o el descubrimiento del fotón y del carácter cuántico del mundo microscópico.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "o el descubrimiento del fotón y del carácter cuántico del mundo microscópico."

Transcripción

1 El efecto fotoeléctrico, o el descubrimiento del fotón y del carácter cuántico del mundo microscópico. Qué es el efecto foto-eléctrico: es el fenómeno que consiste en que los metales liberan electrones de su superficie cuando les incide luz. El efecto es pequeño (nadie se electrocuta al tocar un metal iluminado) y depende del metal (la mayoría emite electrones sólo con luz ultravioleta, pero hay algunos que emiten incluso con luz visible). Esto mantuvo perplejos a los físicos de 1900 (vamos a ver por qué), hasta que Albert Einstein, basándose en un trabajo previo de Max Planck, logró explicar el efecto con un golpe de audacia: proponiendo que la luz, además de ser una onda, tiene carácter de partículas. La explicación de este pequeño efecto inició el desarrollo de la Mecánica Cuántica, que es la teoría que explica correctamente lo que sucede en el mundo subatómico. Mecánica porque trata del movimiento o evolución de sistemas en el espacio, y cuántica por referencia los paquetes de energía o cuantos que aparecen en la teoría. La propuesta de Einstein sobre la luz no fue aceptada fácilmente, porque el camino de descubrir el origen ondulatorio de la luz no había sido corto ni fácil. saac Newton ( ), quien trabajó mucho en óptica, sostenía que la luz era un chorro de partículas. Christiaan Huygens ( ), por otro lado, sostenía la hipótesis ondulatoria. Gran cantidad de experimentos se hicieron para finalmente establecer el carácter ondulatorio de la luz. Sin embargo, cabe decir que todos apuntaban a fenómenos de propagación de la luz, y no al carácter de la interacción de la luz con la materia. Entre los que no aceptaban la explicación de Einstein estaba R.A. Millikan, quien ya era famoso por su medición de la carga del electrón. Millikan trató de demostrar que Einstein estaba equivocado, haciendo para ello los experimentos más precisos de su época sobre el efecto fotoeléctrico. Sin embargo, sólo terminó comprobando con gran precisión que Einstein estaba en lo cierto. Posteriormente, la Teoría Cuántica, desarrollada a partir de la propuesta de Einstein, curiosamente, fue duramente combatida por el mismo Einstein. Pero ni él mismo pudo parar el avance de lo que llegó a ser la más exitosa de las teorías del mundo físico y tal vez el logro más impresionante de la mente humana. Breve historia: 1887: H. Hertz, el descubridor experimental de las ondas electromagnéticas, notó que su detector, consistente en una espira abierta que emitía una chispa cuando recibía las ondas, chispeaba más intensamente cuando le llegaba luz UV.

2 1888: W. Hallwachs, estudiante de Hertz, notó que una placa de zinc cargada negativamente se descargaba rápidamente si le incidía luz UV. En cambio, cuando la placa estaba cargada positivamente, la descarga no ocurría. Adicionalmente, notó que la luz UV hacía que la placa inicialmente sin carga adquiriera carga positiva. También notó que el efecto desaparecía si en vez de UV usaba luz visible. 1889: J. Elster y H. Geitel descubrieron que en algunos metales alcalinos el efecto también se producía con luz visible. Además notaron algo razonable: el número de electrones emitidos es directamente proporcional a la intensidad de la luz UV. 1900: J.J. Thomson logró identificar las partículas emitidas con un arreglo similar a un tubo de rayos catódicos, pero en vez de poner un alto voltaje entre los electrodos, se hace incidir luz sobre el cátodo. Así determinó que estas partículas tenían la misma relación e/m que los rayos catódicos, es decir, eran electrones. Thomson recibió el Premio Nobel en 1906 por éste y sus otros trabajos. 1902: P. von Lenard, usando un equipo similar al de Thomson, estudió cómo variaba la energía de salida de los electrones al variar la intensidad, y descubrió algo inexplicable: La energía máxima de salida de los electrones, E max, era un valor fijo, independiente de la intensidad de la luz. La energía máxima E max sí dependía del color (frecuencia de la luz): E max aumentaba con la frecuencia. Lenard recibió el Premio Nobel en 1905 por sus trabajos. 1905: A. Einstein explicó el efecto fotoeléctrico, postulando que la luz no interactuaba con la materia en forma de un flujo continuo sino en cuantos de energía y momentum (hoy llamados fotones ), el tamaño de los cuales sería proporcional a la frecuencia de la onda electromagnética. Este trabajo le valió a Einstein su Premio Nobel en : R.A. Millikan, el mismo que años antes midió la carga del electrón, empecinado en probar que Einstein estaba equivocado en su interpretación corpuscular de la luz, hizo una serie de experimentos de alta precisión sólo para comprobar que Einstein estaba en lo cierto y, de paso, obtener el valor de la constante de Planck con una precisión de 0.5%. En todo caso su esfuerzo no fue en vano: en 1923 recibió el Premio Nobel por estos trabajos. Cómo entender el fenómeno: Primero hay que entender el circuito: Consideremos un circuito DC con una batería, un amperímetro y un resistor. c R a + V bat

3 Claramente el voltaje entre el ánodo y cátodo del resistor, denotado por a y c, respectivamente, es simplemente V bat. Considerando que este voltaje pueda ser positivo o negativo (dando vuelta la batería), la gráfica de la corriente vs. voltaje es típicamente una recta (relación lineal en un circuito Ohmico). Ahora reemplacemos el resistor por un tubo al vacío con una placa de ánodo y una de cátodo, ésta última que se pueda calentar de alguna forma (normalmente con otro circuito ohmico, que no vamos a dibujar). Debido a la alta temperatura del cátodo, algunos electrones de la superficie del metal logran adquirir suficiente energía para salir, formando una nube de electrones junto al cátodo. Esto se llama emisión termiónica. cátodo caliente Es importante saber además que hay una energía de + V bat umbral, llamada función de trabajo, que es la mínima energía que necesita absorber un electrón para liberarse del metal. Se puede pensar que los electrones en el metal están ligados como las moléculas de un líquido están atrapadas dentro de un vaso. Para salir del vaso, las moléculas deben subir hasta el borde del vaso (adquirir energía potencial). Las moléculas que menos energía requieren son las que están en la superficie del líquido, y a ésas les cuesta una energía para salir. A las demás moléculas, que yacen a más profundidad, les cuesta más energía que para salir. Así, es la mínima energía necesaria para liberarse del vaso. El efecto térmico saca electrones con distintas velocidades y a una tasa dada (número de electrones que salen por segundo). Si se aumenta la temperatura, salen más electrones y con mayor energía. Al aplicar un voltaje positivo (como en la figura), aparece un campo eléctrico entre los electrodos, que acelera a los electrones hacia el ánodo y se establece una corriente en el circuito. Si uno aumenta el voltaje, la corriente no varía substancialmente, porque simplemente está limitada por la tasa de emisión de electrones desde el cátodo (un voltaje mayor los hace viajar en menos tiempo entre los electrodos, pero la cantidad de ellos es la misma, de modo que por el circuito sigue habiendo la misma corriente). Si hacemos V=0, en realidad los electrones siguen llegando hacia el ánodo (aunque difundiéndose lentamente, y por lo tanto formando una nube espesa entre las placas), y la corriente sigue aproximadamente igual (el tubo se comporta como una fuente de electricidad!!!). Si aplicamos un voltaje negativo, el campo eléctrico frenará a los electrones que transitan hacia el ánodo y, de hecho, hará que los menos energéticos se den la vuelta sin llegar al ánodo. Así, la corriente será menor. Si sigo aumentando el voltaje negativo, se irán frenando más y más electrones y la corriente disminuirá hasta que finalmente ningún electrón logre llegar al ánodo. A partir de ahí, para mayores ánodo

4 voltajes negativos, la corriente permanecerá en cero. Un gráfico (en gruesa aproximación) de vs. V para la situación es el siguiente (ver curva sólida): Además, es importante entender que si aumentamos la temperatura, la corriente será mayor y, además, el valor de V para el cual la corriente se hace cero se desplazará hacia la izquierda (ver curva punteada). Esto último se debe a que a mayor temperatura, salen electrones más energéticos, que requieren de un mayor voltaje para frenarlos. Finalmente, es Emisión termiónica importante decir que la corriente demora en establecerse, tiempo que depende inversamente de la potencia del calefactor. V Vamos ahora al efecto fotoeléctrico, como lo descubrió Lenard. Aquí usamos un circuito similar, pero en vez de calentar el cátodo, hacemos incidir luz sobre él. Nuevamente es energía lo que llega al cátodo, la que nuevamente arranca electrones y así aparece una corriente y nuevamente la corriente es mayor si la potencia incidente (en este caso, cátodo ánodo de la luz) es mayor. También observamos que si aplicamos un voltaje inverso, la corriente disminuye, y a medida que vamos aumentando ese voltaje inverso, la corriente va disminuyendo, hasta que alcanzamos un voltaje (llamado V stop ) para el cual la corriente se anula. Todo esto es + V bat razonable y esperado, y en cierta manera se parece al experimento de emisión termiónica (salvo que en este caso, la llegada a cero de la corriente es más clara y definida que en el caso térmico). Sin embargo, hay tres sorpresas que aparecen en este fenómeno: 1. la emisión de electrones no ocurre si la frecuencia de la luz está bajo un cierto valor de umbral, sin importar cuánto sea la intensidad de la luz. 2. si la frecuencia de la luz está sobre el umbral, la emisión es inmediata, sin importar la intensidad de la luz (es decir, no hay que esperar ninguna acumulación de energía, como en el caso térmico). 3. Al aplicar un voltaje inverso, el valor V stop para el cual la corriente se hace cero (que corresponde a la máxima energía cinética de los electrones liberados) es independiente de V stop Efecto fotoeléctrico V

5 la intensidad de la luz. V stop sólo depende de la frecuencia de la luz. En el gráfico, cada curva representa la corriente del circuito vs. el voltaje aplicado, para una frecuencia e intensidad de la luz dados. Las curvas superiores corresponden a mayor intensidad de la luz. Note que el voltaje V stop no cambia! Por otro lado, si uno usa luz de frecuencia mayor (más ultra-violeta ), V stop se desplaza hacia la izquierda, y si se usa luz de frecuencia menor, V stop se acerca hacia el valor cero. De hecho, para cada material hay un valor de frecuencia de la luz a la cual V stop se hace cero. A esa frecuencia o cualquier valor menor, simplemente la luz no es capaz de sacar electrones (incluso aunque V sea positivo salvo que sea un voltaje gigantesco, como el que se usa en tubos de Crookes!). Claramente el papel que juega la frecuencia de la radiación parece ser muy importante. Lo raro es que eso no tiene ninguna explicación dentro de lo que conocemos de la teoría electromagnética clásica: todos los problemas que estamos viendo son de tipo energético. Eso debería tener que ver con la magnitud de los campos, la intensidad de la onda o los tiempos de exposición, pero qué tiene que ver la frecuencia de la onda en todo esto? Einstein tomó una idea que había usado Max Planck algunos años antes, para explicar la radiación térmica (radiación que emite un cuerpo en equilibrio a una temperatura dada). La idea de Planck era que la radiación y la materia no se transfieren energía en forma continua, sino sólo en unidades discretas o cuantos, cuyo valor es proporcional a la frecuencia de la onda: Ecuanto = h ν, donde h es una constante universal (llamada constante de Planck). Planck no trató de explicar por qué esto es así. Simplemente descubrió que, por raro que parezca, si uno asume esta propuesta, los cálculos teóricos coinciden perfectamente con las mediciones experimentales. Einstein tomó esta propuesta y fue un poco más lejos: él postuló que no sólo se trataba de unidades de transferencia de energía, sino de una cuantización misma de la luz: estos cuantos son partículas de luz, de energía hν y momentum hν c, es decir h λ (recuerde que para una onda, λν = c, y para una partícula de masa cero, E= pc). Por qué masa cero? Porque la luz debe moverse a velocidad c, y para que una partícula se mueva a velocidad c, la única forma consistente con la Relatividad es que su masa sea cero!. Suponiendo esto, y sabiendo que cada metal tiene una cierta función de trabajo, es fácil deducir todo el comportamiento del efecto fotoeléctrico recién descrito. Un haz de luz de frecuencia dada corresponde a un chorro de cuantos de luz o fotones, cada uno de energía dada por la frecuencia. La intensidad de la luz, por otro lado, depende de la cantidad de fotones en el haz (análogo a cualquier flujo de partículas, o a las gotas de lluvia: la cantidad de agua que cae por unidad de tiempo depende de la cantidad de gotas que caen por unidad de tiempo y la cantidad de agua que trae cada gota).

6 Cuando el haz incide sobre el metal, el proceso de absorción de energía ocurre a nivel de cada fotón por cada electrón, uno a uno. Si la energía del fotón es suficiente, el electrón podrá absorber esa energía, de la cual una parte la gastará en energía potencial para salir del metal (la función de trabajo o más, dependiendo de cuán profundamente haya estado ligado el electrón), y el resto le quedará afuera en forma de energía cinética: hν = E + E Los electrones menos ligados (aquéllos que sólo necesitan saldrán con la máxima energía cinética de entre todos los que salen: hν = φ+ E K max Listo! Esto lo explica todo: pot K Epot = φ para liberarse), El voltaje de frenado es aquél que logra frenar al más energético de todos los electrones que salen del metal, haciendo que se devuelva sin llegar al ánodo (haciendo que =0). Esto significa simplemente que Vstop = EK max. En efecto, hemos por lo tanto encontrado que: hν = φ+ V stop Es decir: 1. V stop sólo depende de la frecuenciade la luz, no de la intensidad. 2. V stop es mayor si la frecuencia es mayor, y es menor si la frecuencia es menor. 3. Existe un valor finito de frecuencia de la luz para la cual V stop se hace cero, lo que corresponde a decir que la máxima energía cinética de salida de los electrones se hace cero o, en otras palabras, los fotones de la luz no son lo suficientemente energéticos para vencer la función de trabajo y, por lo tanto, no salen electrones! Ese valor de frecuencia es simplemente: νc φ h y su valor depende, efectivamente, de cada material. Por otro lado, si uno hace una serie de experimentos, iluminando un material dado sucesivamente con luz de distintas frecuencias y buscando el valor de V stop para cada caso, comprobará que encontrará la relación hν = φ+ Vstop. Adicionalmente, si repite el experimento con otros materiales, verá que encontrará una relación similar, con otro valor de φ, pero siempre encontrará el mismo valor de h!!! Ese tipo de experimentos fue lo que hizo Millikan, comprobando la veracidad de la hipótesis de Einstein, y encontrando el valor de h con una precisión de 0,5%, la más alta precisión a esa fecha, y consistente con el valor de h que se encuentra midiendo el espectro de radiación térmica.

7 PREGUNTAS: 1. Sabiendo lo que es el efecto fotoeléctrico, tiene sentido lo que descrubrió Hallwachs (el metal cargado negativamente se descarga al incidir luz UV sobre él, pero no se descarga si está cargado positivamente)? 2. Le parece a usted razonable lo descubierto por Elster y Geitel de que la corriente de emisión aumenta con la intensidad de la luz? 3. Considere lo que descubrió Lenard: la energía máxima de salida de los electrones no dependía de la intensidad de la luz. Por qué esto es extraño? Qué habría esperado Lenard que ocurriera? 4. Vea el gráfico aproximado de la emisión termiónica. Le parece razonable que la corriente sea independiente del voltaje, cuando éste sea positivo? Puede visualizar la nube de electrones que va desplazándose entre los electrodos? En qué zona la nube es más densa? En qué zona avanza más rápido? Ahora, si aumentamos el voltaje, cómo cambia la nube? Qué debería mantenerse constante? (piense en flujos). 5. En el mismo gráfico de la emisión termiónica, le parece razonable la gráfica que muestra un quiebre brusco de la pendiente en el punto donde la corriente se hace cero? O debería ser más suave la caída? Piense a qué se debe el fenómeno, en términos de los electrones que salen del metal con toda una distribución de energías posibles. 6. Vea ahora el gráfico del efecto fotoeléctrico. Cada curva está dada para una frecuencia e intensidad fijas. Las curvas de más arriba corresponden a frecuencias mayores o intensidades mayores? Cómo cambiaría la curva si se cambiara el otro parámetro? 7. Averigüe el valor de la constante de Planck. Exprésela en electronvolt segundo. 8. Qué es un electronvolt? Lo puede expresar en términos de Joule?; de Volt?; de Watt?; de Coulomb?; de Ampere?; de metro?; de Caloría?; de Coulomb Volt? 9. Para un metal cuya función de trabajo es 1 ev (electronvolt), cuál es la máxima longitud de onda de luz que logra sacar electrones? Y si a función de trabajo fuera de 2 ev? Cuál es el valor de la función de trabajo que separa a los metales que emiten con luz visible de aquéllos que no logran emitir con luz visible? C.D., Abril 2006

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO

Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO Ejercicios de exámenes de Selectividad FÍSICA MODERNA: EFECTO FOTOELÉCTRICO 1. Un haz de luz monocromática de longitud de onda en el vacío 450 nm incide sobre un metal cuya longitud de onda umbral, para

Más detalles

Tema 11: Física Cuántica

Tema 11: Física Cuántica Tema 11: Física Cuántica 11.1 Introducción. 11. Limitaciones de la Física Clásica. 11.3 Efecto fotoeléctrico. 11.4 Dualidad onda-corpúsculo; hipótesis de De Broglie 11.5 Principio de indeterminación de

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA. 1. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen.

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA. 1. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen. Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA INTRODUCCIÓN RECOMENDACIONES. Se hará una lista con los datos, pasándolos al Sistema Internacional si no lo estuviesen. 2. Se hará otra lista con las incógnitas.

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

INTERACCION DE LA RADIACION CON LA MATERIA

INTERACCION DE LA RADIACION CON LA MATERIA Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba

Más detalles

Principios básicos de Absorciometría

Principios básicos de Absorciometría Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo

Más detalles

PAAU (LOXSE) Setembro 2002

PAAU (LOXSE) Setembro 2002 PAAU (LOXSE) Setembro 00 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica

Más detalles

Anexo I: ESPECTROSCOPIA ULTRAVIOLETA-VISIBLE

Anexo I: ESPECTROSCOPIA ULTRAVIOLETA-VISIBLE Anexo I: ESPECTROSCOPIA ULTRAVIOLETA-VISIBLE Conceptos previos Radiación electromagnética: es la propagación de energía a través del espacio sin soporte de materia, es decir, a través de ondas producidas

Más detalles

Las estructura electrónica de los átomos

Las estructura electrónica de los átomos Las estructura electrónica de los átomos Al preguntarnos por las diferencias entre las propiedades químicas y físicas de los elementos, así como, su forma de enlazarse y la forma en la cual emiten o absorben

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s):

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s): CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA Laboratorio de equilibrio y cinética Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Conocer y aplicar los fundamentos

Más detalles

Índice general. Introducción 1

Índice general. Introducción 1 Índice general Introducción 1 1. La atmósfera 3 1.1. Introducción........................ 4 1.2. Composición de la atmósfera............... 4 1.3. La estructura de la atmósfera.............. 8 1.3.1. La

Más detalles

:: INTRODUCCIÓN [10.1]

:: INTRODUCCIÓN [10.1] :: INTRODUCCIÓN [10.1] Si en un circuito, es de interés medir una variable eléctrica del tipo; caída de tensión, intensidad de corriente I u otra desde los terminales o a través de un elemento tal como

Más detalles

GUÍA DETALLADA DE LA DEMOSTRACIÓN

GUÍA DETALLADA DE LA DEMOSTRACIÓN DEMO 6 Difracción de electrones GUÍA DETALLADA DE LA DEMOSTRACIÓN Introducción La naturaleza cuántica de los sistemas físicos, descritos por ondas de probabilidad, implica una relación entre su longitud

Más detalles

El espectro electromagnético y los colores

El espectro electromagnético y los colores Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas

Más detalles

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO

DEPARTAMENTO DE : FÍSICA Y QUÍMICA CURSO 14-15 OBJETIVOS Y CONTENIDOS NO ALCANZADOS EN FÍSICA 2º BACHILLERATO El informe sobre los objetivos y contenidos no alcanzados se ha elaborado teniendo como referencia la ORDEN de 15 de diciembre de 2008, (Artículo 7).por la que se regula la evaluación de bachillerato en

Más detalles

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev. MECANISMOS DE CONDUCCION ELECTRICA EN GASES Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla de vidrio, la cual está ocupada únicamente

Más detalles

Química Biológica I TP 1: ESPECTROFOTOMETRIA

Química Biológica I TP 1: ESPECTROFOTOMETRIA Química Biológica I TP 1: ESPECTROFOTOMETRIA OBJETIVOS: - Reforzar el aprendizaje del uso del espectrofotómetro. - Realizar espectro de absorción de sustancias puras: soluciones de dicromato de potasio.

Más detalles

Solución de los problemas del Capítulo 1

Solución de los problemas del Capítulo 1 Nota: los valores de las constantes que puede necesitar para los cálculos están dados en la bibliografía de referencia. Complete la siguiente tabla Qué información mínima se necesita para caracterizar

Más detalles

DISEÑO EXPERIMENTAL REFRACCIÓN DE LA LUZ

DISEÑO EXPERIMENTAL REFRACCIÓN DE LA LUZ DISEÑO EXPERIMENTAL REFRACCIÓN DE LA LUZ FOGANTINI, Paula Natalia Instituto Jesús en el Huerto de los Olivos, Olivos, Buenos Aires Profesor guía: SALABARRíA, Marcela INTRODUCCIÓN La luz es radiación electromagnética

Más detalles

AUTOEVALUACIÓN. Elaborada por: Prof. Yuri Posadas Velázquez

AUTOEVALUACIÓN. Elaborada por: Prof. Yuri Posadas Velázquez AUTOEVALUACIÓN Elaborada por: Prof. Yuri Posadas Velázquez Instrucciones: Después de haber estudiado la guía y resuelto las actividades de aprendizaje, procede a resolver esta sección. Sólo hasta que hayas

Más detalles

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina

ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina ONDAS Y PARTÍCULAS UN NUEVO ENFOQUE QUE CONDUCE A LAS FÓRMULAS DE LA RELATIVIDAD ESPECIAL. Por Marcelo A. Crotti - Argentina INTRODUCCIÓN En este trabajo se muestra la manera de obtener las fórmulas de

Más detalles

Física atómica y nuclear

Física atómica y nuclear Física atómica y nuclear Experimentos introductorios ualismo onda-partícula L Hojas de Física P6.1.5.1 ifracción de electrones en una red policristalina (ifracción de ebye-scherrer) Objetivos del experimento

Más detalles

OTRAS APLICACIONES CON FIBRAS ÓPTICAS

OTRAS APLICACIONES CON FIBRAS ÓPTICAS APLICACIONES El campo de aplicación de las fibras ópticas es muy amplio y aumenta día a día. Algunas de las aplicaciones más importantes son: - Telecomunicaciones: En este apartado cabe incluir la red

Más detalles

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE LA TECNOLOGÍA DE LA ENERGÍA SOLAR TÉRMICA Introducción Un sistema de energía solar térmica es aquel que permite

Más detalles

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén

Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén Tema 2. La radiación electromagnética (REM) Teledetección 2º Curso de IT en Topografía EPS Jaén 1. Movimiento ondulatorio 2. La radiación electromagnética (REM) 3. El espectro electromagnético 4. Terminología

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON

5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

El modelo cuántico de átomo

El modelo cuántico de átomo El modelo cuántico de átomo IES La Magdalena. Avilés. Asturias En los últimos años del s. XIX y principios del XX el estudio de la interacción entre la materia y las ondas electromagnéticas llevó a la

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN ANEXO VII (continuación) CONTENIDOS DE LA PARTE ESPECÍFICA DE LA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR PARTE ESPECÍFICA OPCIÓN B EJERCICIO DE TECNOLOGÍA INDUSTRIAL 1. RECURSOS ENERGÉTICOS.

Más detalles

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones

La Luz y las ondas electromagnéticas. La luz y las ondas electromagnéticas Cuestiones La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Experimento 7 EL OSCILOSCOPIO Y LAS SEÑALES ALTERNAS. Objetivos. Información preliminar. Teoría. Figura 1 El tubo de rayos catódicos

Experimento 7 EL OSCILOSCOPIO Y LAS SEÑALES ALTERNAS. Objetivos. Información preliminar. Teoría. Figura 1 El tubo de rayos catódicos Experimento 7 EL OSCILOSCOPIO Y LAS SEÑALES ALTERNAS Objetivos 1. Describir los aspectos básicos del tubo de rayos catódicos 2. Explicar y describir las modificaciones que sufre un tubo de rayos catódicos

Más detalles

Relación Problemas Tema 9: La luz y las ondas electromagnéticas

Relación Problemas Tema 9: La luz y las ondas electromagnéticas Relación Problemas Tema 9: La luz y las ondas electromagnéticas Problemas 1. Una onda electromagnética (o.e.m.) cuya frecuencia es de 10 14 Hz y cuyo campo eléctrico, de 2 V/m de amplitud, está polarizado

Más detalles

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN Implementación de un sistema básico para Espectroscopia de gases atómicos Heriberto Peña Pedraza Facultad de Ciencias Básicas. Departamento de Física Universidad de Pamplona Grupo de Investigaciones Ópticas

Más detalles

CI Politécnico Estella

CI Politécnico Estella SÍNTESIS PROGRAMACIÓN DEL MÓDULO/ DEPARTAMENTO: FÍSICA Y QUÍMICA GRUPO/CURSO: 2BT/2014-2015 MÓDULO / : FIS PROFESORA: NORA FRÍAS GIL 3.- CONTENIDOS: 3.1.- Enumera las Unidades Didácticas o Temas: 1ª 1

Más detalles

CELDAS SOLARES INTRODUCCION

CELDAS SOLARES INTRODUCCION CELDAS SOLARES INTRODUCCION La energía eléctrica no esta presente en la naturaleza como fuente de energía primaria y, en consecuencia, sólo podemos disponer de ella mediante la transformación de alguna

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

Caracterización de un contador Geiger. Absorción de radiación por materiales. 1.- Curva de respuesta del contador Geiger

Caracterización de un contador Geiger. Absorción de radiación por materiales. 1.- Curva de respuesta del contador Geiger Caracterización de un contador Geiger. Absorción de radiación por materiales Física Nuclear y de Partículas y Estructura Nuclear 1.- Curva de respuesta del contador Geiger Un contador Geiger-Müller es

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN 1. OBJETIVOS. Conocer y aplicar la ley de Lambert - Beer Determinar la concentración de una solución por espectrofotometría.

Más detalles

Fundamentos de la Mecánica Estadística (la explicación microscópica de la Termodinámica)

Fundamentos de la Mecánica Estadística (la explicación microscópica de la Termodinámica) Fundamentos de la Mecánica Estadística (la explicación microscópica de la Termodinámica) C. Dib Depto de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile (Dated: June 16, 21) La Termodinámica

Más detalles

El sistema de suministro de potencia de un vehículo solar

El sistema de suministro de potencia de un vehículo solar Page 1 of 6 El sistema de suministro de potencia de un vehículo solar El sistema de suministro de potencia de un vehículo solar consistente en un conjunto de células fotovoltaicas (panel solar), un grupo

Más detalles

6. ESPECTROS DE EMISIÓN ATÓMICA

6. ESPECTROS DE EMISIÓN ATÓMICA 6. ESPECTROS DE EMISIÓN ATÓMICA 6.1. OBJETIVOS Medir la longitud de onda de las líneas espectrales emitidas en la región visible por varios gases altamente diluidos. Medir la constante de Rydberg a partir

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010)

C. Trallero-Giner CINVESTAV-DF (2010) Dispersión Raman en Sólidos I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales C. Trallero-Giner CINVESTAV-DF (2010) III. Aplicaciones

Más detalles

EL EFECTO FOTOELÉCTRICO

EL EFECTO FOTOELÉCTRICO 1 EL EFECTO FOTOELÉCTRICO M.A. Rodríguez-Meza 1 y J.L. Cervantes-Cota Depto. De Física, Instituto Nacional de Investigaciones Nucleares Apdo. Postal 18-1027, México D.F. 11801, México Resumen Presentamos

Más detalles

CURSO DE PREPARACIÓN DE LAS PRUEBAS LIBRES PARA LA OBTENCIÓN DEL TÍTULO DE BACHILLER PARA PERSONAS MAYORES DE VEINTE AÑOS FÍSICA

CURSO DE PREPARACIÓN DE LAS PRUEBAS LIBRES PARA LA OBTENCIÓN DEL TÍTULO DE BACHILLER PARA PERSONAS MAYORES DE VEINTE AÑOS FÍSICA FÍSICA CURSO DE PREPARACIÓN DE LAS PRUEBAS LIBRES PARA LA OBTENCIÓN DEL TÍTULO DE BACHILLER PARA PERSONAS MAYORES DE VEINTE AÑOS FÍSICA CONTENIDOS: TEMA 1 FUNDAMENTOS MECÁNICOS 1.1.- Operaciones con vectores.

Más detalles

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 CA3 Actividades Cuál es tu temperatura favorita? Si alguien te preguntase a qué temperatura te gustaría vivir, seguramente elegirías

Más detalles

Osciloscopio. Primeros pasos

Osciloscopio. Primeros pasos Osciloscopio. Primeros pasos Objetivos Conocer el funcionamiento básico de un osciloscopio analógico. Aprender a medir amplitudes y periodos en un osciloscopio. Introducción. Los osciloscopios son de gran

Más detalles

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES 1. Objetivos docentes Familiarizarse con las propiedades ópticas de refracción y reflexión de materiales transparentes. 2.

Más detalles

La radiación es el transporte o la propagación de energía en forma de partículas u

La radiación es el transporte o la propagación de energía en forma de partículas u La radiación es el transporte o la propagación de energía en forma de partículas u ondas. Si la radiación es debida a fuerzas eléctricas o magnéticas se llama radiación electromagnética. Pero la materia

Más detalles

ONDAS ELECTROMAGNÉTICAS

ONDAS ELECTROMAGNÉTICAS 10 ONDAS ELECTROMAGNÉTICAS 10.1. LA SÍNTESIS ELECTROMAGNÉTICA 1. Realiza un cuadro comparativo con las principales características del campo eléctrico y del campo magnético. Las principales analogías y

Más detalles

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s UNA CORRIENTE i de electricidad existe en cualquier región donde sean transportadas cargas eléctricas desde un punto a otro punto de esa región.supóngase que la carga se mueve a través de un alambre.si

Más detalles

Espectroscopia de absorción visible-ultravioleta

Espectroscopia de absorción visible-ultravioleta Práctica 6 Espectroscopia de absorción visible-ultravioleta Objetivo Parte A.- Comprobación de la Ley de Beer-Lambert y determinación del coeficiente de absorción molar para disoluciones acuosas de NiSO

Más detalles

SUPERFICIE ESPECULAR Y LAMBERTIANA

SUPERFICIE ESPECULAR Y LAMBERTIANA SUPERFICIE ESPECULAR Y LAMBERTIANA Especular: es la superficie ideal en la que se cumple perfectamente la ley de la reflexión (ángulo incidente = ángulo reflejado). Lambertiana: es la superficie, también

Más detalles

INTERFERENCIA DE ONDAS DE LUZ

INTERFERENCIA DE ONDAS DE LUZ INTERFERENCIA DE ONDAS DE LUZ Objetivo: Material: Deducir la naturaleza de las ondas de luz analizando patrones de interferencia. 1. Interferómetro de precisión. 2. Láser diodo. 3. Plataforma mecánica

Más detalles

LA TRANSMISION RELACIONES DE CAJA Y DIFERENCIAL

LA TRANSMISION RELACIONES DE CAJA Y DIFERENCIAL LA TRANSMISION RELACIONES DE CAJA Y DIFERENCIAL BREVE DESCRIPCION DE LA TRANSMISION EN UN AUTO DE TRACCION TRASERA VELOCIDAD DE ROTACION: Necesidad de reducirla PRIMERA ETAPA EN LA REDUCCION: Caja de cambios

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias

DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias DEPARTAMENTO DE FÍSICA Y QUÍMICA IEES SEVERO OCHOA TÁNGER FÍSICA SEGUNDO DE BACHILLERATO CONTENIDOS 1. Contenidos comunes: Utilización de estrategias básicas de la actividad científica, tales como: el

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

Práctica 1: Introducción experimental a la Óptica

Práctica 1: Introducción experimental a la Óptica Óptica: Introducción experimental 1 Práctica 1: Introducción experimental a la Óptica 1.- Introducción 2.- El láser 3.- Óptica geométrica 4.- Óptica ondulatoria 1.- Introducción Destaca en la historia

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

La energía de las ondas

La energía de las ondas 7 La energía de las ondas 1. Propagación y clasificación de las ondas 102 2. Magnitudes características de las ondas 104 3. Algunos fenómenos ondulatorios 106 4. El sonido 108 5. La luz. Reflexión de la

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA

PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA PRÁCTICA 7 INSTRUMENTACIÓN BÁSICA EN QUÍMICA OBJETIVOS En esta práctica se tratarán aspectos de interés relacionados con la instrumentación básica utilizada en química, haciendo especial hincapié en la

Más detalles

Práctica de espectrofotometría UV-Visible (Cumplimiento de la Ley de Lambert-Beer y análisis de mezclas)

Práctica de espectrofotometría UV-Visible (Cumplimiento de la Ley de Lambert-Beer y análisis de mezclas) Práctica de espectrofotometría UV-Visible (Cumplimiento de la Ley de Lambert-Beer y análisis de mezclas) FUNDAMENTO DE LA TÉCNICA Como es sabido, las técnicas espectroscópicas se basan en la interacción

Más detalles

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas Experimento 8 EL CIRCUITO RC Objetivos 1. Describir los aspectos básicos del circuito RC 2. Explicar y describir la dependencia del voltaje y la corriente con respecto al tiempo en los procesos de carga

Más detalles

Efectos del ruido en las comunicaciones electrónicas. Alfonso Cuesta Hernández

Efectos del ruido en las comunicaciones electrónicas. Alfonso Cuesta Hernández Efectos del ruido en las comunicaciones electrónicas Alfonso Cuesta Hernández 17 de abril de 2001 2 www.ponchocuesta.50megs.com En general, el ruido eléctrico se define como cualquier energía eléctrica

Más detalles

LUZ E ILUMINACIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted:

LUZ E ILUMINACIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted: LUZ E ILUMINACIÓN OBJETIVOS Después de completar el estudio de este tema podrá usted: 1. Analizar la investigación histórica acerca de la naturaleza de la luz y explicar porque la luz a veces se comporta

Más detalles

POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO FÍSICA II. 58 hrs. CLAVE: 316 HRS. POR SEMANA: 4 hrs.

POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO FÍSICA II. 58 hrs. CLAVE: 316 HRS. POR SEMANA: 4 hrs. N-1 R POR UNA CULTURA HUMANISTA Y TRASCENDENTE R FORMATO DE PLANEACIÓN DE CURSO CATEDRÁTICO: CARRERA: OSCAR REYES BALCAZAR INGENIERÍA EN SISTEMAS COMPUTACIONALES ASIGNATURA INICIO DEL CURSO: 07 de mayo

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 5 Tema: OSCILOSCOPIO MEDICIÓN DE TIEMPO, FRECUENCIA Y FASE Introducción El osciloscopio es uno de los instrumentos de medida más

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA.

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Asignatura: Física III Año 2009 Universidad Nacional de Tucumán Facultad de ciencias exactas y Tecnología Departamento de Física PROMEI Sistema

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación

Más detalles

Interferómetro de Fizzeau Física III

Interferómetro de Fizzeau Física III Interferómetro de Fizzeau Física III Universidad Nacional de Mar del Plata Facultad de Ingeniería Fecha de Entrega: Jueves 20 de noviembre de 2014 Alumnos: Avalos Ribas, Ramiro Cardoso, Federico Furno,

Más detalles

Fundamentos de Transmisión y Propagación de Ondas

Fundamentos de Transmisión y Propagación de Ondas Fundamentos de Transmisión y Propagación de Ondas TEMA I. EL MODELO ELECTROMAGNÉTICO BASADO EN LAS ECUACIONES DE MAXWELL. TEMA II. MEDIOS Y TRANSFERENCIA DE ENERGÍA. TEMA III. ONDAS PLANAS HOMOGÉNEAS (OPH).

Más detalles

TRABAJO Y ENERGIA MODULO 5. Autor: Adriana Rodríguez M.

TRABAJO Y ENERGIA MODULO 5. Autor: Adriana Rodríguez M. MODULO 5 Autor: Adriana Rodríguez M. Contenido 1. Energía 1.1Video explicativo Energía 1.2Propiedades de la energía 1.3Propiedades de la energía 1.4Animación energía 1.5Fuentes de energía 1.6Animación

Más detalles

Técnicas analíticas para la determinación de arsénico: Espectrometría atómica Proyecto Arsénico II

Técnicas analíticas para la determinación de arsénico: Espectrometría atómica Proyecto Arsénico II Problemática y alternativas tecnológicas para la remoción de arsénico en la obtención de agua potable Técnicas analíticas para la determinación de arsénico: Proyecto Arsénico II Espectroscopía La espectroscopía

Más detalles

RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS

RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS 1. Pueden ser generadas por la aceleración de cargas eléctricas oscilantes con alta frecuencia. 2. Las ondas se desplazan a través del vacio con: B

Más detalles

INSTITUCIÓN EDUCATIVA MARIANO OSPINA PÉREZ TALLER DE TECNOLOGÍA GRADO 7 3P

INSTITUCIÓN EDUCATIVA MARIANO OSPINA PÉREZ TALLER DE TECNOLOGÍA GRADO 7 3P 1 La energía es la capacidad de los cuerpos para producir trabajo. Trabajo es la fuerza necesaria para producir movimiento. Hay muchos tipos de energía, aquí intentaremos enumerar la mayoría de ellos con

Más detalles

Descripción y manejo del Osciloscopio

Descripción y manejo del Osciloscopio PRACTICA Nº 1 EL OSCILOSCOPIO Objetivos Esta práctica persigue dos objetivos: alcanzar una comprensión adecuada del funcionamiento de un osciloscopio y, en base a esta comprensión, aprender a utilizarlo

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

INSTRUMENTACIÓN PARA ESPECTROSCOPIA

INSTRUMENTACIÓN PARA ESPECTROSCOPIA INSTRUMENTACIÓN PARA ESPECTROSCOPIA Los instrumentos utilizados para el estudio de la absorción o emisión de la radiación electromagnética como función de la longitud de onda, son llamados Espectrómetros

Más detalles

Sobre un punto de vista heurístico concerniente a la producción y transformación de la luz

Sobre un punto de vista heurístico concerniente a la producción y transformación de la luz Sobre un punto de vista heurístico concerniente a la producción y transformación de la luz A. Einstein Berna, 17 de marzo de 195 Annalen der Physik 17 (195): 132-148 Existe una diferencia formal y profunda

Más detalles

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS

UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS UNA APROXIMACION EXPERIMENTAL PARA EL ESTUDIO DE LA RADIACIÓN TERMICA DE LOS SÓLIDOS Diana Reina, Frank Mendoza, Nelson Forero 1 Universidad Distrital Francisco José de Caldas RESUMEN Se ha diseñado y

Más detalles

Práctica 4. Interferencias por división de amplitud

Práctica 4. Interferencias por división de amplitud Interferencias por división de amplitud 1 Práctica 4. Interferencias por división de amplitud 1.- OBJETIVOS - Estudiar una de las propiedades ondulatorias de la luz, la interferencia. - Aplicar los conocimientos

Más detalles

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad.

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad. Potencial Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción El concepto de energía potencial

Más detalles

1.Ondas electromágneticas. 1.1 Qué son?

1.Ondas electromágneticas. 1.1 Qué son? 1.Ondas electromágneticas. 1.1 Qué son? El descubrimiento de las ondas electromagnéticas fue uno de los avances más importantes del siglo XIX. Cuando Maxwell postuló la existencia de estas ondas consiguió

Más detalles

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR INTRODUCCIÓN La fluorescencia es un proceso de emisión en el cual las moléculas son excitadas por la absorción de radiación electromagnética. Las especies excitadas

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 2. La energía 1 ÍNDICE 1. Introducción 2. Tipos de Interacciones 3. Fuerzas 4. Tipos de Energía 5. Formas

Más detalles

ÓPTICA. La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos que experimenta y produce.

ÓPTICA. La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos que experimenta y produce. C U R S O: FÍSICA COMÚN MATERIAL: FC-14 ÓPTICA La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos que experimenta y produce. Naturaleza de la luz Teoría

Más detalles

INFORME SOBRE EMISIONES ELECTROMAGNÉTICAS DE LOS SISTEMAS DE TELEFONÍA MÓVIL Y ACCESO FIJO INALÁMBRICO

INFORME SOBRE EMISIONES ELECTROMAGNÉTICAS DE LOS SISTEMAS DE TELEFONÍA MÓVIL Y ACCESO FIJO INALÁMBRICO INFORMACIÓN DE INTERÉS SOBRE LAS EMISIONES RADIOELÉCTRICAS 1 Introducción Numerosas aplicaciones y productos de uso cotidiano en la vida actual utilizan la energía electromagnética. Entre ellos la telefonía

Más detalles

OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx

OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx OSCILOSCOPIO CON PANTALLA DE LEDS Marco Antonio Nuño Morales, marco_a_nuno_m@yahoo.com.mx 0.0) INDICE HOJA DE PRESENTACION 1 0.0 INDICE 2 1.0 RESUMEN...3 2.0 ANTECEDENTES...3 2.1 Utilización.3 2.2 Osciloscopio

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en

Más detalles

Introducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e Infrarrojo Cercano

Introducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e Infrarrojo Cercano ntroducción a la Espectroscopía de Absorción Molecular Ultravioleta, Visible e nfrarrojo Cercano ng. Carlos Brunatti Lic. Ana María Martín ntroducción Desde hace muchos años se ha usado el color como ayuda

Más detalles

Interferómetro de Michelson

Interferómetro de Michelson Interferómetro de Michelson Objetivo Medir la longitud de onda de la luz emitida por un laser, determinar la variación del índice de refracción del aire con la presión y evaluar el índice de refracción

Más detalles