cambios pasos, rampa y sinusoidal de la concentración en A de la corriente de entrada. La Figura 2.4 Figura 2.4 Reactor de Mezcla Completa Modelo matemático Un balance de materia del componente A en el reactor es: d ( Vc( ) = Fc ( Fc( kvc( (2.16) i

9 35 Un análisis de la ecuación (2.16) nos muestra que en el modelo se tienen dos variables, una de salida y otra de entrada, lo que permite simular su solución para un cambio en la variable de entrada. No se plantea el balance de energía porque las simplificaciones introducidas consideran que no hay efectos calóricos. Una transposición de términos en la ecuación (2.16), permite expresarla de tal manera que se deduzcan las expresiones para calcular los parámetros dinámicos del sistema de acuerdo a la ecuación general de un sistema de primer orden. Al arreglar la ecuación (2.16) en la forma general de la ecuación (2.1): V F + KV dc( + c( = F ci ( F + KV (2.17) Se obtienen las siguientes ecuaciones para calcular la constante de tiempo y la ganancia en estado estacionario del reactor, conociendo sus parámetros físicos. Constante de tiempo, minutos: Ganancia en estado estacionaria, adimensional: V τ = F + KV (2.18) K F = s F KV (2.19) La ecuación (2.17) escrita en su forma estándar para un sistema lineal de primer orden y en términos de las variables desviación es: dc( τ + C( = K sci ( (2.20) Condiciones iniciales y parámetros dinámicos Al evaluar la ecuación (2.17) en su estado estacionario, se obtiene el valor inicial de la concentración en el reactor que es de c(0) = lbmol/pie 3. Con las ecuaciones (2.18) y (2.19) se obtienen que el valor de la constante de tiempo es de 2.5 minutos y la ganancia en estado estacionario es de 0.5

10 SOLUCION NUMERICADE UN SISTEMA DE PRIMER ORDEN La solución numérica de la ecuación diferencial característica de un sistema lineal de primer orden se puede obtener aplicando métodos como el de Euler o los de Runge Kutta. En este tratado se utilizarán dichos métodos valiéndose de los códigos disponibles en Matlab para su desarrollo 2.7 MATLAB: MODELO LINEAL DE PRIMER ORDEN Para la simulación con Matlab de las respuestas paso, rampa y seno de un sistema lineal de primer orden, mediante las ecuaciones (2.3) (2.9) y (2.12), se construyen los archivos, pplineal.m, rplineal.m y splineal.m, que definen, respectivamente, la ecuación diferencial para cada uno de los casos y que aparecen en la sección 2.8, mas adelante. Cada uno de estos archivos se guarda por separado En el código en Matlab después de declarar la función para la definición de un sistema de ecuaciones diferenciales (mediante el símbolo dy) y las variables incluidas, se escribe la ecuación diferencial despejada con respecto al término derivada. La solución de una ecuación diferencial se realiza mediante la utilización de comandos como ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb. En los siguientes códigos se solucionarán las ecuaciones diferenciales mediante el comando ode45 que se aplica a soluciones no rigurosas y desarrolla una combinación de los métodos de Runge-Kutta 4 y 5. La sintaxis del comando ode45 es: [t,y] = ode45( Archivo, Intervalo de Tiempo, Condiciones Iniciales) (2.21) El intervalo de tiempo se puede introducir como una variable definida anteriormente o directamente escribiendo dentro de un corchete el tiempo inicial y el final. Las condiciones iniciales, de igual manera, se escriben dentro de un corchete para cada una de las variables de salida Los otros comandos siguen la misma sintaxis y desarrollan métodos numéricos de Runge-Kutta de otros órdenes. Los que se invocan como ode15s y ode23s se aplican a ecuaciones diferenciales que exigen soluciones rigurosas. La respuesta de un sistema lineal de primer orden se simula con un archivo de nombre solplin.m construido. La estructura de su construcción es como sigue:

11 37 1. Se selecciona el tipo de respuesta que se quiere simular y se introducen los parámetros dinámicos del sistema y los de la simulación dinámica 2. Según el tipo de respuesta señalado en el numeral (1), a continuación el programa solicita los parámetros requeridos de acuerdo a ello 3. Solucionada la ecuación diferencial, el programa muestra algunas características de la respuesta para algunos casos incluyendo el perfil gráfico. La puesta en marcha del archivo solplin.m requiere que los tres archivos que se referencian dentro de él se encuentren grabados en el mismo sistema de computación Solución del modelo para el reactor de mezcla completa Se deja como ejercicio para el estudiante que modifique el programa solplin.m para aplicarlo a la solución del modelo planteado para el reactor de mezcla completa, de tal manera que el usuario introduzca los parámetros físicos característicos del sistema y el programa calcule sus parámetros dinámicos. Las condiciones iniciales de las variables desviación son de cero. Se plantea la simulación de las respuestas paso, rampa y seno cambiando los parámetros físicos del reactor y del tipo de respuesta, es decir, la magnitud del cambio paso, la pendiente de la rampa, la amplitud o la frecuencia de la onda sinusoidal 2.8 MATLAB - PROGRAMAS CODIFICADOS Archivo pplineal.m function dy = pplineal(t,y) global K X tau dy = (K*X - y)/tau; Archivo rplineal.m function dy = rplineal(t,y) global K r tau dy = (K*r*t - y)/tau; Archivo sslineal.m function dy = splineal(t,y) global K tau A w dy = (K*A*sin(w*-y)/tau;

12 38 Archivo solplin.m function f = solplin(t,y) clc global R K tau X r A w Rango Inicio disp(' SIMULACION DE UN SISTEMA LINEAL DE PRIMER ORDEN'); disp(' TIPO DE RESPUESTA DEL SISTEMA') R = input('escriba la respuesta a simular con números así: 1 = PASO, 2 = RAMPA, 3 = SENO '); disp(' PARAMETROS DINAMICOS DEL SISTEMA') K = input('ganancia en estado estacionario = '); tau = input('constante de tiempo = '); disp(' PARAMETROS DE LA SIMULACION DINAMICA') Rango = input('tiempo de simulación = '); Inicio = input('condición Inicial = '); switch R case 1

13 39 disp(' CAMBIO PASO EN LA VARIABLE DE ENTRADA') X = input('introduzca el valor del cambio paso en la variable de entrada = '); [t,y] = ode45('pplineal', Rango, Inicio); disp(' RESULTADOS') disp('respuesta Monotónica Estable'); ; disp('respuesta Ultima') K*X plot(t,y) title('respuesta Paso de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') case 2 disp(' CAMBIO RAMPA EN LA VARIABLE DE ENTRADA') r = input('introduzca el valor de la pendiente de la rampa de entrada = '); [t,y] = ode45('rplineal', Rango, Inicio); disp(' RESULTADOS') disp('atraso de la respuesta lineal') tau plot(t,r*t,t,y/k,'r')

14 40 case 3 title('respuesta Rampa de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') disp(' CAMBIO SENO EN LA VARIABLE DE ENTRADA') A = input('amplitud de la entrada seno = '); w = input('frecuencia de la entrada seno = '); [t,y] = ode45('splineal',rango,inicio); disp(' RESULTADOS') disp('amplitud del perfil sinusoidal de la respuesta'); K*A/sqrt(1+(w*tau)^2) disp('fase de la respuesta con respecto a la entrada'); atan(-w*tau) plot(t,a*sin(w*,t,y,'r') title('respuesta Seno de un Sistema Lineal de Primer Orden'); xlabel('tiempo'); ylabel('respuesta') end

17. DOMINIO FRECUENCIA CRITERIO DE BODE

17. DOMINIO FRECUENCIA CRITERIO DE BODE 327 17. DOMINIO FRECUENCIA CRITERIO DE BODE 17.1 INTRODUCCION Las técnicas para analizar la respuesta de un sistema en el dominio de la frecuencia son las más populares para el análisis y diseño del control

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario

MATEMÁTICA TICA SUPERIOR APLICADA. para Ecuaciones Diferenciales Ordinarias. Universidad Tecnológica Nacional Facultad Regional Rosario MATEMÁTICA TICA SUPERIOR APLICADA Utilización n de Resolvedores de MATLAB para Ecuaciones Diferenciales Ordinarias Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa Cruz

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER

SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER SIMULACIÓN Y CONTROL DE UNA PLANTA PARA LA PRODUCCIÓN DE DIMETIL ÉTER Autor: Abel Chiné Hidalgo Director: Alberto Gonzalo Especialidad: Química Industrial Convocatoria: Junio 2012 AGRADECIMIENTOS: En primer

Más detalles

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica

Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Trabajo Práctico Introductorio Matlab, Simulink y Métodos de Integración Numérica Control I Dinámica de los Sistemas Físicos 1. Introducción Los sitemas continuos habitualmente se representan mediante

Más detalles

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I)

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de segundo orden con una variable de entrada, " x ( t)", y una variable salida, " y( t)" se modela matemáticamente

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS Ing. Miguel G. Alarcón Agosto de 2011 Temario Sistema Físico. Modelado del Sistema Real. Sistemas Eléctricos. Sistemas Mecánicos. Sistemas Térmicos. Qué

Más detalles

5.24. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS

5.24. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS 5.4. ESTUDIO DE LOS MOVIMIENTOS OSCILATORIOS El estudio de los movimientos oscilatorios siempre ha sido motivo de conflicto, sobre todo para los alumnos. Cuál es ese conflicto? En los cursos de Mecánica,

Más detalles

5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic.

5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic. 5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic. Para poder obtener los resultados que arrojan las ecuaciones programadas de sobrepresión, es necesaria la creación de una base de datos que contenga

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION Transformada de Fourier (Parte 1) Página 1 INTRODUCCION En una primera aproximación, podemos decir que todos los dominios transformados, que se utilizan dentro del tratamiento digital de imagen, tienen

Más detalles

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN ELECTRÓNICA Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA Alumnos: Johan Carvajal Godinez Vladimir Meoño Molleda

Más detalles

Magister Edgard Vidalon Vidalon

Magister Edgard Vidalon Vidalon UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS Movimiento Lunar Magister Edgard Vidalon Vidalon LIMA PERU 2010 0.1 Introducción Se dice que el movimiento de la Luna alrededor de la Tierra es una

Más detalles

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B Ejercicio nº 1.- a) Escribe en forma decimal cada uno de estos números: A = 9,7 10 9 B = 3,85 10 7 b) Expresa en notación científica las siguientes

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

1 Acondicionamiento de termopares

1 Acondicionamiento de termopares 1 Acondicionamiento de termopares El siguiente circuito es un amplificador para termopares. La unión de referencia está a temperatura ambiente (T A comprendida entre 5 C y 40 C) y se compensa mediante

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).

Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ). Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. INDICE 1.-INTRODUCCIÓN/DEFINICIONES 2.-CONCEPTOS/DIAGRAMA DE BLOQUES 3.-TIPOS DE SISTEMAS DE CONTROL 4.-TRANSFORMADA DE LAPLACE 1.- INTRODUCCIÓN/DEFINICIONES:

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Figura 10.1. Librerias (Izquierda) y Espacio de trabajo de Simulink (Derecha)

Figura 10.1. Librerias (Izquierda) y Espacio de trabajo de Simulink (Derecha) 10. SIMULINK 10.1 INTRODUCCION Simulink es un software que funciona bajo la plataforma de Matlab y es una herramienta muy útil para modelar, simular y analizar sistemas, tanto lineales como no lineales.

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES 4.1.- FORMAS DE ONDA. 4.1.1.- Introducción. En la mayor parte de los análisis que se han realizado hasta el momento se han utilizado fuentes continuas,

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Tema 0: Funciones y gráficas

Tema 0: Funciones y gráficas Matemáticas I Tema 0: Funciones y gráficas 24/9/2012 Edgar Martínez-Moro. Índice Objetivos de aprendizaje Funciones Función inversa Funciones lineales Inversa de una función lineal Ajustando funciones

Más detalles

Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo

Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo Asociación Española de Ingeniería Mecánica XIX CONGRESO NACIONAL DE INGENIERÍA MECÁNICA Metodología experimental para determinar el coeficiente de amortiguamiento del sistema de suspensión de un vehículo

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal 6 10 3,0 2,0 5,0. Horas de Cátedra

PROGRAMA DE CURSO. Horas de Trabajo Personal 6 10 3,0 2,0 5,0. Horas de Cátedra PROGRAMA DE CURSO Código FI1002 Nombre Sistemas Newtonianos Nombre en Inglés Newtonian Systems SCT Unidades Docentes Horas de Cátedra Horas Docenci a Auxiliar Horas de Trabajo Personal 6 10 3,0 2,0 5,0

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Rosamil Rey, Ph.D. CHEM 4160

Rosamil Rey, Ph.D. CHEM 4160 Rosamil Rey, Ph.D. CHEM 4160 Los métodos analíticos se pueden clasificar en: Métodos Clásicos Métodos Instrumentales Métodos Clásicos Precipitación Extracción Destilación Medidas gravimétricas Medidas

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,

Más detalles

TRANSMISIÓN DIGITAL PRÁCTICA 1

TRANSMISIÓN DIGITAL PRÁCTICA 1 TRANSMISIÓN DIGITAL PRÁCTICA Curso 7-8 Transmisión Digital Práctica Introducción Esta primera práctica trata de familiarizar al alumno con el lenguaje de programación Matlab, permitiéndole afrontar materias

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA

3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA 3. CONTROL DE UN REACTOR DE MEZCLA COMPLETA 1. OBJETIVOS 1.1. Simular, en estado estacionario, un reactor continuo de mezcla completa exotérmico asistido por HYSYS 1.2. Controlar la temperatura del reactor

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Cuando un condensador se comporta como una bobina

Cuando un condensador se comporta como una bobina Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento

Más detalles

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA I CÓDIGO ASIGNATURA: 1215-101 PRE-REQUISITO:

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti ANÁLISIS DE DATOS CONTROL DE CALIDAD Ing. Carlos Brunatti Montevideo, ROU, junio 2015 Control de calidad No resulta sorprendente que el hormigón sea un material variable, pues hay muchos factores involucrados

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

Procesos de Media Móvil y ARMA

Procesos de Media Móvil y ARMA Capítulo 4 Procesos de Media Móvil y ARMA Los procesos AR no pueden representar series de memoria muy corta, donde el valor actual de la serie sólo está correlado con un número pequeño de valores anteriores

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Departamento Física de la Materia Condensada Comisión Nacional de Energía Atómica Escuela de Ciencia y Tecnología - UNSAM Polimorfismo afecta

Más detalles

TEMAS DE ESTUDIO FÍSICA

TEMAS DE ESTUDIO FÍSICA TEMAS DE ESTUDIO Estimados aspirantes a ingresar a las carreras de: INGENIERÍA AMBIENTAL, ELECTRICIDAD, INGENIERÍA INDUSTRIAL, INGENIERÍA DE SISTEMAS, INGENIERÍA ELECTRÓNICA, INGENIERÍA ELÉCTRICA, INGENIERÍA

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Introducción a los sistemas de control Sistema Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado A un sistema se le puede considerar como una caja negra

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada

Desarrollar y aplicar estrategias para resolver problemas Determinar si un gráfico es lineal dibujando puntos en una situación dada MANEJO DE DATOS Analizar gráficos o diagramas de situaciones dadas para identificar información específica Recoger datos, dibujar los datos usando escalas apropiadas y demostrar una comprensión de las

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA C A P Í T U L O 3 FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA Todos los procesos de tratamiento de aguas residuales se pueden analizar por medio de una caja negra y balances

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado

INDICE 1. Introducción 1.2. Qué es Realimentación y Cuáles son sus Efectos? 1.3. Tipos de Sistemas de Control Realimentado INDICE Prefacio XIX Prefacio al Software de Computadora para Sistemas de Control XXII 1. Introducción 1 1.1. Introducción 1 1.1.1. Componentes básicos de un sistema de control 2 1.1.2. Ejemplos de aplicaciones

Más detalles

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 5 SISTEMA DE CONTROL DE TEMPERATURA 5.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

5ª Práctica. Matlab página 1

5ª Práctica. Matlab página 1 5ª Práctica. Matlab página PROGRAMACIÓN EN MATLAB PRÁCTICA 05 GRÁFICOS EN MATLAB 2D Y 3D LECTURA DE FICHEROS ENTRADA DE PUNTOS CON EL RATÓN EJERCICIO. GRÁFICOS EN MATLAB BIDIMENSIONALES... EJERCICIO. UTILIZACIÓN

Más detalles

SOLUCIONARIO FÍSICA 2.º BACHILLERATO

SOLUCIONARIO FÍSICA 2.º BACHILLERATO FÍSICA.º BACHILLERATO SOLUCIONARIO MADRID - BARCELONA - BUENOS AIRES - CARACAS GUATEMALA - LISBOA - MÉXICO - NUEVA YORK - PANAMÁ SAN JUAN - BOGOTÁ - SANTIAGO - SÃO PAULO AUCKLAND - HAMBURGO - LONDRES -

Más detalles

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN

LIMITE DE SHANON PARA LA CAPACIDAD DE INFORMACIÓN CONVERSION ANALÓGICO A DIGITAL Con el paso del tiempo, las comunicaciones electrónicas han experimentado algunos cambios tecnológicos notables. Los sistemas tradicionales de comunicaciones electrónicas

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

Introducción a la Ing. Aeroespacial

Introducción a la Ing. Aeroespacial Introducción a la Ing. Aeroespacial Tema 3 El Campo Fluido Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería

Más detalles

CARACTERIZACIÓN DEL TRÁNSITO

CARACTERIZACIÓN DEL TRÁNSITO CARACTERIZACIÓN DEL TRÁNSITO CONTENIDO Definiciones Período de diseño del pavimento Caracterización de las cargas del tránsito Equivalencia de cargas por eje Equivalencias de carga por vehículo Conversión

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

Análisis de Sistemas Lineales: segunda parte

Análisis de Sistemas Lineales: segunda parte UCV, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica. Análisis de Sistemas Lineales: segunda parte Ebert Brea 7 de marzo de 204 Contenido. Análisis de sistemas en el plano S 2. Análisis de sistemas

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3

UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 UNIVERSIDAD PONTIFICIA DE SALAMANCA Ampliación de Matemáticas, Curso 2005/06 Preparado por: Lic. Raúl Martín Martín Práctica 3 En esta segunda práctica tratamos los siguientes temas: Representación de

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Problemas. Las ondas de desplazamiento y de presión asociadas a una onda sonora vienen dadas por la ecuación

Problemas. Las ondas de desplazamiento y de presión asociadas a una onda sonora vienen dadas por la ecuación Problemas. A una frecuencia de 4 Hz, el sonido más débil que se puede escuchar corresponde a una amplitud de presión de 8x -5 Nm -. Encontrar la correspondiente amplitud de desplazamiento. (Densidad del

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-006 PRACTICA 3: OSCILACIONES AMORTIGUADAS 1. OBJETIVO Estudio de un sistema masa-resorte con viscoso. a) Resolución de la ecuación diferencial del

Más detalles

ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA TEMA VII ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA.-Introducción..-Respuesta en frecuencia...-diagrama cero-polar. 3.-Representación gráfica de la respuesta en frecuencia. 3..-Diagramas de Bode. 3..-Diagrama

Más detalles