1 Problemas T. Cauchy

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Problemas T. Cauchy"

Transcripción

1 Probleas T. Cauchy Exercise. Coprueba que las funciones f(x) =x 3 + y g(x) =x +3 verifican las hipótesis y la tesis del Teorea de Cauchy en el intervalo [0, ] Abas funciones son continuas y derivables en < al ser polinóicas. Así pues, son continuas en [0, ] y derivables en ]0, [, siendo sus derivadas respectivaente f 0 (x) =3x y g 0 (x) =x Ninguna de sus derivadas se anulan a la vez en ]0, [ yadeásg(0) = 3 no coincide con g() = 7 Por todo esto; abas funciones verifican las hipótesis del teorea de Cauchy en [0, ] y consecuenteente podeos afirar que: c ]0, [ / f() f(0) g() g(0) = f 0 (c) g 0 (c) c ]0, [ / 8 4 = 3c c = 3c Dicho valor es c = x.5.5 Exercise. Coprueba que las funciones f(x) =x + y g(x) = +x verifican las hipótesis y la conclusión del Teorea de Cauchy en el intervalo [0, ]

2 Abas funciones son continuas y derivables en <; en particular son continuas en [0, ] y derivables en ]0, [,, siendo sus derivadas respectivaente f 0 (x) =x y g 0 (x) = x ( + x ) Ninguna de sus derivadas se anulan a la vez en ]0, [ yadeásg(0) = no coincide con g() = 5 Por todo esto; abas funciones verifican las hipótesis del teorea de Cauchy en [0, ] y consecuenteente podeos afirar que: c ]0, [ / c ]0, [ / f() f(0) g() g(0) = f 0 (c) g 0 (c) 4 c = 5 c ( + c ) c ]0, [ / 5= ³ +c Resolviendo la ecuación 5=(+c ) +c = ± 5 Lasúnicassolucionesrealesson: c = Dicho valor es c = q + 5 ' ]0, [ q + 5 ' / ]0, [ q + 5 Exercise.3 Aplicar si es posible el teorea de Cauchy a las funciones f(x) =3x 4 x 3 x + y g(x) =4x 3 3x x en [0, ] Por ser polinóicas abas funciones son derivables y continuas en < En particular, f y g son continuas en [0, ] yderivablesen]0, [; siendo sus derivadas respectivaente f 0 (x) =x 3 6x x y g 0 (x) = x 6x g() = ; g(0) = 0 Veaos ahora si sus derivadas se anulan a la vez en ]0, [

3 x 3 6x x =0 x =0/ ]0, [ x = ]0, [ x = 4 33 / ]0, [ ( x = x 6x = ]0, [ x = 4 33 / ]0, [ Coo sus derivadas se anulan a la vez en ]0, [( enconcretopara ); estas funciones no verifican las hipótesis del teorea de Cauchy y por lo tanto no podeos aplicarlo Exercise.4 Aplicar si es posible el teorea de Cauchy a las funciones f(x) = x3 x y g(x) =x x + en [0, 3] 3 Y en el intervalo [, 3] Exercise.5 Coprobar que al aplicar el teorea de Cauchy a la funciones seno y coseno en [ π 6, π ] el punto de la tesis es el punto edio del intervalo 3 [ π 6, π 3 ] Ayuda: Ã! Ã! b a b + a sin b sin a =sin cos Ã! Ã a + b b a cos b cos a = sin sin! Exercise.6 Deuestra que para todo x ]0, π [ siepre existe al enos un y ]0, π [ con y<xtal que se verifica la ecuación cot x csc x +tany =0 Consideraos las funciones f(x) = cosx y g(x) = sinx en [0,x] con x< π Abas funciones verifican las hipótesis del T. de Cauchy ya que: Son continuas en [0,x] Son derivables en ]0,x[ siendo sus derivadas f 0 (x) = sin x, g 0 (x) = cos x 3

4 Sus derivadas no se anulan a la vez en ]0,x[ g(0) 6= g(x) ya que g(x) =sinx es est. creciente en en [0, π ] Por todo ello; podeos aplicar el T. de Cauchy a estas funciones y por lo tanto y ]0,x[ / y ]0,x[ / cos x sin x f(x) f(0) g(x) g(0) = f 0 (y) g 0 (y) = sin y cos y Coo cos x = sin y cot x csc x = tan y sin x cos y Conloquequedadeostradoquedadocualquierx ]0, π [ siepre existe al enos un y ]0, π [ con y<xtal que se verifica la ecuación cot x csc x +tany =0 Exercise.7 Dadas las funciones f(x) =x y g(x) =e x. Se puede aplicar el teorea de Cauchy en el interalo [0, ]? En caso afirativo, deterina el punto de la tesis con dos cifras deciales exactas haciendo uso del Teorea de Bolzano Abas funciones son continuas y derivables en <. Por lo tanto son continuas en [0, ] yderivablesen]0, [ Sus derivadas f 0 (x) =x y g 0 (x) =e x Sus derivadas no se anulan siultaneaente en ]0, [ g() = e y g(0) = Al verificar f y g las hipótesis del T. de Cauchy en ]0, [; entonces podeos afirar que c ]0, [ / f() f(0) g() g(0) = f 0 (c) g 0 (c) 4

5 c ]0, [ / e = c e c c ]0, [ /e c +c ec =0 Ya sabeos que la ecuación e x ex+x =0, tiene al enos una solución denoinada c en ]0, [. Para deterinarla con dos cifras deciales exactas utilizareos el teorea de Bolzano Considerareos la función F (x) =e x ex +x, que es continua en < y dividireos el intervalo ]0, [ en diez partes iguales y calculareos sus iágenes en cada uno de estos valores: F (0.) = e 0. 0.e + 0. = F (0.) = e 0. 0.e + 0. = F (0.3) = e e = F (0.4) = e e = F (0.5) = e e = F (0.6) = e e = F (0.7) = e e = F (0.8) = e e = F (0.9) = e e = Por el Teorea de Bolzano sabeos que la solución de la ecuación se encuentra en el intervalo ]0.4, 0.5[ Si ahora dividieseos este intervalo a su vez en diez partes iguales y calculaseos sus iágenes;entonces podríaos ser ás precisos a la hora de deterinar la solución. F (0.4) = e e = F (0.4) = e e = F (0.43) = e e = F (0.44) = e e = F (0.45) = e e = F (0.46) = e e = F (0.47) = e e = F (0.48) = e e = F (0.49) = e e = En virtud del Teorea de Bolzano sabeos que la solución de la ecuación propuesta se encuentra en el intervalo ]0.46, 0.47[ 5

6 Coo nos piden dicha solución con dos cifras deciales exactas; bastará con deterinar si ésta se encuentra en el intervalo ]0.46, 0.465[ (en cuyo caso c ' 0.46) o en el intervalo ]0.465, 0.47[(en cuyo caso c ' 0.47) Calculeos pues F (0.46),F(0.465),F(0.47) F (0.46) = e e = F (0.465) = e e = F (0.47) = e e = Por Bolzano sabeos que la solución se encuentra en ]0.46, 0.465[. Por lo tanto podeos afirar que: c '

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

Cuarto examen parcial Ejercicios resueltos

Cuarto examen parcial Ejercicios resueltos Cálculo I Cuarto examen parcial Ejercicios resueltos Hora de inicio: 8:00. Hora de entrega: :00.. Derivar las siguientes funciones usando la definición: (i) f(x) x+. (ii) g(x) x +. (i) f(x) x+ y f(x +

Más detalles

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR el acceso a la Universidad (EBAU Curso 7-8 MATEMÁTICAS II Se presentan los ejercicios con un procediiento para resolverlos. Naturalente, los procediientos propuestos no son los únicos posibles. OPCIÓN

Más detalles

TEOREMAS DE FUNCIONES DERIVABLES

TEOREMAS DE FUNCIONES DERIVABLES TEOREMAS DE FUNCIONES DERIVABLES Índice:. Teorema de Rolle------------------------------------------------------------------------------------ 2 2. Teorema de valor medio (de Lagrange o de incrementos)------------------------------------

Más detalles

Continuidad de funciones

Continuidad de funciones Apuntes Tema 3 Continuidad de funciones 3.1 Continuidad de funciones Def.: Dada una función f(x), diremos que es continua en x = a, si cumple la siguiente condición: En caso de que no cumpla esta condición,

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos .E.S. CSTELR DJOZ. Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES SEPTEMRE - (RESUELTOS por ntonio Menguiano) MTEMÁTCS Tiepo áio: horas inutos Contesta de anera clara raonada una de las dos opciones

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Dominios Se presentan los dominios de las funciones trigonométricas : Campo de valores Para cada θ en el dominio

Más detalles

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado:

Tema 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Programa detallado: Tea 9: EL TEOREMA DE LOS RESIDUOS. APLICACIONES Prograa detallado: 9.1 Introducción. 9.2 Puntos singulares aislados de una función. 9.3 Residuos: Definición y cálculo. 9.4 El teorea de los residuos. 9.5

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

Cálculo: Notas sobre diferenciabilidad en una variable

Cálculo: Notas sobre diferenciabilidad en una variable Cálculo: Notas sobre diferenciabilidad en una variable Antonio Garvín Curso 04/05 1 Derivabilidad en una variable 1.1 La derivada de una función en un punto Para una función f: R R tal que todo un intervalo

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre

Problemas de Cálculo Matemático E.U.A.T. CURSO Primer cuatrimestre 1 Problemas de Cálculo Matemático EUAT CURSO 00-003 Primer cuatrimestre Problemas del Tema 5 Teoremas relativos a funciones derivables y aplicaciones 1 La función f(x) = 1 3 x se anula para x 1 = 1 y para

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

CONTINUIDAD DE FUNCIONES

CONTINUIDAD DE FUNCIONES CONTINUIDAD CONTINUIDAD DE FUNCIONES CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Una función f es continua en a si y sólo si se cumplen las tres condiciones siguientes: 1) Existe f(a), es decir, a Dom f. 2)

Más detalles

4. Probar que la suma de dos funciones crecientes en su dominio es creciente en su dominio.

4. Probar que la suma de dos funciones crecientes en su dominio es creciente en su dominio. 1. Definir función de A en B, conjunto imagen y gráfica de una función. 2. Definir función inyectiva. 3. Probar que una función lineal con pendiente negativa es decreciente. 4. Probar que la suma de dos

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia - Curso 005/006 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1) Estudiemos cada caso: x = x+5 a) El único número que verifica la condición es x =

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas Unidad. Trigonometría.5 funciones trigonométricas e identidades trigonométricas Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos

Más detalles

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables

Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: prieto@ula.ve 1. Teoremas sobre funciones derivables Problema 1 Determine si la función dada satisface las hipótesis del Teorema de Bolzano sobre el

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable AUTOEVALUACIÓN DE CÁLCULO I - SOLUCIONES Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Soluciones del Examen de Autoevaluación

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

x se puede clasificar de acuerdo con la

x se puede clasificar de acuerdo con la CRITERIO DE LA PRIMERA DERIVADA PARA CALCULAR VALORES EXTREMOS DE UNA FUNCIÓN Conceptos clave: 7. Criterio de la primera derivada para determinar valores extremos de una función: Hipótesis. Si f(x) es

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..

Más detalles

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente

Más detalles

Resolución numérica de ecuaciones no lineales

Resolución numérica de ecuaciones no lineales Resolución numérica de ecuaciones no lineales Son muchas las situaciones en las que se presenta el problema de obtener las soluciones de ecuaciones de la forma f(x) = 0. En algunos casos existe una fórmula

Más detalles

Las Funciones Trigonométricas. Sección 5.5 Más sobre gráficas trigonométricas

Las Funciones Trigonométricas. Sección 5.5 Más sobre gráficas trigonométricas 5 Las Funciones Trigonométricas Sección 5.5 Más sobre gráficas trigonométricas Introduction Las gráficas trigonométricas siguen las mismas reglas de transformación en el plano que las gráficas de otras

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

MATEMÁTICAS II 2010 OPCIÓN A. para x a.

MATEMÁTICAS II 2010 OPCIÓN A. para x a. MTEMÁTICS II OPCIÓN Ejercicio : Sea una unción deinida coo a b ( ) para a. a a) Calcula a b para que la gráica de pase por el punto (, ) tenga una asíntota oblicua con pendiente -. b) Para el caso a =,

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

Práctico 7 - Desarrollo de Taylor. 1. Polinomio de Taylor. Universidad de la República Cálculo 1 Facultad de Ingeniería - IMERL Segundo Semestre 2016

Práctico 7 - Desarrollo de Taylor. 1. Polinomio de Taylor. Universidad de la República Cálculo 1 Facultad de Ingeniería - IMERL Segundo Semestre 2016 Universidad de la República Cálculo Facultad de Ingeniería - IMERL Segundo Semestre 206 Práctico 7 - Desarrollo de Taylor. Polinomio de Taylor. El polinomio de Mc Laurin de orden 4 asociado a una cierta

Más detalles

Control 1, MA-1A2 Cálculo Diferencial e Integral Escuela de Ingeniería, FCFM, U. de Chile Semestre 2008/2 (30 de Agosto)

Control 1, MA-1A2 Cálculo Diferencial e Integral Escuela de Ingeniería, FCFM, U. de Chile Semestre 2008/2 (30 de Agosto) Control 1, MA-1A Cálculo Diferencial e Integral Escuela de Ingeniería, FCFM, U. de Chile Semestre 008/ (30 de Agosto) P1) Considere la función definida mediante la siguiente ley: x si x < a f(x) = x +

Más detalles

Análisis Matemático I: Cálculo diferencial

Análisis Matemático I: Cálculo diferencial Contents : Cálculo diferencial Universidad de Murcia Curso 2007-2008 Contents 1 Objetivos Definir, entender y aplicar el concepto de función derivable. Estudiar la relación entre derivabilidad, crecimiento,

Más detalles

1. Nociones básicas. Oct, 2008

1. Nociones básicas. Oct, 2008 Cálculo 1. Nociones básicas Oct, 2008 Nociones básicas Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial y logarítmica Funciones

Más detalles

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1 FINAL 11/7/17 1º Cuatrimestre 17 TEMA 1 Ejercicio 1 ( puntos) Hallar la expresión de un polinomio de grado 5 que verifica las siguientes condiciones: a) Tiene una raíz simple en x = 3 b) Tiene una raíz

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN JUNIO 00 INSTUCCIONES GENEALES Y VALOACIÓN La prueba consta de dos partes. La priera parte consiste en un conjunto de cinco cuestiones de tipo teórico, conceptual o teórico-práctico, de las cuales el aluno

Más detalles

MA1111 SEGUNDO EXAMEN PARCIAL (35%) Universidad Simón Bolívar SEPTIEMBRE-DICIEMBRE DE 2004 Depto. de Matemáticas Puras y Aplicadas

MA1111 SEGUNDO EXAMEN PARCIAL (35%) Universidad Simón Bolívar SEPTIEMBRE-DICIEMBRE DE 2004 Depto. de Matemáticas Puras y Aplicadas 1 tipo A 1.- Para cada uno de los ites siguientes, calcúlelo en el caso que exista o demuestre que no existe (en el caso que no exista) : a) ( 3 ptos.) x 0 1+3-1 ; b) ( 3 ptos.) x 1 sen(πx+π) ; c) (3 ptos.)

Más detalles

Semana 15[1/??] Derivada (II) June 14, Derivada (II)

Semana 15[1/??] Derivada (II) June 14, Derivada (II) Semana 15[1/??] June 14, 7 Derivadas de orden superior Semana 15[/??] Definición La derivada de f en x y la derivada de f en x están dada por f x) f x f ) x ) = lim y x x x x f ) x ) = lim x x f x) f x

Más detalles

Tema 5: Resolución aproximada de ecuaciones

Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Solución de los ejercicios Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

CERTAMEN N o 1 MAT

CERTAMEN N o 1 MAT CERTAMEN N o 1 MAT-021 2011-1 P R E G U N T A S 1. Considere el siguiente razonamiento: Si estudio entonces apruebo los cursos. Además, si no termino mi carrera entonces no apruebo los cursos. A partir,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO 2. CÁLCULO DIFERENCIAL DE UNA VARIABLE GRADO EN INGENIERÍA EN:

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

Conjuntos numéricos. Sucesiones. Funciones

Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos 1. Pertenece el número real 2.15 al entorno de centro 2.2 y radio 0.1? 2. Representa gráficamente el conjunto de puntos tales que (a) x+6

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA TEORÍA TTC00: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA En este docuento se resuele de fora ás rigurosa la llaada ecuación del telegrafista, en su expresión en tensión, que puede forularse, según ios,

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8 2.4. Continuidad Julio C. Carrillo E. * Índice 1. Introducción 1 2. Continuidad puntual 2 3. Continuidad en un intervalo 8 4. Conclusiones 18 * Profesor Escuela de Matemáticas, UIS. 1. Introducción Las

Más detalles

Boletín I. Cálculo diferencial de funciones de una variable

Boletín I. Cálculo diferencial de funciones de una variable CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

Clase Temas

Clase Temas Econoía política Jorge M. Streb Clase 7 9.7. Teas I. Krishna y Morgan sobre cheap talk (sanata II. La condición de single crossing (un solo cruce de Spence y Mirrlees III. Trabajo práctico : discusión

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN REFLEXIONA Y RESUELVE Tangentes a una curva y = f (x) 5 3 5 3 9 14 Halla, mirando la gráfica y las rectas trazadas, f'(3), f'(9) y f'(14). Di otros tres puntos en los

Más detalles

1. Nociones básicas. Oct, 2007

1. Nociones básicas. Oct, 2007 Cálculo 1. Nociones básicas Oct, 2007 Nociones básicas Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial y logarítmica Funciones

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

ANÁLISIS DEL ACETATO DE ETILO OBTENIDO POR METODOLOGÍA TRADICIONAL CON EL PROTOTIPO DE UN SOLO EQUIPO

ANÁLISIS DEL ACETATO DE ETILO OBTENIDO POR METODOLOGÍA TRADICIONAL CON EL PROTOTIPO DE UN SOLO EQUIPO ANÁLISIS DEL ACETATO DE ETILO OBTENIDO POR METODOLOGÍA TRADICIONAL CON EL PROTOTIPO DE UN SOLO EQUIPO Jorge Rivera Elorza Escuela Superior de Ingeniería Quíica e Industrias Extractivas, IPN riej123204@yahoo.co.x

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 A A A A A A A A A B B B B B B B B B C C C C C C C C C D D D D D D D

1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 A A A A A A A A A B B B B B B B B B C C C C C C C C C D D D D D D D PRACTICA MATEMÁTICAS Ficha alumno/a FUNCIONES Y GRÁFICAS Nombre:.. ACTIVIDAD 1: Señala las respuestas correctas 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10 A A A A A A A A A A B B B B B B B B B

Más detalles

RESUMEN DE CONTINUIDAD DE FUNCIONES

RESUMEN DE CONTINUIDAD DE FUNCIONES RESUMEN DE CONTINUIDAD DE FUNCIONES La idea intuitiva de función continua es la de aquella cuya gráfica se puede dibujar sin levantar el lápiz del papel. Analíticamente, una función f(x) se dice que es

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Temas y : Continuidad, derivabilidad y Fórmula de Taylor Prueba de Evaluación Continua -Octubre-08 SIN DERIVE (NI CALCULADORA).- Sean las funciones f (x) = arc tg (x ), g (x) = ln ( x ) a) Hallar g f (x)

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

Inyectivas, Suprayectyivas, Biyectivas. Funciones Trigonométricas

Inyectivas, Suprayectyivas, Biyectivas. Funciones Trigonométricas Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos θ Abcisa dep sen θ Ordenada dep Si S es el mismo ángulo medido en radianes y S

Más detalles

TRIGONOMETRÍA. Para el estudio de dichas relaciones entre lados y ángulos se utilizan triángulos rectángulos como el siguiente.

TRIGONOMETRÍA. Para el estudio de dichas relaciones entre lados y ángulos se utilizan triángulos rectángulos como el siguiente. TRIGONOMETRÍA La trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente la palabra trigonometría proviene del griego Tri

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2005 Se sabe que la gráfica de la función f : R R definida por f (x)= x 3 + ax+ bx + c es la que aparece en el dibujo. (a) [1 25 puntos] Determina f. (b) [1 25

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

Tema 6. Oscilaciones de sistemas con varios grados de libertad

Tema 6. Oscilaciones de sistemas con varios grados de libertad Tea 6. Oscilaciones de sisteas con varios grados de libertad Priera parte: Sistea de dos asas un uelle. Ecuaciones del oviiento Nuestro sistea está forado por dos asas, en general diferentes,, unidas por

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

TEOREMAS DE CONSERVACIÓN

TEOREMAS DE CONSERVACIÓN TEOREMAS DE CONSERVACIÓN - Dos cuerpos de asas y 2 y velocidades v r y v r 2, que se ueven sobre una isa recta, chocan elásticaente. ueo del choque, abos cuerpos continuan oviéndose sobre la isa recta.

Más detalles

UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS

UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS Segundo Parcial (21/11/09) 1. Sea f(x) = 1 +2 xe2x a) Hallar dominio, intervalos de crecimiento y decrecimiento y extremos locales de f. b) Hallar (si las hay) las asíntotas horizontales y verticales de

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Unidad 10 Continuidad de las funciones

Unidad 10 Continuidad de las funciones Unidad 10 Continuidad de las funciones 4 SOLUCIONES 1. La continuidad queda: a) La continuidad en x = 0. No es continua en ese punto al no coincidir los límites laterales. b) La continuidad en x = 3. 2.

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN

Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN Parte I. FUNCIONES. LÍMITES Y CONTINUIDAD. ACOTACIÓN I.1. DEFINICIONES. Una función real de variable real (f: Domf R Recf R) es una relación que a cada elemento x de un subconjunto de R (Domf) le asigna

Más detalles