La ecuación diferencial que expresa la profundidad como función del tiempo es dh dt. d2 2gh

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La ecuación diferencial que expresa la profundidad como función del tiempo es dh dt. d2 2gh"

Transcripción

1 Problemas de ecuaciones diferenciales ordinarias. (Cap. 7, Kuo) En los siguientes problemas, comparar la solución de Runge-Kutta con la solución en forma cerrada, o bien, comparar la solución de Runge-Kutta con la solución de Euler cuando no se cuente con la solución analítica. En muchos de estos problemas, se deja al lector la elección del tamaño del incremento y de la longitud del intervalo en los procedimientos de Runge-Kutta y de Euler. 1. Un tanque hemisférico de radio R está inicialmente lleno de agua.en el fondo del tanque hay un agujero de radio r por el cual escapa el agua bajo la influencia de la gravedad. La ecuación diferencial que expresa la profundidad del agua como función del tiempo que se ha obtenido es dy r 2 2g 0 2Ry 1/2 y 3/2 donde g 32.2ft/s 2, R 10ft, r 1/12ft. La condición inicial es que en t 0, y 0. Encontrar la relación entre y y t usando los procedimientos de Runge-Kutta y de Euler. 2. Un tanque cilíndrico con un agujero pequeño en su fondo está lleno de agua. Por el agujero fluye el agua bajo la influencia de la gravedad. La ecuación diferencial que expresa la profundidad como función del tiempo es dh d2 2gh D 2 Encontrar la relación por los procedimientos de Runge-Kutta y de Euler. Datos: D 5ft, d 2in, h 0 10ft. Comparar sus resultados con la solución analítica donde h 0 10ft, c 1 d 2 /D 2 2g. t 2 c 1 h 0 h,

2 3. Debajo del tanque descrito en el problema 2, está colocado un segundo tanque de diámetro D b (D b D). En el fondo del segundo tanque hay un agujero de diámetro d b. Es posible que al vaciarse el primer tanque en el segundo se reboce. Datos: D b 4ft, d b 1.5in, H b 10ft. Determinar la altura a la que se puede llenar el segundo tanque sin causar que reboce el de abajo. 4. Sea x la temperatura al tiempo t de un cuerpo inmerso en un medio cuya temperatura está descrita por la expresión Gt 100t 4 La temperatura satisface la ecuación diferencial dx kx kgt, donde k es una constante de proporcionalidad y la condición inicial es que en t 0, x Obtener la relación x t con el procedimiento de Runge-Kutta y comparar el resultado con la solución analítica x kt expkt. k k 5. Encontrar la relación entre velocidad v y altura r para un proyectil que se disparó con una velocidad inicial v 0 desde la superficie de la tierra. La ecuación es v dv g R2 r 2, dr donde R 20,908,800ft, g 32.2ft/s 2, y la condición inicial es v 0 10,000ft/s en r R. Usar el procedimiento de Runge-Kutta y comparar la respuesta con la solución analítica v 2gR 2 /r v 0 2 2gR. 6. La corriente i en el circuito RL forzado a cualquier tiempo t después de cerrar un interruptor a t 0 se puede expresar por la ecuación di Esint Ri/L donde E 100V, L 1H, 600, R 100Ω y la condición inicial es que en t 0, i 0. Resolver numéricamente la ecuación diferencial usando el método de Runge-Kutta y comparar la respuesta con la solución analítica donde Z R 2 2 L 2. i E Z 2 Rsint L cos t LeRt/L, 7. En un recipiente que contiene 120lb de agua se vacían 20lb de azúcar. La concentración porcentual c de la solución a cualquier tiempo t está expresada como c dc 3 k c100 4c, en donde k, el coeficiente de transferencia de masa, es igual La condición inicial es que en t 0, c 0. Encontrar la relación ct por los métodos de Runge-Kutta y de Euler y comparar el resultado con la solución analítica

3 c 1 e0.0098t 7 4e t La curva de disolución del oxígeno representa el cambio en la cantidad de oxígeno disuelto en una corriente a causa de la introducción de una carga polutante. Este cambio es producido por dos efectos principales, disminución de oxígeno debido a la presencia de desperdicios orgánicos y recarga de oxígeno por reaereación atmosférica. Por consiguiente dd K 1 L K 2 D en donde D es el déficit de oxígeno en mg/l, L es la cantidad de materia orgánica que permanece en la corriente medida en términos de la demanda biológica de oxígeno (BOD), y K 1 y K 2 son las tasas de deoxigenación y reaireación, respectivamente. Además, dl K 1 L. La curva de arrastre de oxígeno se usa principalmente para determinar el déficit máximo de oxígeno en la corriente y el tiempo necesario para alcanzar ese déficit. El máximo déficit permisible se usa como base para determinar la máxima carga polutante que puede introducirse a la corriente. Con K y K 2 0.3, el máximo déficit permisible de oxígeno en la corriente D M 8.14, y el déficit de oxígeno al tiempo cero D , disminuir progresivamente el valor inicial de L, L 0, a partir de L 0 24, hasta que el máximo déficit corresponda al valor de D M. Identificar el valor de L y el del tiempo t al cual esto ocurre. 9. La reacción de NO con H 2 se conoce como una reacción de 3er orden y su rapidez está dada por dx kp NO 2x 2 P H2 x, donde x es la presión parcial del producto, k es la constante de la velocidad, P NO y P H2 representan las presiones parciales del NO y del H 2 respectivamente, en la mezcla de reacción antes de que ocurra la reacción; P NO 2x es la presión parcial del NO en el reactor y P H2 x es la presión parcial del H 2 en el reactor a cualquier tiempo después que la reacción inició. En este problema P NO 359mmHg, P H2 400mmHg, k mm 2 s 1 y la condición inicial es que x 0, 0 t 3min. Encontrar la relación xt por el procedimiento de Runge-Kutta y comparar el resultado con la solución analítica. 10. Una barra sobresale de un satélite en un campo de radiación solar. La ecuación diferencial basada en un modelo unidimensional de conducción de calor es en donde dt 2CT 4 dx 5kA 2SDT sin ka K,

4 absortividad 0.4, emisividad 0.4, constante de Stefan-Boltzmann Btu/h ft 2 R 4, A área transversal de la barra, C circunferencia de la barra, D diámetro de la barra 1in, K constante de intergración, L longitud de la barra 3ft, S constante de la radiación solar 425Btu/h ft 2, T temperatura de la barra en R, k conductividad térmica de la barra 100Btu/h ft R, 30 La condición inicial es que en x 3.0ft, T R, y dt/dx 0. Usando los procedimientos de Runge-Kutta y de Euler, encontrar la relación Tx. 11. Se usa un separador estándar de aceite para separar una mezcla de agua y aceite. El nivel de derrame de aceite está 5 ft arriba del extremo inferior de la pared de retención. Obtener la relación vt usando la ecuación

5 en donde dv w o o g 3f w 4D o v 2, D diámetro promedio del glóbulo de aceite 1 16 in, v velocidad vertical del glóbulo de aceite, o densidad del aceite 0.6 w, w densidad del agua, g aceleración debida a la gravedad 32.2ft/s 2, f coeficiente de fricción La condición inicial es que en t 0, v 0 0 t 0.03s. 12. Usar los procedimientos de Euler y de Runge-Kutta para resolver numéricamente las siguientes ecuaciones diferenciales del primer orden. Comparar los resultados con la solución analítica. dy/dx x sinx y. Condición inicial: x 0, y 0.5. Solución analítica: y 2e x x 1 cos x sinx/ dy/dx yx/y 2 x 2. Condición inicial: x , y Solución analítica: y e x2 /2y dy/dx x 2 sinx/y. Condición inicial: x 0, y 1. Solución analítica: y 2 3 x2 2cos x dv/dx 3x 2 2x/8v. Condición inicial: x 3, v 3. Solución analítica: v x/2 x La ecuación diferencial que describe una esfera en la que hay una fuente de calor en su centro se expresa como d 2 T dr 2 dt 2 r w dr k 0, en donde Tr es la temperatura dentro de la esfera y k es la conductividad térmica de la esfera en Btu/h ft. La fuente de calor se mantiene a una temperatura constante T c, mientras que el gradiente de temperatura dt/dr en el centro es cero. El diámetro de la esfera es igual a 2ft. Los demás valores son: w 100Btu/h ft 3, k 212Btu/h ft, T c 900 Cuál es la distribución radial de temperatura de la esfera? Usar el procedimiento de Runge-Kutta y r 0.1ft. 17. Una tira horizontal larga de madera arde en un extremo como muestra la figura.

6 La ecuación diferencial del perfil de temperatura delante del frente de la flama es d 2 T dx 2 Vs k en donde dt 2U dx kl T T a 2 kl T4 T 4 a 1 2 f kl T f 4 T a 4 1 x x 2 H 2 0 V velocidad de propagación a lo largo del eje x de la flama ft/h, s calor específico de la madera 0.55Btu/lb R, densidad de la madera lb/ft 3, k conductividad térmica de la madera 0.2Btu/h ft R, U coeficiente de transferencia de calor media entre la madera y el aire 2.0Btu/h ft 2 R, L espesor de la tira de madera ft, T a temperatura del aire ambiente 530 R, T f temperatura de la flama 2160 R, constante de Stefan-Bolotzmann Btu/h ft 2 R 4, emisividad radiante de la madera 0.9, f emisividad radiante de la flama 0.85, H altura de la flama 0.87in ft. Los datos experimentales demuestran que T 1200 R en x 0.5in y dt/dx en x 0.5in. Integrar la ecuación desde x 0.5in hasta x 2.5in usando el procedimiento de Runge-Kutta. 18. Usar el procedimiento de Runge-Kutta para integrar la ecuación 0.3 d2 Q 5000 dq Q 1, que describe el circuito eléctrico de la figura.

7 Inicialmente t 0 la carga Q 0 y la corriente i Q dq/ 0. Obtener la carga y la corriente a cualquier tiempo t, 0 t s. 19. Una puerta cuelga de un soporte sin fricción inclinado como muestra la figura. La ecuación diferencial que expresa la oscilación de la puerta es d 2 3g sin sin 0, 2 2b en la que g 32.2ft/s 2. Sean los valores iniciales 0 90, d/ t0 4 rad/s. Integrar la ecuación en el intervalo 0 t 3s. 20. La ecuación diferencial de un péndulo simple es d 2 k d 2 g sin 0, 2 L en donde la fuerza de amortiguamiento es proporcional al cuadrado de la velocidad angular. Sean los valores k radio de giro 3.0ft, L 3.0ft, g 32.2ft/s 2 d y las condiciones iniciales 0 80, 0 2 rad/s. Calcular t0 numéricamente las cantidades y en el intervalo 0 t 3s.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 4 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en régimen transitorio Consideraremos la variación de la temperatura con el tiempo así como con la posición,

Más detalles

Física General II. Guía N 1: Hidrostática y Tensión Superficial

Física General II. Guía N 1: Hidrostática y Tensión Superficial Física General II Guía N 1: Hidrostática y Tensión Superficial Problema 1: En algunos lugares de la placa de hielo sobre la isla de Groenlandia, el espesor es de 1 Km. Calcular la presión sobre el suelo

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

Transferencia de Calor Cap. 3. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 3. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 3 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en estado estacionario Con frecuencia es de interés la razón de transferencia de calor a través de un medio,

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Energía y primera ley de la termodinámica

Energía y primera ley de la termodinámica Unidad II Energía y primera ley de la termodinámica - Trabajo. Calor En la unidad 1 se hizo una clasificación de los sistemas en función de que si sus paredes son atravesadas por masa o no, aquí ampliamos

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 ESCALAS DE TEMPERATURA 100 100 180 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 1 Kelvin Grado Celcius Grado Farenheit Kelvin K K K C + 273,15 K (F + 459,67)5/9 Grado Celcius Grado

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

67.18 Mecánica de Fluidos

67.18 Mecánica de Fluidos Ejercicio 2.1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m), cual será la presión

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN LABORATORIO DE OPERACIONES UNITARIAS II Página 1 de 10 LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE 2010-1 CONDUCCIÓN Laura Franco, Yeni Ramírez, Luis García OBJETIVOS: Conducción

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA CIVIL PRÁCTICA DOMICILIARIA II Curso DINÁMICA (IC-244)

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Profesor: Ing. Egliomar Santos Tema : Conducción de calor

Más detalles

Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor

Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor Pregunta 1 Un sifón es un dispositivo útil para extraer líquidos de recipientes. Para establecer el flujo, el tubo debe

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II PROBLEMAS DE FUNDAMENTOS DE FÍSICA II Grupo 511. CURSO 2016/2017. Interacción Magnética. 1.-Encontrar la densidad de corriente supuesta uniforme que se requiere en un alambre horizontal de Al para hacerlo

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD GUI DE PROLEMS PROPUESTOS Nº5: CUERPO RÍGIDO- ELSTICIDD Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas y/o torcas que actúan sobre el cuerpo o sistema

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

Pauta Ayudantía 6. 1 do Semestre Mecánica de Fluidos - Hidrostática

Pauta Ayudantía 6. 1 do Semestre Mecánica de Fluidos - Hidrostática Pauta Ayudantía 6 1 do Semestre 215 Mecánica de Fluidos - Hidrostática Problema 1 Se tiene un tanque de aceite con una parte abierta a la atmosfera y la otra sellada con aire por encima del aceite. Calcule

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Razones de Cambio Relacionadas

Razones de Cambio Relacionadas Razones de Cambio Relacionadas MATE 3031 Cálculo 1 1/0/016 Prof. José G. Rodríguez Ahumada 1 de Actividades.4 Referencia: Sección.6 Razones de cambio relacionados, Ver ejemplos 1 al 5 Ejercicios de Práctica:

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-014-05- Última. Contenido 014-05- Factor de fricción pérdidas por fricción ecuación de Bernoulli: Ejemplo Para que sirve lo que se estudió? v l t v v p g t v G t 0 Factor

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

Análisis del proceso de vaciado.

Análisis del proceso de vaciado. Análisis del proceso de vaciado. Flujo conservativo (lo cual no es verdad): se puede realizar un primer análisis empleando para tal fin la ecuación de Bernoulli La suma de las energías (altura, presión

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Transferencia de Calor Cap. 2. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 2. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 2 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Ecuación de la conducción de calor. Ecuación de la conducción de calor. Objetivos Entender la multidimensionalidad y la dependencia

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0. Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene

Más detalles

PRÁCTICA N 3 ECUACIONES DFERENCIALES

PRÁCTICA N 3 ECUACIONES DFERENCIALES PRÁCTICA N 3 ECUACIONES DFERENCIALES 1. Utiliza el método de Euler para aproximar las soluciones de los problemas de valor inicial siguientes a.,, y b.,, y c.,, y d.,, y e. ( ) ( ),, y f.,, y 2. Las soluciones

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

MECANICA DE LOS FLUIDOS 5 TRASLACION Y ROTACION DE MASAS LIQUIDAS. Ing. Alejandro Mayori

MECANICA DE LOS FLUIDOS 5 TRASLACION Y ROTACION DE MASAS LIQUIDAS. Ing. Alejandro Mayori MECANICA DE LOS FLUIDOS 5 TRASLACION Y ROTACION DE MASAS LIQUIDAS In. Alejandro Mayori 5 TRASLACION Y ROTACION DE MASAS LIQUIDAS 5.1 Introducción - Estudio Fluidos sometidos a movimientos de traslación

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

Estructura estelar estática

Estructura estelar estática Estructura estelar estática Introducción A lo largo de su existencia, una estrella se encuentra en un estado de equilibrio delicado. Pequeños cambios pueden provocar inestabilidades locales o globales.

Más detalles

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

Algunos ejercicios de Ampliación de Cálculo

Algunos ejercicios de Ampliación de Cálculo Algunos ejercicios de Ampliación de Cálculo Pedro Fortuny Ayuso septiembre-diciembre 2012 fortunypedro@uniovi.es 26 de noviembre de 2015 BY: CC Copyright c 2011 2015 Pedro Fortuny Ayuso This work is licensed

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma:

Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma: Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial Temas Selectos de Física I Atividades para preparar Portafolio de evidencias Elaboro: Enrique Galindo Chávez. Nombre:

Más detalles

Selección Instituto Balseiro Problema 1. x 8m

Selección Instituto Balseiro Problema 1. x 8m Problema 1 4m 7m x 8m Dos postes verticales, de 4 y 7 m de altura, se encuentran a una distancia de 8 m uno del otro. Se desea conectar sus extremos superiores con un cable, que además debe tocar el suelo

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones Homogéneas y aplicaciones) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO

Más detalles

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA

APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES ORDINARIAS (EDO) MOTIVACIÓN Se llamará ecuación diferencial a aquella ecuación que contiene una variable dependiente

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Cálculo diferencial de funciones de una variable: problemas propuestos

Cálculo diferencial de funciones de una variable: problemas propuestos Cálculo diferencial de funciones de una variable: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Numero de Reynolds y Radio Hidráulico.

Numero de Reynolds y Radio Hidráulico. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 INDUCCION DE FARADAY Al cambiar el flujo magnético enlazado

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

MODELOS MATEMÁTICOS 2010

MODELOS MATEMÁTICOS 2010 GUIA DE ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS La mayoría de los problemas físicos tiene que ver con relaciones entre las cantidades variables en cuestión. Para resolver los problemas físicos

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

Profesor: Angel Arrieta Jiménez

Profesor: Angel Arrieta Jiménez TALLER DE CENTROIDES, FUERZAS INTERNAS Y DINÁMICA DE CUERPOS RÍGIDOS 1. Hallar las coordenadas del centroide de la superficie sombreada en cada figura. 2. Hallar, por integración directa, la coordenada

Más detalles

Solución de Examen Final Física I

Solución de Examen Final Física I Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Manuel Valenzuela Rendón Centro de Sistemas Inteligentes Tecnológico de Monterrey, Campus Monterrey Octubre 2007 M. Valenzuela (Centro de Sistemas Inteligentes) Ecuaciones Diferenciales

Más detalles

DINAMICA DE FLUIDOS O HIDRODINAMICA.

DINAMICA DE FLUIDOS O HIDRODINAMICA. DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden

Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden Taller de Aplicaciones de las Ecuaciones Diferenciales de primer orden Adrian Montoya Lince Gabriel Alejandro Ceron Viveros David Hincapie Garcia 27 Septiembre de 2015 EJERCICIO 1 El aire de un recinto

Más detalles

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta.

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. Guía de Trabajo Presión, Arquímedes, Bernoulli Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. 1._Una rana en una vaina hemisferica descubre que flota sin

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

. La masa del objeto es:

. La masa del objeto es: SELECCIÓN MÚLTIPLE OLIMIPIADAS PANAMEÑAS DE FÍSICA PRUEBA FINAL PARA EL DECIMOPRIMER NIVEL 2009 SOCIEDAD PANAMEÑA DE FÍSICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ MINISTERIO DE EDUCACIÓN Escoja la mejor respuesta

Más detalles

1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Unidad de medida en el sistema internacional de unidades

1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Unidad de medida en el sistema internacional de unidades PARTE II. EJERCICIOS PROPUESTOS 1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Magnitud Masa Temperatura Cantidad de sustancia Unidad de medida en el sistema internacional

Más detalles

N = γ net (N / V) (u av / 4) (2πrl)

N = γ net (N / V) (u av / 4) (2πrl) Anexo III III- Teoría de los reactores tubulares de flujo Según la teoría cinética molecular, el número de colisiones por segundo, J s, de moléculas en fase gaseosa sobre una superficie de área A s se

Más detalles

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Cantidad de Movimiento, Impulso y Choque UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar IMPULSO Y CANTIDAD DE MOVIMIENTO Anteriormente se explicó

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

MÓDULO II FUNDAMENTOS BÁSICOS DE LA TERMODINÁMICA

MÓDULO II FUNDAMENTOS BÁSICOS DE LA TERMODINÁMICA CURSO DE CAPACITACIÓN DE CERTIFICADORES ENERGÉTICOS Prueba Piloto Rosario 2017 MÓDULO II FUNDAMENTOS BÁSICOS DE LA TERMODINÁMICA MÓDULO II FUNDAMENTOS BÁSICOS TEMARIO Fundamentos básicos de termodinámica

Más detalles

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F UNIDAD 5: TEMPERATURA Y CALOR 5. A: Temperatura y dilatación Temperatura, energía y calor. Medición de la temperatura. Escalas de temperatura. Dilatación lineal, superficial y volumétrica. Dilatación anómala

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

MÉTODO DE APROXIMACIÓN DE EULER

MÉTODO DE APROXIMACIÓN DE EULER MÉTODO DE APROXIMACIÓN DE EULER Objetivo 1. Emplear el método de Euler para aproximar el valor de la solución de una ecuación diferencial dada una condición inicial y aplicarlo para resolver situaciones

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un

Más detalles

Conducción en régimen transitorio

Conducción en régimen transitorio Conducción en régimen transitorio 1.1. Ejemplo: Calefacción de una casa Se propone el estudio de la transferencia de calor entre una casa y el medio que la rodea en régimen estacionario y en régimen transitorio.

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Transferencia de Calor. Ingeniería Electromecánica EMM - 0536 3 2 8 2.- HISTORIA

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles