Funciones de varias variables. Extremos relativos y condicionados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de varias variables. Extremos relativos y condicionados"

Transcripción

1 Derivadas_extremos.nb Funciones de varias variables. Extremos relativos y condicionados Práctica de Cálculo, E.U.A.T, 8 En esta práctica veremos cómo derivar funciones de varias variables y hallar extremos con Mathematica. Derivación ü Derivadas parciales Como se ha estudiado en teoría, las derivadas parciales de una función de varias variables son las derivadas con respecto a una de las variables, considerando fijas las demás. En Mathematica, la orden D calcula derivadas de cualquier orden en las variables que elijamos (en particular calcula derivadas de funciones de una sola variable como ya se ha visto). Esta orden toma como argumentos la función que uno quiere derivar, las variables en las que se quiere derivar y el orden de la derivación (cuántas veces queremos derivar con respecto a cada variable): In[]:= f@x_, y_d := E ^H-Hx^ + y ^L ê L; In[]:= H* Primera derivada respecto a x *L D@f@x, yd, xd Out[]= - ÅÅÅÅ H-x -y L x In[3]:= H* Primera derivada respecto a y *L D@f@x, yd, yd Out[3]= - ÅÅÅÅ H-x -y L y In[4]:= H* Segunda derivada respecto a x *L D@f@x, yd, 8x, <D ÅÅÅÅ Out[4]= - H-x -y L ÅÅÅÅ + H-x -y L x In[5]:= H* Parcial respecto a x y respecto a y *L D@f@x, yd, x, yd Out[5]= ÅÅÅÅ H-x -y L x y ü Ejercicio Calcula el gradiente y la matriz hessiana de la función anterior.

2 Derivadas_extremos.nb ü Derivadas direccionales Una vez que tenemos el gradiente de una función podemos calcular su derivada direccional en cualquier dirección que elijamos. Veámoslo en un ejemplo: In[6]:= In[7]:= Out[7]= y_d := x Cos@yD + y Cos@xD gradg = 8D@g@x, yd, xd, D@g@x, yd, yd< 8Cos@yD - y Sin@xD, Cos@xD - x Sin@yD< H* Derivada direccional en la dirección 8,-< *L gradg.8, -< H* La misma derivada direccional, evaluada en el punto 8,< *L gradg.8, -< ê. 8x Ø, y Ø < ü Interpretación gráfica de la derivada direccional Una derivada direccional no es más que la derivada de la función de una variable que resulta al "cortar" la gráfica de una función de varias variables con un plano vertical orientado en una dirección dada (de ahí el nombre). Es útil ver gráficamente lo que esto significa. In[9]:= grafg = Plot3D@g@x, yd, 8x, -Pi, Pi<, 8y, -Pi, Pi<, AspectRatio Ø Automatic, Mesh Ø FalseD; Para ver lo que significa la derivada parcial en la dirección del vector {,} en el punto {,}, dibujemos sólo el corte de la gráfica con un plano que va en esa dirección: In[]:= H* La recta que pasa por H,L y va en la dirección de H,L *L recta = 8, < + t 8, <; H* La función g dibujada sobre esa recta *L corte = ParametricPlot3D@8recta@@DD, recta@@dd, g@recta@@dd, recta@@ddd<, 8t, -Pi, Pi<D

3 Derivadas_extremos.nb 3 In[]:= Show@8grafg, corte, Graphics3D@8PointSize@.3D, Point@8,, <D<D<D Out[]= Ü Graphics3D Ü Si recta es la recta que definimos antes, entonces la derivada direccional no es más que la derivada usual de la función g[recta[[]],recta[[]]] (que depende de t) en el punto. Hemos dibujado esta función sobre la gráfica de g para que se vea que es la función g "vista en una cierta dirección"; la curva sobre la gráfica se recorre con distinta velocidad y sentido dependiendo del tamaño y el sentido del vector según el cual calculamos la derivada direccional. Plano tangente Dada una función de dos variables f(x,y), podemos definir la superficie formada por los puntos (x,y,z) que verifican que z=f(x,y).esta superficie puede dibujarse usando la orden Plot3D vista anteriormente. In[3]:= Plot3D@f@x, yd, 8x, -, <, 8y, -, <D; G = Plot3D@f@x, yd, 8x, -, <, 8y, -, <, ViewPoint Ø 8,, -.<D;

4 Derivadas_extremos.nb Si f es diferenciable en un punto (a,b), podemos definir el plano tangente a la superficie z=f(x,y) en el punto (a,b) mediante la fórmula z=f(a,b) + (x-a) ÅÅÅÅÅÅ f f Ha, bl + (y-b) ÅÅÅÅÅÅ Ha, bl. Así en el caso anterior y en el punto (.,. ) tenemos: In[5]:= a =.; b =.; z = f@a, bd + Hx - al HD@f@x, yd, xd ê. 8x Ø a, y Ø b<l + Hy - bl * HD@f@x, yd, yd ê. 8x Ø a, y Ø b<l x y Out[7]= In[8]:= H-. + xl H-. + yl G = Plot3D@z, 8x, -, <, 8y, -, <, ViewPoint Ø 8,, -.<D; Show@G, GD; ü Ejercicio Calcula el plano tangente a S={(x,y,z) ; z - cos(x+y) x =} en el punto (,,) de dicha superficie. Extremos de funciones derivables En muchas situaciones se desea calcular el máximo o el mínimo valor de una función. En principio, un ordenador no puede decirnos si una función definida en un subconjunto del plano (o de la recta real, o del espacio) alcanza un valor máximo o mínimo; esto es algo que debemos deducir de nuestra comprensión de la función (tal vez ayudándonos de su representación gráfica u otros cálculos). Cuando tengamos motivos para pensar que la función que se trate tiene un máximo, sabemos que dicho máximo tiene que ser un extremo relativo (un punto donde la función es siempre mayor o siempre menor que en los puntos cercanos). Si además dicha función es derivable en un entorno del extremo relativo todas sus derivadas primeras deben anularse (porque, intuitivamente, la cima de una montaña suave tiene que ser plana). Esta es una forma de buscar extremos de una función: primero busquemos los puntos donde las derivadas primeras se anulen.

5 Derivadas_extremos.nb 5 Por ejemplo, calculemos el máximo de la siguiente función (otra pregunta sería: por qué sabemos que esta función debe tener un máximo?): In[]:= h@x_, y_d := -x^ 4 - y^ 4 + x^ + y^ + ; Primero, hallamos los puntos donde el gradiente se anula (o sea, donde todas sus derivadas primeras se anulan): In[]:= gradh = 8D@h@x, yd, xd, D@h@x, yd, yd< Out[]= 84 x - 4 x 3, y - 4 y 3 < In[]:= criticos = Solve@gradh ã, 8x, y<d Out[]= 98x Ø -, y Ø <, 9x Ø -, y Ø - ÅÅÅÅÅÅÅÅÅ è!!! =, 9x Ø -, y Ø ÅÅÅÅÅÅÅÅÅ è!!! =, 8x Ø, y Ø <, 9x Ø, y Ø - ÅÅÅÅÅÅÅÅÅ è!!! =, 9x Ø, y Ø ÅÅÅÅÅÅÅÅÅ è!!! =, 8x Ø, y Ø <, 9x Ø, y Ø - ÅÅÅÅÅÅÅÅÅ è!!! =, 9x Ø, y Ø ÅÅÅÅÅÅÅÅÅ è!!! == Entre estos nueve puntos, miramos dónde h es mayor: In[3]:= Table@N@h@x, yd ê. criticos@@iddd, 8i,, 9<D Out[3]= 83., 3.5, 3.5,.,.5,.5, 3., 3.5, 3.5< Vemos que los puntos º, 3º, 8º y 9º de la lista anterior son máximos locales de h. ü Ejercicio Representa la función h (en una región adecuada para poder ver sus extremos "a ojo"). Calcula sus mínimos relativos. Tiene la función h un mínimo absoluto? ü Cómo distinguir entre máximos y mínimos relativos Una vez que hemos calculado los puntos críticos de una función, algunos de ellos pueden ser máximos relativos, otros mínimos relativos y otros ninguna de las dos cosas (estos últimos se llaman puntos de silla). La matriz hessiana de una función distingue entre los tres casos anteriores si es definida negativa, definida positiva o indefinida respectivamente. Calculemos la matriz hessiana de h: In[4]:= hessiana@x, yd = 88D@h@x, yd, 8x, <D, D@h@x, yd, x, yd<, 8D@h@x, yd, y, xd, D@h@x, yd, 8y, <D<<; Veamos cuál es en algunos puntos críticos: In[5]:= hessiana@x, yd ê. criticos@@dd Out[5]= 88-8, <, 8, << In[6]:= hessiana@x, yd ê. criticos@@dd Out[6]= 88-8, <, 8, -4<< In[7]:= hessiana@x, yd ê. criticos@@4dd Out[7]= 884, <, 8, <<

6 Derivadas_extremos.nb 6 El que una matriz sea definida positiva, negativa o indefinida depende de sus valores propios, aunque hay formas más sencillas de verlo a simple vista que funcionan en muchos casos. Por ejemplo, en el caso de matrices de orden (como es el caso que nos ocupa) es suficiente con ver el signo del término de la posición (,) de la matriz y el signo de su determinante. Por tanto, aplicando el criterio estudiado en teoría podemos afirmar que el primer punto crítico es un punto de silla (determinante negativo), el segundo es un máximo local (determinante positivo y el valor (,) es negativo) y el cuarto es un mínimo local (determinante positivo y el valor (,) es positivo). ü Ejercicio Dada la función f(x,y)=x^3 +y^3-3x-y+5 determina sus máximos y mínimos locales. Extremos condicionados Nos planteamos ahora el problema de hallar el máximo (o el mínimo) de una función f(x,y) sujeto a unas restricciones g(x,y)=c. Sabemos que para que un punto a=(a,a) sea extremo de f sujeto a la restricción dada por g es necesario que el punto a sea punto crítico de la función L(x,y,l)=f(x,y)-l g(x,y), es decir se han de verificar las ecuaciones: L ÅÅÅÅÅÅÅ x = ; L ÅÅÅÅÅÅÅ y = ; g = c. Como ejemplo, vamos a hallar los posibles puntos críticos de la función f(x,y)=3 x^+xy-y^, entre los puntos que verifican la restricción x^+ y^ =. En primer lugar definimos las funciones y mostramos gráficamente la situación que vamos a estudiar. In[8]:= f@x_, y_d := 3 x ^ + x y - y ^; g@x_, y_d := x^ + y^ ; La función ParmetricPlot3D dibuja una función donde las tres componentes (x,y,z) dependen de un mismo parámetro. Para describir los puntos del plano que verifican la restricción x^+y^= se emplean las coordenadas polares x(t)=- Cos(t), y(t)=sen(t) y por tanto z(t)=f[x(t),y(t)] In[44]:= A = Plot3D@f@x, yd, 8x, -, <, 8y, -, <, Mesh Ø FalseD; B = ParametricPlot3D@8Cos@tD, Sin@tD, f@cos@td, Sin@tDD<, 8t,, Pi<D; Show@A, BD

7 Derivadas_extremos.nb Out[46]= Ü Graphics3D Ü Definimos la función Lagrangiana y resolvemos el sistema a estudiar: In[3]:= L@x_, y_, l_d := f@x, yd - l g@x, yd; PCriticos = Solve@8D@L@x, y, ld, xd ã, D@L@x, y, ld, yd ã, g@x, yd ã <, 8x, y, l<d Out[3]= 99l Ø ÅÅÅÅ è!!!!!! H - 9 L, x Ø ÅÅÅÅ 9l Ø ÅÅÅÅ è!!!!!! H - i j 5 $%%%%%%%%%%%%%%%% ÅÅÅÅ + %%%%%%%%%% 5 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ k è!!!!!! 9 - $%%%%%%%%%%%%%%%% 9 i j ÅÅÅÅ k + %%%%%%%%%%%%%%%% 5 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ è!!!!!! 9 %%%%%% y z y { z, y Ø $%%%%%%%%%%%%%%%% ÅÅÅÅ + %%%%%%%%%% 5 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ { è!!!!!! 9 =, 9 L, x Ø ÅÅÅÅÅÅÅÅÅ "################ J9 H9 + ################ 5 è!!!!!! 9 L - 5 "################ 58 H9 + ################## 5 è!!!!!! 9 L N, 6 y Ø -$%%%%%%%%%%%%%%%% ÅÅÅÅ + 5 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ %%%%%%%%%% è!!!!!! è!!!!!! =, 9l Ø ÅÅÅÅ H L, x Ø ÅÅÅÅ y Ø $%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%% è!!!!!! ÅÅÅÅÅÅÅ H9-5 9%%%%%% L =, 9l Ø ÅÅÅÅ 58 x Ø ÅÅÅÅÅÅÅÅÅ 6 H + è!!!!!! 9 L, i j 5 $%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%% è!!!!!! ÅÅÅÅÅÅÅ H %%%%%% L + $%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%% è!!!!!! ÅÅÅÅ H9-5 9 L y z, k { "################ J-9 H9 - ################ 5 è!!!!!! 9 L - 5 "################################## 58 H9-5 è!!!!!! 9 L N, y Ø -$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% è!!!!!! ÅÅÅÅÅÅÅ H9-5 9%%%%%% L == 58 De los cuatro posibles puntos críticos a la vista de la gráfica dos serán máximos relativos y dos mínimos relativos. Indica como podrías diferenciarlos. Ejercicios - Calcula los extremos relativos de f(x, y) = (x + y^)*e^( - x^). Cuáles de ellos son mínimos relativos? Cuáles máximos relativos? Cuáles puntos de silla? Alcanza esta función un máximo absoluto? Alcanza un mínimo absoluto? - Calcula los extremos relativos de f(x,y) = cos(x) sin(y). Tiene esta función máximo o mínimo absoluto? 3-Realiza los ejercicios 8 a de la relación de teoría. 4- Calcula los extremos relativos de la función f(x,y)=e^(xy) bajo la restricción x^ +y^ = Calcula la matriz Hessiana de la función f(x,y)=a x^+c y^+ b x y. Determina qué han de cumplir a,b y c para que esta matriz sea siempre definida positiva. 3-Realiza los ejercicios a 6 de la relación de teoría. 6- Queremos ir desde Granada hasta Madrid en coche. Sabemos, en general, que a velocidades altas el coche gasta más cuanto más rápido vayamos. Para ser exactos, supondremos que si vamos a v kilómetros por hora el coche gasta v^3/5 + 5 céntimos por minuto (lo cual entra dentro de lo razonable: por muy despacio que vayamos, el coche siempre gasta algo, y el gasto aumenta muy rápido con la velocidad) Suponiendo esto, a qué velocidad debemos ir para que el gasto sea el mínimo posible?

8 Derivadas_extremos.nb 8 6- Queremos ir desde Granada hasta Madrid en coche. Sabemos, en general, que a velocidades altas el coche gasta más cuanto más rápido vayamos. Para ser exactos, supondremos que si vamos a v kilómetros por hora el coche gasta v^3/5 + 5 céntimos por minuto (lo cual entra dentro de lo razonable: por muy despacio que vayamos, el coche siempre gasta algo, y el gasto aumenta muy rápido con la velocidad) Suponiendo esto, a qué velocidad debemos ir para que el gasto sea el mínimo posible?

Funciones de varias variables. Extremos

Funciones de varias variables. Extremos Derivadas_y_extremos.nb Funciones de varias variables. Extremos Práctica de Cálculo, E.U.A.T, Grupos ºA y ºB, 25 En esta práctica veremos cómo derivar funciones de varias variables y hallar extremos con

Más detalles

Funciones de varias variables. Extremos relativos y condicionados.

Funciones de varias variables. Extremos relativos y condicionados. Cálculo Matemático. Práctica 7. Curso 2009-2010. AMRP. 1 Funciones de varias variables. Extremos relativos y condicionados. Práctica 7 (Específica de la asignatura de Cálculo Matemático en E.U.A.T.) (Práctica

Más detalles

Práctica 4. Diferenciabilidad de funciones de varias variables. Plano tangente.

Práctica 4. Diferenciabilidad de funciones de varias variables. Plano tangente. Práctica 4. Diferenciabilidad de funciones de varias variables. Plano tangente. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES 1.- GRÁFICOS TRIDIMENSIONALES ü 1.1.- CÓMO DIBUJAR FUNCIONES EN TRES DIMENSIONES El comando que se necesita para dibujar funciones

Más detalles

PRÁCTICA 4 FUNCIONES REALES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA

PRÁCTICA 4 FUNCIONES REALES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA Practica4_Funciones_Varias_Variables.nb 1 PRÁCTICA 4 FUNCIONES REALES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA La instrucción que sirve para representar gráficas de funciones de dos variables

Más detalles

1.- DERIVADAS PARCIALES. DERIVADAS PARCIALES SUCESIVAS

1.- DERIVADAS PARCIALES. DERIVADAS PARCIALES SUCESIVAS Practica6_Derivadas_Parciales.nb 1 PRÁCTICA 6 DERIVADAS PARCIALES 1.- DERIVADAS PARCIALES. DERIVADAS PARCIALES SUCESIVAS Mathematica permite el cálculo de las derivadas parciales de una función f: 2 ö

Más detalles

PRÁCTICA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA

PRÁCTICA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA Practica5_Funciones_Varias_Variables.nb 1 PRÁCTICA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES DE DOS VARIABLES REALES 1.-REPRESENTACIÓN GRÁFICA La instrucción que sirve para representar gráficas de funciones

Más detalles

Práctica 5. Regla de la cadena. Derivadas direccionales. Gradiente. Extremos relativos.

Práctica 5. Regla de la cadena. Derivadas direccionales. Gradiente. Extremos relativos. Práctica 5. Regla de la cadena. Derivadas direccionales. Gradiente. Extremos relativos. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Industriales Telecomunicación Curso 010-011 Grados E.T.S.I. Industriales Telecomunicación Ejercicios resueltos 1 f x, x e Representar el dominio de la función x x El dominio es el conjunto de

Más detalles

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Práctica 2. Continuidad de funciones de varias variables

Práctica 2. Continuidad de funciones de varias variables Práctica 2. Continuidad de funciones de varias variables Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- GRÁFICAS Y CURVAS

Más detalles

Clase 4: Diferenciación

Clase 4: Diferenciación Clase 4: Diferenciación C.J Vanegas 27 de abril de 2008 1. Derivadas Parciales Recordemos que la definición de derivada parcial: sea fa R R, definida sobre un f(x) f(x 0 ) intervalo abierto A. f es derivable

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Tema 6: Funciones de varias variables

Tema 6: Funciones de varias variables Tema 6: Funciones de varias variables de febrero de 6 Preliminares: derivadas parciales. Sea F una función de dos variables, como por ejemplo la función definida por F(x; y) = x y 3 Podemos derivarla con

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

Funciones Implícitas.

Funciones Implícitas. CAPÍTULO 5 Funciones Implícitas. En este capítulo presentamos el concepto de función implícita. Esta idea nos ayuda a obtener derivadas de funciones que no podemos conocer explícitamente, pero su aplicación

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

1. El sistema: F(x,y,z) = =

1. El sistema: F(x,y,z) = = > 1. El sistema: F(x,y,z) = = Define implícitamente a la función (y, z) =f(x) en un entorno del punto x0=1. Encuentre la ecuación EXPLICITA de la recta tangente a la curva definida por f en el punto x0.

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Práctica 3. Derivadas parciales

Práctica 3. Derivadas parciales Práctica 3. Derivadas parciales Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- DERIVADAS PARCIALES Dada f@x, yd una función

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

EXAMEN TEMA 2:Funciones de varias variables

EXAMEN TEMA 2:Funciones de varias variables GRUPO 4Mb (16-17) CÁLCULO ETSI Informática (UPM) 8 de Junio - 217 Tiempo: 2 horas Nombre y Apellidos: Nº de Matrícula: Pr 1 Pr 2 Pr3 Pr4 Nota EXAMEN TEMA 2:Funciones de varias variables 2x 3 y 3 +yx 2

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Funciones Compuestas.

Funciones Compuestas. CAPÍTULO 4 Funciones Compuestas. En este capítulo trabajaremos con funciones compuestas. Aprendemos el equivalente multidimensional de la regla de la cadena que en varias variables adquiere una dimensión

Más detalles

Funciones Compuestas.

Funciones Compuestas. CAPÍTULO 4 Funciones Compuestas. En este capítulo trabajaremos con funciones compuestas. Aprendemos el equivalente multidimensional de la regla de la cadena que en varias variables adquiere una dimensión

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Funciones reales de variable real: Gráficas, límites y continuidad.

Funciones reales de variable real: Gráficas, límites y continuidad. Cálculo Matemático. Práctica 3. Curso 2009-2010. AMRP. 1 Funciones reales de variable real: Gráficas, límites y continuidad. Práctica 3 (Específica de la asignatura de Cálculo Matemático en E.U.A.T.) Introducción

Más detalles

1. Lección 9 - Continuidad y Derivabilidad

1. Lección 9 - Continuidad y Derivabilidad 1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Práctica. 4: Cálculo. Funciones de

Práctica. 4: Cálculo. Funciones de PRÁCTICA 4: Cálculo Diferencial de Funciones de varias variables 1 Comoo ya vimos en funciones de una variable, otra opción para realizar gráficas ess utilizar el módulo draw.. Acuérdate de cargarlo Y

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Valores extremos de una función

Valores extremos de una función Valores extremos de una función Puntos crí5cos Máximos y mínimos Mul5plicadores de Lagrange Lilia Meza Montes Ins5tuto de Física BUAP Una variable: Máximos y mínimos donde la derivada se anula y =0 =0

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. 20 de Junio de 2007. IMPORTANTE: DURACIÓN DEL EXAMEN: 2h. 30min. NO se permite el uso de calculadoras. Sólo se

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

INSTITUTO TECNICO MARIA INMACULA ASIGNATURA: MATEMATICAS GRADO: 11 AÑO 2013

INSTITUTO TECNICO MARIA INMACULA ASIGNATURA: MATEMATICAS GRADO: 11 AÑO 2013 FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Temas 4 y 5. Teoremas de inversión local. Extremos.

Temas 4 y 5. Teoremas de inversión local. Extremos. Problemas de Diferenciación de Funciones de Varias Variables Curso 2013-2014 Temas 4 y 5. Teoremas de inversión local. Extremos. 1. Sea U R n abierto convexo y f : U R. Decimos que f es convexa si: f(tx+(1

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

Tema 6 Funciones reales de varias variables

Tema 6 Funciones reales de varias variables Tema 6 Funciones reales de varias variables 6.1 Continuidad y límites 6.1.1 Introducción. Existen muchos procesos en la naturaleza que dependen de dos o más variables. Por ejemplo, el volumen de un sólido

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

La Diferencial de Fréchet

La Diferencial de Fréchet Capítulo 6 La Diferencial de Fréchet Es bien conocido que una función de una variable f es derivable en un punto a si y sólo si su gráfica admite una recta tangente (no vertical) en el punto (a, f(a)).

Más detalles

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente

Más detalles

Funciones de varias variables. Derivación. Optimización

Funciones de varias variables. Derivación. Optimización Funciones de varias variables. Derivación. Optimización () Departamento de Economia e Hª Económica. Universidad de Salamanca. Actualizado : --8 Sobre el estilo utilizado Mathematica las salidas (Input)

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Capítulo 6 Extremos de funciones de varias variables En este capítulo vamos a considerar la teoría clásica de extremos para funciones diferenciables de varias variables, cuyos dos tópicos habituales son

Más detalles

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo:

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo: 1.- Considerad la función: f(x) = ln x x a) Dad el dominio de f y estudiad si tiene una asíntota horizontal. b) Calculad una primitiva de f usando el método de integración por partes. Indicación: Fijaos

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

4. Sistemas de ecuaciones lineales

4. Sistemas de ecuaciones lineales 4. Sistemas de ecuaciones lineales En esta práctica aprenderemos a discutir y resolver sistemas de ecuaciones lineales con el ordenador Algunas órdenes importantes à La orden RowReduce Como se vio en la

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 7 de febrero de 008 1. Definiciones básicas Sean a, b puntos de R n (donde n N) con coordenadas: a = (a 1, a,, a n ); b = (b 1, b,, b n ) Se define la distancia euclídea entre

Más detalles

Clase nb 1. Fórmula de Taylor

Clase nb 1. Fórmula de Taylor Clase16-0-07.nb 1 Fórmula de Taylor Hoy trataremos de entender cómo se pueden construir funciones conociendo únicamente las funciones suma (resta), producto (división) y potenciación. Necesitaremos además

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

1. Sea g(x, y) =. Determine, la Derivada Direccional de la función compuesta g(g(x, y),g(x, y)) en el punto (2,1) en la dirección tangente a la curva C definida implícitamente por g(x, y)=0 en el punto

Más detalles

5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES.

5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES. Prácticas de Matemáticas I con DERIVE-5 66 5. ANÁLISIS DE FUNCIONES DE VARIAS VARIABLES. En este apartado trabajaremos con funciones de dos variables, aunque los cálculos analíticos se pueden efectuar

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

Tema 4 Diferenciación de funciones de una y varias

Tema 4 Diferenciación de funciones de una y varias Tema 4 Diferenciación de funciones de una y varias variables. CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE Definición.: Función derivable Sea f : R R definida en un entorno de a R, se dice que f es

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim Derivada direccional (1) Sea f : D Rn R m x = (x 1,, x i,, x n ) y = f (x) = (y 1,, y j,, y m ). Siendo y j = f j (x) = f j (x 1,, x i,, x n ), j = 1, 2,, m f (x) = (f 1 (x),, f j (x),, f m (x)) Sea c

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)

Más detalles

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero.

El cuestionario virtual estara disponible los días 11, 12, 13, 14, 15 y 16 de enero. Fundamentos de Matematicas. Prueba de Evaluación a Distancia. Curso 016-17 Se debe marcar una sola respuesta correcta. Cada pregunta acertada suma 1 punto, las incorrectas restan 0.. Las preguntas en blanco

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3.

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a +a-)x-ay+az- (a +a-)x+a y+(a+)z (a +a-)x-ay+a

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

1. La curva C es definida implícitamente por la expresión:

1. La curva C es definida implícitamente por la expresión: 1. La curva C es definida implícitamente por la expresión: 3 y - x - 2x + y + 7 0 Sea la función compuesta, donde es una función real. Suponga que. Cuál es la variación en la cota de F si a partir del

Más detalles

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática / 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable

Más detalles

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ~ Aplicamos el método de Gauss: a +a

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x

Más detalles