Hoja de Problemas 5. Física Atómica.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Hoja de Problemas 5. Física Atómica."

Transcripción

1 Hoja de Problemas 5. Física Atómica. Fundamentos de Física III. Grado en Física. Curso 25/26. Grupo 56. UAM Problema En 896 el astrónomo americano Edward Charles Pickering observó unas misteriosas líneas en el espectro de la estrella ζ-puppis que podían describirse por la fórmula empírica ) λ = R H n 2 /2) 2 n /2) 2 donde R H es la constante de Rydberg y n y n 2 son números enteros positivos con n > n 2. Usando el modelo de Bohr determinar qué elemento químico da origen a esas líneas. Solución Problema Según el modelo de Bohr las líneas del espectro de un átomo hidrogenoide vienen dadas por λ = Z2 R H n 2 ) 2 n 2 Comparando esta expresión con la que nos dan en el enunciado, podemos escribir λ = 22 R H n 2 ) 2 n 2 Por tanto, deducimos que el elemento químico en cuestión es He Z = 2), es decir Helio ionizado. Problema 2 Las longitudes de onda de las líneas espectrales dependen ligeramente de la masa nuclear. Esto se debe a que el núcleo no posee una masa infinita y en realidad el electrón y el núcleo giran alrededor de su centro de masas común. Se puede demostrar que un sistema de este tipo es equivalente a un sistema en el que una partícula de masa reducida µ gira alrededor de la posición de la partícula más pesada a una distancia igual a la separación entre el electrón y el núcleo. La masa reducida viene dada por µ = m e M/m e + M), donde m e es la masa del electrón y M es la masa nuclear.

2 Así, para tener en cuenta el movimiento del núcleo en el modelo de Bohr, debemos reemplazar m e por µ. Determinar los valores correctos para la longitud de onda de la primera línea de la serie de Balmer teniendo en cuenta el movimiento nuclear para a) hidrógeno, H, b) deuterio, 2 H, y c) tritio, 3 H. Comparar estos valores con los obtenidos ignorando el movimiento del núcleo. Solución Problema 2 La primera línea de Balmer corresponde a n 2 = 2, n = 3 λ = R H 4 ) = R H Si utilizamos R H = m e k 2 e 4 /4πc h 3 ) =.96 7 m, de la ecuación anterior obtenemos que λ = nm, sin tener en cuenta el movimiento nuclear. Ahora, si tenemos en cuenta el movimiento nuclear, podemos redefinir la constante de Rydberg haciendo m e µ = m e M/m e + M) donde M es la masa nuclear), con lo que tenemos R H = µk2 e 4 4πc h 3 = µ m e me k 2 e 4 ) 4πc h 3 = µ R H m e La longitud de onda de la línea de Balmer teneiendo en cuenta el movimiento nuclear será entonces λ = 36 ) 36 5R H = 5R H µ/m e ) = me λ µ Introduciendo la definición de la masa reducida y operando obtenemos λ = + m ) e λ M Y finalmente utilizamos esta expresión para calcularnos los casos que mencionan en el enunciado a) Para el Hidrógeno tenemos M = m p. Utilizando m p = MeV/c 2 y m e =.5 MeV/c 2, tenemos λ = nm. b) Para el Deuterio, M p λ = nm. c) Para el Tritio, M 3m p λ = nm. Problema 3 La función de onda normalizada del estado fundamental del átomo de hidrógeno es ψr) = π a ) 3/2 e r/a 2

3 donde r es la coordenada radial del electrón y a es el radio de Bohr. a) Demostrar que la función de onda está normalizada. b) Representar gráficamente la función de onda en función de r. c) Representar gráficamente la densidad de probabilidad radial y encontrar el radio en que es más probable encontrar al electrón. d) Determinar la probabilidad de encontrar el electrón entre r = a /2 y r 2 = 3a /2. Solución Problema 3 a) Calculamos la integral correspondiente dr ψr) 2 = π πa 3 dr dθ = 4 a 3 e 2r/a a r 2 2 b) Utilizando Matlab por ejemplo 2π dφ r 2 senθ e 2r/a = 4 a 3 ) + 2ra2 + 2a3 4 8 = 4 a 3 a 3 4 = dr r 2 e 2r/a ψ r) a 3/ r / a Figura : Representación gráfica para el apartado b) del Problema 3. c) En este caso, la densidad de probabilidad es P r) = 4πr 2 ψr) 2 = 4πr 2 π La representación gráfica aparece en al figura adjunta. a 3 ) e 2r/a = 4 a r a ) 2 e 2r/a De la gráfica podemos ver que el máximo está en r/a =. Podemos corroborarlo analíticamente haciendo P r) = 4 dr a 3 2re 2r/a 2 ) r 2 e 2r/a r = r2 r = a a a d) 3

4 Pr) a r / a Figura 2: Representación gráfica para el apartado c) del Problema 3. Calculamos la probabilidad que nos piden mediante la integral siguiente 3a /2 a /2 dr P r) = 3a /2 a /2 dr 4 a 3 r 2 e 2r/a = 2e 2r/a [ r a ) 2 ) ] r + + 3a /2 =.496 a 2 a /2 Problema 4 Un átomo de hidrógeno está en el estado 6g. a) Cuál es el número cuántico principal?. b) Cuál es la energía del átomo? c) Cuál es el valor del número cuántico orbital y del módulo del momento angular orbital? d) Cuáles son los valores posibles para el número cuántico magnético? Para cada valor, determinar la correspondiente componente z del momento angular orbital del electrón y el ángulo que el momento angular orbital forma con el eje z. Solución Problema 4 a) El número cuántico principal es n = 6. b) La energía del átomo es E 6 = E /6 2 =.378 ev. c) El número cuántico orbital es l = 4. El módulo del momento angular orbital es por tanto L = ll + ) h = 2 h = 4.47 h. d) Los valores posibles del número cuántico magnético son m = 4, 3, 2,,,, 2, 3, 4. La componente z del momento angular orbital es L z = m h y el ángulo que forma el momento angular orbital con el eje z viene dado por cosθ = L z /L = m/ 2. 4

5 Problema 5 Considérese un hipotético átomo de hidrógeno en el cual el electrón se reemplaza por una partícula K, que es un mesón con espín igual a cero. De este modo, el único momento magnético se debe al movimiento orbital de la partícula K. Supongamos que el átomo se encuentra en presencia de un campo magnético B z =. T. a) Cuál es su efecto sobre los niveles s y 2s del átomo?. b) En cuántas rayas se divide la raya espectral 2p s?. c) Cuál es la separación en longitudes de onda entre las líneas adyacentes? Nota: la masa de la partícula K es MeV/c 2 y su carga es la del electrón. Solución Problema 5 a) La energía potencial asociada a la interacción entre un momento magnético y un campo magnético que apunta en la dirección del eje z viene dada por U = µ B = µ z B z En el caso de la partícula K, la única contribución al momento magnético proviene de su momento angular orbital, es decir, µ = e ) me L L = µ B K m K h donde µ B es el magnetón de Bohr, m e es la masa del electrón y m K es la masa de la partícula K. Así, el momento magnético de esta partícula estára cuantizado de modo que ) me ll µ = µ B + ) m K µ z = µ B me m K ) m l donde l es el número cuántico orbital y m l es el número cuántico magnético. Por tanto, tendremos tanto niveles de energía como valores de m l, de acuerdo con las expresión ) me U = µ z B z = m l µ B B z m K En vista de esta expresión es fácil ver que el campo magnético no tendrá ningún efecto sobre los niveles s y 2s del átomo, ya que corresponde a l = y m l =. b) De acuerdo con el razonamiento del apartado anterior, el nivel 2p l=) se divide en tres niveles de acuerdo con los tres valores de m l =,,. Estos tres niveles dan lugar a tres rayas en el espectro asociadas a las transiciones electrónicas hasta el nivel s. c) Para calcular la separación en longitudes de onda entre las líneas adyacentes hacemos el siguiente argumento. Primero calculamos la separación en energía E entre los niveles 2p y s utilizando ) ke 2 2 E = E n=2 E n= = m µ h 2 3 ) 2 5

6 donde m µ es la masa reducida del sistema protón-partícula K, m µ = m p m K /m p + m K ) = MeV/c 2 =633. m e. Introduciendo el resto de valores númericos obtenemos que E = ev. La longitud de onda correspondiente será λ = hc/e =.9 nm. Por otro lado, nos podemos calcular fácilmente la diferencia de energías entre dos niveles consecutivos del triplete que surge por acción del campo magnético externo ) me E = µ B B z 6 9 ev m K Ahora, como E E, utilizando λ = hc/e podemos escribir el cambio de longitud de onda λ correspondiente a un cambio en energía E como λ = hc λ E E2 λ = E E Finalmente, introduciendo en esta expresión los valores numéricos calculados anteriormente, obtenemos λ λ λ.8 3 nm Problema 6 a) Determinar la diferencia de energías entre los electrones que tienen su espín alineado y antialineado con un campo magnético uniforme de.8 T cuando un haz de electrones libres se mueve en una dirección perpendicular al campo. b) La famosa línea de 2 cm del átomo de hidrógeno juega un papel fundamental en radioastronomía para estudiar el contenido del material interestelar en las galaxias. Esta línea tiene su origen en la emisión de un fotón cuando el electrón de un átomo de hidrógeno invierte su espín y pasa de estar alineado a estar en la dirección opuesta al espín del protón del átomo de hidrógeno. Cuál es el valor del campo magnético que experimenta el electrón? Solución Problema 6 a) La energía de interacción entre el momento magnético del electrón debido al espín) y el campo magnético vendrá dada por U = µ z B = 2µ B Bm s donde m s = ±/2. De este modo, la diferencia de energías que buscamos vendrá dada por E = 2µ B B = ev. b) Podemos calcular la diferencia de energías entre los dos estados mediante la expresión E = hc/λ = ev. Para calcular el campo magnético correspondiente a este E simplemente utilizamos la expresión del apartado anterior para obtener B = E/µ B B =.5 T. 6

7 Problema 7 a) Calcular la proyección del momento magnético total µ en el vector momento angular total J y demostrar que viene dada por µ J = e h ) g jj + ) J donde g = + jj + ) + ss + ) ll + ) 2jj + ) A g se lo conoce como el factor de Landé y es necesario para calcular el desdoblamiento de los niveles de energía en un campo magnéico. b) Determinar el valor del desdoblamiento o splitting ) en energías de un átomo en un campo magnético B si se supone que el desdoblamiento depende sólo de la componente µ a lo largo de J. Solución Problema 7 a) El momento magnético total es la suma de los momentos magnéticos debidos al momento angular orbital y al de espín La proyección de µ sobre J vendrá dada por µ = µ l + µ s = e e L + 2S) = J + S) µ J J = e J J + J S J Ahora usamos que despejando J S obtenemos L L = J S) J S) = J J + S S 2J S J S = J J + S S L L) 2 Así, podemos reescribir la proyección de µ sobre J como µ J J = e J J + /2)J J + S S L L) J jj + ) h 2 + /2)[jj + ) h 2 + ss + ) h 2 ll + ) h 2 ] jj + ) h = e = e h jj + ) [ + ] jj + ) + ss + ) ll + ) 2jj + ) que es la expresión que queríamos demostrar. b) En el apartado anterior hemos deducido que la componente de µ a lo largo de J es µ j = e h jj + )g 7

8 Si escribimos la expresión anterior en notación vectorial tenemos J µ j = µ j J = e h J jj + )g = e jj + ) h gj El desdoblamiento de energías viene dado por E = µ j B = e gj B = e gbj z = e h gbm j = µ B gbm j Como m j = j, j +,..., j, j, vemos que para un valor dado del campo magnético, cada nivel de energía se desdobla en 2j + niveles, estando la separación entre ellos determinada por el factor g para ese nivel original. 8

El ÁTOMO de HIDRÓGENO

El ÁTOMO de HIDRÓGENO El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las

Más detalles

El átomo de hidrógeno

El átomo de hidrógeno El átomo de hiógeno Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 15-16 Problema 1 Calcule la probabilidad de que un electrón 1s del H se encuentre entre r r. La probabilidad

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

El átomo: sus partículas elementales

El átomo: sus partículas elementales El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era

Más detalles

Apuntes del Modelo del átomo hidrogenoide.

Apuntes del Modelo del átomo hidrogenoide. Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)

ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3) ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

Espectros de emisión y absorción.

Espectros de emisión y absorción. Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta

Más detalles

Respuestas del Control 1. Curso Noviembre 2008

Respuestas del Control 1. Curso Noviembre 2008 NOMBRE y APELLIDOS... NOTA: En los cálculos numéricos tenga en cuenta la precisión de las constantes y de las magnitudes que se dan y dé el resultado con el número de cifras significativas adecuado. La

Más detalles

EL ÁTOMO DE HIDRÓGENO

EL ÁTOMO DE HIDRÓGENO EL ÁTOMO DE HIDRÓGENO El átomo de hidrógeno constituye uno de los pocos sistemas de interés químico que admite una solución exacta de la ecuación de Schröedinger. Para todos los demás sólo es factible

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3.

INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. El modelo de átomo INTERACTIVEBOOK - Física y Química 4º ESO McGraw-Hill Education INDICE 1. El modelo de átomo 1.1. Dalton 1.2. Thomson: Descubrimiento del electrón. 1.3. Rutherford: 1.3.1. Radioactividad

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.

Más detalles

Solución de los problemas del Capítulo 1

Solución de los problemas del Capítulo 1 Nota: los valores de las constantes que puede necesitar para los cálculos están dados en la bibliografía de referencia. Complete la siguiente tabla Qué información mínima se necesita para caracterizar

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm)

Soluciones Problemas Capítulo 3: Mecánica cuántica I. λ (nm) Soluciones Problemas Capítulo 3: Mecánica cuántica I ) (a) La distribución espectral viene dada por R(λ) (/4)cu(λ), donde u(λ) es la densidad de energía radiada que a su vez viene dada por la ley de Planck:

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

RECTAS EN EL ESPACIO. P y un vector v se llama recta al conjunto de. Q del espacio para los cuales se cumple que el vector PQ es paralelo

RECTAS EN EL ESPACIO. P y un vector v se llama recta al conjunto de. Q del espacio para los cuales se cumple que el vector PQ es paralelo Dado un punto en el espacio ( x, y, z) puntos ( x, y, z) RECTAS EN E ESPACIO P y un vector v se llama recta al conjunto de Q del espacio para los cuales se cumple que el vector PQ es paralelo al vector

Más detalles

Robert A. MILLIKAN ( )

Robert A. MILLIKAN ( ) Robert A. MILLIKAN (1906 1914) Modelo atómico de Rutherford - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

EXTRUCTURA ATOMICA ACTUAL

EXTRUCTURA ATOMICA ACTUAL ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]

Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO] Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica

Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Solucionario Cuaderno Estrategias y Ejercitación Modelo atómico de la materia II: números cuánticos y configuración electrónica Química Técnico Profesional Intensivo SCUACTC002TC83-A16V1 Ítem Alternativa

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES

QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES 2013-1 Teoría: Dra. Karina Cuentas Gallegos Martes y jueves 10-12 hrs. Laboratorio: M.C. Mirna Guevara García Jueves 12-14 hrs. Curso de Química

Más detalles

Capítulo 23. Microscopios

Capítulo 23. Microscopios Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y

Más detalles

Clase N 1. Modelo Atómico I

Clase N 1. Modelo Atómico I Pre-Universitario Manuel Guerrero Ceballos Clase N 1 Modelo Atómico I ICAL ATACAMA Módulo Plan Común Modelos Atómicos Teoría Atómica De Dalton Los elementos están formados por partículas extremadamente

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

TEMA 6 Ejercicios / 3

TEMA 6 Ejercicios / 3 TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores

Más detalles

1. Operaciones con vectores

1. Operaciones con vectores 1. OPERACIONES CON VECTORES Academia Nakis (Lugones)684-61-61-03. 1 Resumen Geometría en 3D 1. Operaciones con vectores Sean los vectores W 1 = (a 1, b 1, c 1 ),W 2 = (a 2, b 2, c 2 ),W 3 = (a 3, b 3,

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

Las estructura electrónica de los átomos

Las estructura electrónica de los átomos Las estructura electrónica de los átomos Al preguntarnos por las diferencias entre las propiedades químicas y físicas de los elementos, así como, su forma de enlazarse y la forma en la cual emiten o absorben

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

ESTRUCTURA DEL ÁTOMO - RESUMEN

ESTRUCTURA DEL ÁTOMO - RESUMEN TEMA 1 ESTRUCTURA DEL ÁTOMO - RESUMEN 1. DESCUBRIMIENTO DE LA ESTRUCTURA ATÓMICA (ideas generales) Dalton: consideraba que un átomo no podía romperse en trozos más pequeños. El primer indicio de que el

Más detalles

Estados cuánticos para átomos polielectrónicos y espectroscopía atómica

Estados cuánticos para átomos polielectrónicos y espectroscopía atómica Estados cuánticos para átomos polielectrónicos y espectroscopía atómica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 3 de febrero de 205 Índice. Aproximación

Más detalles

4. Identificar un isótopo radiactivo del carbono e indicar su uso. 5. Cuál es la configuración electrónica del vanadio?

4. Identificar un isótopo radiactivo del carbono e indicar su uso. 5. Cuál es la configuración electrónica del vanadio? ESTRUCTURA ATÓMICA 1. Qué afirmación sobre el número de electrones, protones y neutrones del átomo es correcta? A El número de neutrones menos el número de electrones es cero. B. El número de protones

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Resonancia Magnética Nuclear

Resonancia Magnética Nuclear Víctor Moreno de la Cita Jesús J. Fernández Romero 25 de mayo de 2010 1 Base teórica 2 Medicina Química y análisis no destructivo Computación cuántica 3 4 Notación que emplea Kittel: µ = Momento magnético

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

Problemas adicionales de Física Cuántica (2010/2011)

Problemas adicionales de Física Cuántica (2010/2011) Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Modelo 4 de Sobrantes de 2004

Modelo 4 de Sobrantes de 2004 Ejercicio n de la opción A del modelo 4 de 24 9 Considera la integral definida I d + [ 5 puntos] Epresa la anterior integral definida aplicando el cambio de variables + t. [ punto] Calcula I. I d + Cambio

Más detalles

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo GUÍA 1: CAMPO ELÉCTRICO Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 El estudio de las funciones trigonométricas comenzó en el Capítulo 9, con los radianes la transformación de funciones trigonométricas. Este capítulo se concentra en la resolución

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Masas estelares. Estrellas binarias

Masas estelares. Estrellas binarias Capítulo 7 Masas estelares. Estrellas binarias 7.1. Masas estelares # Masa magnitud fundamental de las estrellas Determina la producción de energía ( ) evolución Constante durante la mayor parte de la

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Estructura cristalina: Índices de Miller. Y en términos de grado de compacidad? Volumen de átomos= Volumen de la celda= ( ) 3

Estructura cristalina: Índices de Miller. Y en términos de grado de compacidad? Volumen de átomos= Volumen de la celda= ( ) 3 1 Cuántos átomos hay en una celda unidad? Vértices 1/8 Caras 1/2 Número total de átomos en la celda unidad: 8 en los vértices: 8 x 1/8 = 1 6 en las caras: 6 x 1/2 = 3 Total: 4 átomos Y en términos de grado

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

Antecedentes de Química. Autora: Violeta Luz María Bravo Hernández

Antecedentes de Química. Autora: Violeta Luz María Bravo Hernández Antecedentes de Química Autora: Violeta Luz María Bravo Hernández CONTENIDO 1. Descubrimiento del electrón, protón y neutrón. 2. Modelo atómico de Thomson. 3. Modelo atómico de Rutherford. 4. Modelo atómico

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

RELACIÓN CARGA - MASA DEL ELECTRÓN

RELACIÓN CARGA - MASA DEL ELECTRÓN Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la

Más detalles

El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura.

El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura. El teorema de Euclides tiene dos enunciados que conocemos con los nombres de teorema del cateto y teorema de la altura. Teorema del cateto: El cateto de un triángulo rectángulo es media proporcional entre

Más detalles