Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre"

Transcripción

1 Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre Dr. Horst von Brand Diego Candel Lunes 24 de Abril 1º Semestre del Demuestre que los siguientes lenguajes no son regulares. Adicionalmente, para cada uno diseñe una greamática de contexto libre: a) El lenguaje sobre el alfabeto {0, 1} de los strings que son de la forma ωϖ, donde ϖ es la negación inversa del string ω. Por ejemplo, si ω = , entonces ϖ = Respuesta: i j k b) El lenguaje de los strings de la forma a b c, tal que i 2j o k i. c) El lenguaje sobre el alfabeto {a,b} de todos los strings que contienen dos símbolos a por cada símbolo b. Strings que pertenecen a este último lenguaje son aba, aababa, aaaabb, babaaa, entre otros. a) 1.- Elegimos el lenguaje L sobre el alfabeto {0, 1} de los strings que son de la forma ωϖ, donde ϖ es la negación inversa del string ω. 2.- Se elige n Elegimos z = 0 n 1 n, string que sabemos cumple con el lema, ya que z = 2n n 4.- Se elige z = xyw, tal que xy n, y >1 5.- Por la información xy n, y >1, sabemos que y = 0 j, donde j es por lo menos igual a 1 y a lo más igual a n. Entonces, elegimos k = 0, con lo que obtenemos xy 0 z = xz = 0 n-j 1 n, string que sabemos no pertenece a L, pues n-j<n. Gramática: S 0S1 1S0 ε b) Aquí la estrategia es algo más complicada: Primero, sabemos que el lenguaje L * = {a i b j c k, con i 0, j 0, k 0} es regular. Luego sabemos que siun lenguaje L es regular, también lo es su complemento. Ahora bien, tenemos nuestro lenguaje L = {a i b j c k, con i 2j o k i} y sabemos que el complemento de L es L' = L * - L = {a i b j c k, con i < 2j y k = i}. Ahora bien, si L' es regular, también lo será L, pero si L' no es regular, necesariamente L tampoco será regular. Procedemos a aplicarle el lema del bombeo a L' para demostrar que no es regular y que L tampoco lo es. Como esta estrategia no se pasó en ayudantía, esta pregunta se considera anulada y todos tienen el puntaje base de esta pregunta. Sin embargo, aquellos que lograron contestarla bien tienen el doble de puntaje para dicha pregunta (en cuyo caso, la nota máxima no sería un 100, sino más). 1.- Elegimos el lenguaje L' de los strings de la forma a i b j c k, tal que i < 2j y k = i. 2.- Se elige n Elegimos z = a n b 2n c n 4.- Se elige z = xyw, tal que xy n, y >1 5.- Sabemos que y = a j, donde 0 < j n. Elegimos k = 0., con lo que obtenemos xy 0 z = xz = a n-j b 2n c n string que sabemos no pertenece a L', pues n-j n, con lo que no se cumple que i sea igual a k. Gramática: S AC D F A aab aa ε C Cc ε D D adc ab F Fc afc Βc B Bb ε Donde A es un string compuesto por a lo menos el doble número de a que de b, y C es un string compuesto por un número indeterminado de c; Donde D es un string que tiene una cantidad de a mayor que c y una cantidad indeterminada de b; Y donde F es un string que tiene una cantidad de a menor que c y una cantidad indeterminada de b. Tanto en AC como en D y en F, todas las a se encuentran antes que todas las b, las cuales a su vez se encuentran antes que todas las c. c) 1.- Elegimos el lenguaje sobre el alfabeto {a,b} de todos los strings que contienen dos símbolos a por cada símbolo b. 2.- Se elige n Elegimos z = a 2n b n 4.- Se elige z = xyw, tal que xy n, y >1 5.- Por la información xy n, y >1, sabemos que y = a j, donde j es por lo menos igual a 1 y a lo más igual a n. Entonces, elegimos k = 0, con lo que obtenemos xy 0 z = xz = a 2n-j b n, string que sabemos no pertenece a L, pues 2n-j 2n. Gramática: S SaSbS asbsas bsasas ε

2 2. Obtenga la forma normal de Chomsky para 2 de las siguientes gramáticas. Adicionalmente, elija una de ellas y obtenga su forma normal de Greibach: S E*F A+B S(D+B) ε A BC A B B+D bb b A*E C CCC CC D D A+C ε E be d Forma normal de Chomsky 1.- Eliminamos símbolos no productivos: S S(D+B) ε B B+D bb b D D ε E be d 2.- Eliminamos símbolos no alcanzables: S S(D+B) ε B B+D bb b D D ε 3.- Eliminamos las producciones épsilon: S S(D+B) (D+B) S(+B) (+B) B B+D B+ bb b D D d 4.- Reemplazamos todos los símbolos terminales por variables en las producciones donde no se encuentran solos: S SGDHBI GDHBI SGHBI GHBI B BHD BH B b D D d G ( H + I ) 5.- Transformamos todas las producciones de 3 o más variables en producciones de 2 variables: S S G SY 2 GY 3 G DY 3 Y 2 GY 3 Y 3 HY 4 Y 4 BI B BHD BH B b Y 5 HD D D d G ( H + I ) Está en Forma Normal de Chomsky. Forma normal de Greibach 6.- Partiendo del punto 4 (también es válido partir desde el punto 5), enumeramos todas las variables: S B b D d G ( H + I ) 7.- Eliminamos la recursividad por la izquierda de las variables y : b b d ( + ) 8.- Transformamos todas las producciones de tal forma que haya un símbolo no terminal al principio de cada producción: ( ( ( ( ( ( ( ( b b b d ( + ) Está en Forma Normal de Greibach.

3 S Dc AE SS Β A Aaa E ε B BB CHi C Ca CC d D D d E Eb ε BC Forma normal de Chomsky 1.- Eliminamos símbolos no productivos: S Dc AE SS A Aaa E ε C Ca CC d D D d E Eb ε 2.- Eliminamos símbolos no alcanzables: S Dc AE SS A Aaa E ε D D d E Eb ε 3.- Eliminamos las producciones épsilon: S Dc AE A E SS S A Aaa aa E D D d E Eb db 4.- Eliminamos las producciones unitarias: S Dc AE Aaa aa deb db SS A Aaa aa deb db D D d E Eb db 5.- Reemplazamos todos los símbolos terminales por variables en las producciones donde no se encuentran solos: S DC 0 AE A E SS A A E D D d E E C Transformamos todas las producciones de 3 o más variables en producciones de 2 variables: S DC 0 AE A SS E A A D D d E C 0 Forma normal de Greibach 7.- Partiendo del punto 5 (también es válido partir desde el punto 6), enumeramos todas las variables: S A D d E C Eliminamos la recursividad por la izquierda de las variables y : d 9.- Transformamos todas las producciones que tengan al principio del cuerpo una variable enumerada con un valor menor a la variable de la cabeza (en este caso, ): d Está en Forma Normal de Chomsky.

4 10.- Transformamos todas las producciones de tal forma que haya un símbolo no terminal al principio de cada producción: d a d d a a d a d d a a d a d d d d a d d a a d a d d a a d a d d d a d d a a d a d d a a d a d d d d a d d a a d a d d a a d a d d d d a a d a d d d Está en Forma Normal de Greibach.

5 S Sa *I L I M+I Ia ΜΒ M 0 1 0M 1M ε B O BO O B ΟΒ L LbL Oa b Forma normal de Chomsky 1.- Eliminamos símbolos no productivos: S Sa L M 0 1 0M 1M ε L LbL b 2.- Eliminamos símbolos no alcanzables: S Sa L L LbL b 3.- Eliminamos las producciones unitarias: S Sa albl b L LbL b 4.- Reemplazamos todos los símbolos terminales por variables en las producciones donde no se encuentran solos: S S L L b L L L b 5.- Transformamos todas las producciones de 3 o más variables en producciones de 2 variables: S S b L L L b Forma normal de Greibach 6.- Partiendo del punto 4 (también es válido partir desde el punto 5), enumeramos todas las variables: S b L b 7.- Eliminamos la recursividad por la izquierda de la variable : b b b 8.- Transformamos todas las producciones de tal forma que haya un símbolo no terminal al principio de cada producción: b a b a b b Está en Forma Normal de Greibach. Está en Forma Normal de Chomsky.

6 3. Obtenga un PDA para los siguientes lenguajes. Uno de los PDAs debe aceptar por pila vacía y el otro por estado final: a) El lenguaje sobre el alfabeto {0, 1} de los strings que tienen más ceros que unos o más unos que ceros. Respuesta: Primero obtenemos una gramática para el lenguaje dado S A B A 0 0A 0A1 0A1A 1A0 1A0A B 1 1B 0B1 0B1B 1B0 1B0B Luego creamos un PDA P = ({}, {0, 1}, {S, A, B}, δ,, S) que acepta por pila vacía ε, S/A ε, S/B ε, A/0 ε, A/0A ε, A/0A1 ε, A/0A1A ε, A/1A0 ε, A/1A0A ε, B/1 ε, B/1B ε, B/0B1 ε, B/0B1B ε, B/1B0 ε, B/1B0B 0, 0/ε 1, 1/ε Y si queremos que acepte por estado final, le agregamos un estado más al PDA P = ({, q1}, {0, 1}, {S, A, B}, δ,, S, {q1}) ε, S/A ε, S/B ε, A/0 ε, A/0A ε, A/0A1 ε, A/0A1A ε, A/1A0 ε, A/1A0A ε, B/1 ε, B/1B ε, B/0B1 ε, B/0B1B ε, B/1B0 ε, B/1B0B 0, 0/ε 1, 1/ε ε, ε/ε q1 b) El lenguaje sobre el alfabeto {0, 1} de los strings que tienen la forma 1 n 0 m 1 n, con n 0 y m 0. Respuesta: Primero obtenemos una gramática para el lenguaje dado S 1S1 A A 0A ε Luego creamos un PDA P = ({}, {0, 1}, {S, A, B}, δ,, S) que acepta por pila vacía ε, S/1S1 ε, S/A ε, A/0A ε, A/ε 0, 0/ε 1, 1/ε Y si queremos que acepte por estado final, le agregamos un estado más al PDA P = ({, q1}, {0, 1}, {S, A, B}, δ,, S, {q1}) ε, S/1S1 ε, S/A ε, A/0A ε, A/ε 0, 0/ε 1, 1/ε ε, ε/ε q1

7 4. Obtenga la gramática del PDA P = ({, q1}, {0,1}, {Z, X}, d,, Z) que acepta por pila vacía: 1, Z/XZ 1, X/XX 0, X/X 0, Z/ε 1, X/ε 1, Z/Z q1 Procedemos a construir nuestra gramática, con símbolo inicial S: S [ Z [ Las siguientes producciones derivan de la transición 1, Z/XZ: [ Z 1[ X [ Z 1[ Z [ 1[ X [ 1[ Las siguientes producciones derivan de la transición 1, X/XX: [ X 1[ X [ X 1[ X [ 1[ X [ 1[ Las siguientes producciones derivan de la transición 0, X/X: [ X 0[ X [ 0[ La siguiente producción deriva de la transición 0, Z/ε: 0 La siguiente producción deriva de la transición 1, X/ε: 1 Las siguientes producciones derivan de la transición 1, Z/Z: Z 1[ Z 1[ Nuestra gramática queda como sigue: S [ Z [ [ Z 1[ X [ Z 1[ Z [ 1[ X [ 1[ [ X 1[ X [ X 1[ X [ 1[ X [ 1[ [ X 0[ X [ 0[ 0 1 Z 1[ Z 1[ (Paso innecesario) Eliminando símbolos inútiles, la gramática queda como sigue: S [ [ 1[ [ 1[ [ 0[ 0 1 1[ (Otro paso innecesario) Traduciendo los símbolos no terminales por unos más cortos, se puede llegar a la siguiente gramática: S A A 1BC B 1BD 0D C 0 1A D 1

8 5. Demuestre o refute 2 de las siguientes sentencias: a) Si P es un autómata a pila, existe un autómata a pila Q que tiene un único estado y que representa el mismo lenguaje que P. Respuesta: Verdadero, ya que está demostrado que, para cualquier autómata a pila, se puede obtener una gramática de contexto libre, y para cualquier gramática de contexto libre se puede obtener un autómata pila de un solo estado que acepta por pila vacía. Por transitividad, queda demostrado que cualquier autómata a pila de uno o más estados tiene un autómata a pila equivalente de un solo estado. b) La intersección entre un lenguaje regular y un lenguaje de contexto libre da como resultado un lenguaje de contexto libre. Respuesta: Verdadero. Esto se puede demostrar creando un PDA P = (Q c, Σ, Γ, δ c, q, Z, F c ) para el lenguaje de contexto libre y un DFA D = (Q r, Σ r, δ r, p, F r ) para el lenguaje regular. La idea es crear un nuevo PDA M = (Q c xq r, Σ, Γ, δ, (q, p), Z, F c xf r ) que se mueve con un símbolo de entrada si y sólo si P y D pueden moverse con dicho símbolo de entrada al mismo tiempo. Con esto se puede definir la función de transición para M, la cual estará dada de la siguiente forma: δ((q r, p c ), a, X) = (δ r (q r, a), δ c (p c, a, X)) Si a = ε, entonces δ r (q r, ε) = q r, o sea el DFA D no se mueve cuando el PDA P realiza transiciones épsilon. Con esto, podemos decir que el nuevo PDA M acepta a un string s, si y sólo si: δ ((q, p), s, Z) = (δ r* (q, s), δ c* (p, s, Z)) = ((q f, p f ), X) Donde q f es un estado final de D y p f es un estado final de P. Como M sólo aceptará los strings que acepten D y P a la vez, entonces demostramos que L(M) es la intersección de los lenguajes L(D) y L(P) y adicionalmente L(M) es un lenguaje de contexto libre, ya que M es un autómata a pila. c) Todo lenguaje regular es un lenguaje de contexto libre. Respuesta: Verdadero. Esto se puede demostrar simulando cualquier DFA o NFA que represente al lenguaje regular con un PDA que acepta por estado final y que nunca usa su pila. Si se crea dicho PDA, el cual es capaz de aceptar el mismo lenguaje que el DFA o el NFA, entonces el lenguaje que aceptan ambos autómatas es regular y de contexto libre al mismo tiempo. Como dicha simulación se puede hacer para todos los DFAs y NFAs existentes, entonces todos los lenguajes regulares son a la vez lenguajes de contexto libre. 6. Sobre las gramáticas del ejercicio 2, responda: En cuáles de ellas se altera el lenguaje al obtener su Forma Normal de Chomsky? Y por qué? Hay alguna de ellas en la que no se altere el lenguaje? Respuesta: La Forma Normal de Chomsky altera los lenguajes al quitar el string vacío ε del conjunto de strings que aceptan. Dicho efecto se produce cuando se eliminan las producciones épsilon en el proceso de normalización. Sin embargo, habrán lenguajes que de por sí no acepten al string vacío. Estos lenguajes no se verán alterados por el proceso de normalización de Chomsky. Sabiendo esto, podemos afirmar que los únicos lenguajes que se alteran al obtener su forma normal de Chomsky son los de la primera y segunda gramática, ya que los símbolos iniciales de ambas gramáticas son capaces de producir ε. Con esto también podemos afirmar que la tercera gramática no se altera al obtenerse su forma normal de Chomsky, pues desde un principio es incapaz de aceptar el string vacío. DCC/

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 10 Gramaticas Independientes del Contexto Nivel del

Más detalles

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto Propiedades de los Lenguajes Libres de Contexto 15 de junio de 2015 15 de junio de 2015 1 / 1 Contenido 15 de junio de 2015 2 / 1 Introducción Introducción Simplificación de CFG s. Esto facilita la vida,

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria Las (k) Las Gramáticas con Parsing Eficiente Universidad de Cantabria Outline Las (k) 1 Las (k) 2 3 Las (k) Formalizalización del Concepto LL Definición Una gramática libre de contexto G = (V, Σ, Q 0,

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que

Un autómata con pila no determinista (APND) es una septupla Q A B F en la que AUTÓMATAS CON PILA Un autómata con pila no determinista (APND) es una septupla Q A F en la que δ q 0 Q es un conjunto finito de estados A es un alfabeto de entrada es un alfabeto para la pila δ es la función

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011 6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del

Más detalles

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

Tema 5 Lenguajes independientes del contexto. Sintaxis

Tema 5 Lenguajes independientes del contexto. Sintaxis Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO 1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO una gramática libre de contexto (o de contexto libre) es una gramática formal en la que cada regla de producción es de la forma: V w Donde V

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

La Ambigüedad en el Parsing

La Ambigüedad en el Parsing La en el Parsing Definición y Ejemplos Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema En nuestra busqueda por encontrar la estructura exploraremos como elegir una derivación

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Clase 14: Gramáticas libres de contexto

Clase 14: Gramáticas libres de contexto M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Gramáticas libres de contexto Propiedades de los lenguajes libres de contexto

Más detalles

Sentido de recorrido. q i

Sentido de recorrido. q i Sentido de recorrido σ Cinta Cabeza de lectura γ Pila i Unidad de control de estados Componentes básicos de un autómata con pila. σ i 1 σ i j σ i j+1 σ i p Z (a) γ l 1 γ l 2 γ l σ i 1 σ i j σ i j+1 σ i

Más detalles

3.3 Autómatas de Pila (AP) [LP81, sec 3.3]

3.3 Autómatas de Pila (AP) [LP81, sec 3.3] 3.3. AUTÓMATAS DE PILA (AP) 49 Ejemplo 3.8 Tal como con ERs, no siempre es fácil diseñar una GLC que genere cierto lenguaje. Un ejercicio interesante es {w {a,b}, w tiene la misma cantidad de a s y b s

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:

Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones: Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Teoría de Lenguajes. Teoría de la Programación I

Teoría de Lenguajes. Teoría de la Programación I Teoría de Lenguajes Soluciones Consideraciones generales i) Escriba nombre y C.I. en todas las hojas. ii) Numere todas las hojas. iii) En la primera hoja indique el total de hojas. iv) Comience cada ejercicio

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto de los s de los Lenguajes Libres de Contexto INAOE (INAOE) 1 / 47 Contenido de los s 1 2 -ɛ 3 4 5 6 de los s (INAOE) 2 / 47 () de los s Queremos mostrar que todo (sin ɛ) se genera por una CFG donde todas

Más detalles

Introducción al Procesamiento de Lenguaje Natural

Introducción al Procesamiento de Lenguaje Natural Introducción al Procesamiento de Lenguaje Natural Grupo de PLN - InCo 2011 Expresiones regulares y autómatas finitos English is not a finite state language. (Chomsky 1957) ER y Búsquedas Se requiere: Patrón

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO DE PROFESORES ARTIGAS ESPECIALIDAD MATEMÁTICA GEOMETRÍA UNIDAD 3 FICHA 2: PARALELISMO 1 Posiciones relativas de rectas. 2 Axioma de Euclides. 3 Paralelismo de recta y plano. 4 Paralelismo de

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación

Gramáticas independientes del contexto. Tema 3: Lenguajes independientes del contexto. Derivaciones. Árbol de derivación Tema 3: Lenguajes independientes del contexto Gramáticas independientes de contexto (GIC) Conceptos básicos Ambigüedad Ejemplos de GICs Autómatas con pila (AP) Definición de autómata con pila Determinismo

Más detalles

UNIDAD 4. Álgebra Booleana

UNIDAD 4. Álgebra Booleana UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,

Más detalles

COLEGIO LOS ARCOS Guía de trabajo #4 Segmentos proporcionales 9no grado

COLEGIO LOS ARCOS Guía de trabajo #4 Segmentos proporcionales 9no grado GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 4 - Segmentos proporcionales. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni

Más detalles

Lenguajes y Compiladores Análisis Sintáctico Parte I. Teoría Lenguajes 1

Lenguajes y Compiladores Análisis Sintáctico Parte I. Teoría Lenguajes 1 Facultad de Ingeniería de Sistemas Lenguajes y Compiladores Análisis Sintáctico Parte I 1 Introducción El analizador sintáctico recibe una secuencia de tokens y decide si la secuencia está correcta o no.

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2 EJERCICIOS DE ÁREAS Y PERÍMETROS DE TRIÁNGULOS 1. En el triángulo ABC es isósceles y rectángulo en C. Si AC = 5 cm y AD = cm, cuál (es) de las siguientes proposiciones es (son) verdadera (s)?: I) Área

Más detalles

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671

ESCUELA INTERNACIONAL DE IDIOMAS Avenida Pedro de Heredia, Calle 49a #31-45, barrio el Libano 6600671 Página: Pág: 1 HORARIOS DE CLASES IDIOMAS Jornada: M Sem:01 Curso:01 A.1.1 AA A.1.1 AA A.1.1 AA 11:00AM-12:00PM VIONIS VIONIS Jornada: M Sem:01 Curso:02 A.1.1 AB A.1.1 AB A.1.1 AB VIONIS VIONIS Jornada:

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Intuicionismo matemático y semántica basada en el concepto de demostración

Intuicionismo matemático y semántica basada en el concepto de demostración Intuicionismo matemático y semántica basada en el concepto de demostración CURSO TEORIA DE LA PRUEBA PARA LENGUAJES DE PROGRAMACION- DC-UBA-2012 Javier Legris CEF-CONICET y FCE-UBA jlegris@retina.ar Luitzen

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Gramáticas Independientes del Contexto (GIC)

Gramáticas Independientes del Contexto (GIC) Asignatura: Teoría de la Computación Tema 4: Gramáticas independientes del contexto Definiciones y propiedades Gramáticas Independientes del Contexto (GIC) Qué es una gramática? Modelo de estructuras recursivas.

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

Tema 2 Gramáticas y Lenguajes Libres de Contexto

Tema 2 Gramáticas y Lenguajes Libres de Contexto Tema 2 Gramáticas y Lenguajes Libres de Contexto 1. Definiciones Básicas 2. 3. Forma Normal de Chomsky 4. Autómatas de Pila 5. Propiedades de los Lenguajes Libres de Contexto 1. Definiciones básicas 1.

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 4 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 4 Análisis Sintáctico Ascendente Javier Vélez Reyes jvelez@lsi.uned.es Objetivos

Más detalles

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales

Teoría de Lenguajes y Autómatas Conceptos y teoremas fundamentales Se prohíbe la reproducción total o parcial de este documento, excepto para uso privado de los alumnos de la asignatura Teoría de Autómatas I de la UNED y los alumnos de asignaturas equivalentes de otras

Más detalles

Seminario de problemas-bachillerato. Curso Hoja 6

Seminario de problemas-bachillerato. Curso Hoja 6 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 6 37. Dada una cuerda AB de una circunferencia de radio 1 y centro O, se considera la circunferencia γ de diámetro AB. Sea P es el punto de γ más

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles