Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática"

Transcripción

1 / 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable y se tiene que g t = fγt γ t. Observación 1. Si g, γ son funciones de más variables, podemos utilizar la Regla de la Cadena para sus derivadas parciales recordando que calcularlas es derivar suponiendo que las otras variables son constantes. Es decir, si tenemos ht, s = f γt, s, con γt, s = x 1 t, s,..., x n t, s, podemos derivar respecto a t tomando s constante y sigue que h t = n j=1 x j x j t. Proposición Regla de la Cadena -. Sea f : R R y h : R n R funciones diferenciables. Entonces, la función g : R n R dada por gt = f hx es derivable y se tiene que gt = f hx hx = Df[hx] Dhx. Problema 1. Sea f : R R de clase C 1 una función homogénea de orden m, es decir, t R se cumple que ftx, ty = t m fx, y, x, y R, 1 con m. Demuestre que f satisface mfx, y = fx, y x, y. Solución: Sean u = tx y v = ty. Derivando 1 respecto a t, se tiene que Luego, evaluando para t = 1, sigue que mt m 1 fx, y = u u t + t = x u + y mfx, y = fx, y x, y. = ftx, ty x, y. Problema. Sea f : U R R con segundas derivadas continuas y considere gr, θ = fr cos θ, r sin θ. Encuentre una expresión para f en términos de las derivadas de g. Usando lo anterior, verifique que la función f : R R dada por fx = ln x resuelve la ecuación f = 0. Recuerde que f = d f dx + f. Juan Pablo Vigneaux Ariztía javignea@uc.cl 1

2 / 010 Solución: Sean x = r cos θ e y = r sin θ, entonces = x x g = cos θ + f x x + f x = cos θ + sin θ x, + sin θ f x x + f = cos θ f x + sin θ cos θ f x + sin θ f, θ = x x θ + = r sin θ + r cos θ θ x, g = r cos θ θ x + r sin θ f x r sin θ cos θ f x r sin θ + r cos θ f. Así, f = g + 1 r + 1 g r θ. 3 Respecto a la segunda parte del ejercicio: note que es muy conveniente expresar la función en coordenadas polares, puesto que gr, θ = fr cos θ, r sin θ = ln r cos θ, r sin θ = ln r y esta función sólo depende de r. Luego, se cumple que: g θ = 0 Además, nuestros conocimientos de Cálculo I espero que los tenga aún nos permiten saber que: g = = 1 r = 1 = 1 r r Si reemplaza todos estos valores en la ecuación 3, verá que se verifica f = 0. Échele un vistazo a la ayudantía anterior, donde también mostramos una solución a la ecuación f = 0, y se convencerá de que las coordenadas polares nos arreglaron la vida.. Plano tangente Definición 1 Gradiente. Sea f : U R n R y p U tal que f es diferenciable en p. Se define el vector gradiente de f en p como fp := p,..., p. x 1 x n Juan Pablo Vigneaux Ariztía javignea@uc.cl

3 / 010 Proposición 3. Considere g : R n R, diferenciable. La ecuación gx = c, c R, determina una superficie en R n que llamaremos S. Se cumple que, si s S, entonces Gs es un vector perpendicular al plano tangente a S que pasa por el punto s. Problema 3. Hallar la ecuación del plano tangente a la superficie: y que sea perpendicular a la recta: x + y + z = k x = 3 + 4t, y = t, z = 1 + t t R Solución: Llamemos S a la esfera de ecuación x + y + z = k. Notar que S es una curva de nivel de una función gx, y, z := x + y + z. Luego, si tenemos un punto s = x 0, y 0, z 0 S, el vector normal a la superficie será n = gs. Lo que le queremos pedir a este vector normal es que sea paralelo al vector director de la recta dada a saber, el vector d = 4,, 1. Y la condición de ser paralelo se expresa de la forma: n = λd λ R x 0, y 0, z 0 = λ4,, 1 x 0, y 0, z 0 = λ, λ, 1 λ En principio, pareciera que λ está libre, pero no demos olvidar que x 0, y 0, z 0 debe ser un punto de S, de esta forma: x 0 + y0 + z0 = 1 4 λ = k λ = ± k 1 De esta forma, se han determinado dos puntos sobre la esfera tales que sus planos tangentes son perpendiculares a la recta dada. Para encontrar las ecuaciones de estos planos, recordamos en general que son de la forma: p 0 p n = 0 donde p 0 es el punto que conocemos de la recta, p es la variable y n es la normal del plano. Así: { 4k Π 1 :, k } k 8k, x, y, z, 4k k, = El otro plano se obtiene análogamente. Nota: Esta ciertamente no es la mejor forma de resolver este problema, pero el método usado es bastante general y puede servirle para resolver otros más complicados. Trate de encontrar un mejor método para este. Más espefíficamente, intente establecer que en general el plano tangente a la esfera en un punto x 0, y 0, z 0 está dado por xx 0 + yy 0 + zz 0 = k. Problema 4. Considere z = f x + y, que surge de rotar una función que suponemos conocida sobre el plano zy de la forma z = fy. Demuestre que todos los planos tangentes al gráfico de f correspondientes a un mismo nivel curvas x +y = cte en el domino cortan en el mismo punto al eje z. Juan Pablo Vigneaux Ariztía javignea@uc.cl 3

4 / 010 Solución: Consideremos s = x 0, y 0, z 0 un punto de la superficie S : gx, y, z := f x + y z = 0. Un vector normal a esta superfie en s está dado por gs. Calculemos el gradiente. x = df dt x + y x + y = f x x + y x x + y Análogamente: x = f x + y y x + y gs = f x 0 + y 0 x 0, f x x 0 + y0 0 + y 0 y 0, 1 x 0 + y0 Por conveniencia, pordemos tomar como vector normal uno paralelo a ese, como f x 0 + y 0 x 0, f x 0 + y 0 y 0, x 0 + y 0. Entonces, el plano tangente a S en el punto s es: Π : x 0, y 0, f x 0 + y0 x, y, z f x 0 + y 0 x 0, f x 0 + y 0 y 0, x 0 + y 0 = 0 Equivalentemente, Π : f x 0 + y 0 x 0x 0 x + f x 0 + y 0 y 0y 0 x = x 0 + y 0 f x 0 + y0 z Para encontrar la intersección con el eje z, hacemos x = 0 e y = 0. Esto nos dirá que sobre curvas x 0+y 0 = k, el intercepto con z siempre será z = fk kf k. 3. Derivadas direccionales Definición. Definimos la derivada direccional de f en p en la dirección de v por p := lím t 0 fp + tv fp. t Note que las derivadas parciales son un caso particular de derivada direccional, cuando v es igual a algún vector canónico. Proposición 4. Sea f : U R n R m y p U tal que f es diferenciable en p. Consideremos v R n unitario, entonces Juan Pablo Vigneaux Ariztía javignea@uc.cl 4

5 / p = fp v. p fp. fp fp es el vector que maximiza la expresión p. Problema 5. Considere los vectores u = 1 1, 1 y v = 1 1, 1. Sea f : R R diferenciable y tal que Calcule f1, y w 1, con w =, 3. u 1, =, 1, =. Solución: Notemos que {u, v} es una base ortonormal de R. Luego, f1, = αu + βv, 4 para algún par α, β R. Como f es diferenciable, al hacer producto punto en 4 con u, se obtiene 1, = f1, u = αu u + βv u = α u = α, u es decir α =. Análogamente, si lo hacemos con v, obtenemos que β =. Así, Finalmente, Alternativa: Puesto que f diferenciable, se cumple que: f1, = u v = 1 1, 1 1 1, 1 = 0,. w 1, = f1, w w = 1 0, 4, 3 = = u 1, = f1, u = f 1 x1,, f y 1, 1, 1 = 1, = f1, v = f 1 x1,, f y 1, 1, 1 En base a lo anterior, tenemos un sistema de ecuaciones para f x y f y : 1 1 fx = 1 1 f y De donde se desprende: f1, = 0,. Lo que sigue se hace como antes. Juan Pablo Vigneaux Ariztía javignea@uc.cl 5

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

Funciones homogéneas. Funciones

Funciones homogéneas. Funciones Lección 4 Funciones homogéneas Funciones implícitas 41 Funciones homogéneas Una clase de funciones especialmente importantes en economía es la de las funciones homogéneas Si consideramos, por ejemplo,

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

1 Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Guía preparada a partir de las secciones 11.5 a

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Práctica Ecuaciones diferenciales de primer orden.. Introducción Para resolver una ecuación diferencial en la forma F (x, y, y ) = 0, o bien y = f(x, y) (.) el Mathematica dispone del comando DSolve, cuya

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce

Más detalles

The shortest path between two truths in the real domain passes through the complex domain.

The shortest path between two truths in the real domain passes through the complex domain. The shortest path etween two truths in the real domain passes through the complex domain. Jacques Hadamard Introducción En este ejercicio vamos a emprender un enfoque distinto de la geometría analítica

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

1. Grafica las siguientes funciones junto con sus funciones derivadas en los intervalos indicados y conjetura relaciones entre ellas:

1. Grafica las siguientes funciones junto con sus funciones derivadas en los intervalos indicados y conjetura relaciones entre ellas: 1. Función derivada Maple posee un comando para encontrar la función derivada de una función dada, que es el comando diff (exige poner la variable respecto de la cual se desea derivar). Equivalentemente,

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad III (Capítulo 10 del texto) Derivada de una función 3.1 Definición de la derivada 3.2 Diferenciación de funciones

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles