Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R."

Transcripción

1 Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por extensión: Se enumeran en forma expĺıcita los elementos que pertenecen al conjunto. Por ejemplo, A = {a, e, i, o, u} Esta forma de definir conjuntos funciona bien si el conjunto que queremos definir tiene un número finito de elementos. Por comprensión: Un conjunto se define por comprensión de la siguiente manera: {x P (x)}, Jorge Baier Aranda, PUC 1

2 es decir, al conjunto pertenecen todos los elementos x que cumplen con la propiedad P. Alternativamente, podemos usar: Ejemplos: 1. {n n N y n es par}. 2. {p N p es primo}. {x A P (x)} Es preciso observar que en la primera definición, la propiedad P no puede ser cualquier cosa. De hecho, la definición acepta definir conjuntos como el siguiente: R = {x x x}, es decir, el conjunto de todos los conjuntos que no pertenecen a sí mismos. Esta definición es contradictoria puesto que al hacernos la pregunta R R? no obtenemos una respuesta. Jorge Baier Aranda, PUC 2

3 Supongamos que la respuesta es sí. Luego, por definición del conjunto, R R. Supongamos que la respuesta es no. Luego, R R, y, por la definición de R, R debe pertenecer al conjunto R, es decir, R R! Esto nos deja la lección de que hay que ser cuidadoso con las propiedades que se escogen. La segunda definición de conjuntos es completamente segura cuando A es un conjunto fijo. Jorge Baier Aranda, PUC 3

4 Definiciones Elementales Si todos los elementos de un conjunto A pertenecen a un conjunto B, diremos que A está contenido en (o es subconjunto de) B. Esto se anota como A B, o B A. Dos conjuntos A y B (A = B) son iguales si y sólo si contienen los mismos elementos. Un conjunto A es subconjunto propio de B si y sólo si: que frecuentemente se escribe como: A B y A B, A B Jorge Baier Aranda, PUC 4

5 Operaciones Elementales A B, es la unión de A y B, y se define por: {x x A o x B} A B, es la intersección de A y B, y se define por: {x x A y x B} A B, es la diferencia de A y B, y se define por: {x x A y x B} A B, es el producto cartesiano de A y B, y se define por: {(x, y) x A y y B} Jorge Baier Aranda, PUC 5

6 2 A, es el conjunto potencia de A y define por: {x x A} Jorge Baier Aranda, PUC 6

7 Relaciones Una relación binaria R entre dos conjuntos A y B es un subconjunto del producto cartesiano entre A y B, es decir, R A B. Si el par (a, b) R, normalmente se acostumbra a decir que arb. Si (a, b) R, entonces decimos que (a, b) R (o a Rb). Definición 1. de A A. Una relación binaria R sobre un conjunto A es un subconjunto Nos interesarán algunas propiedades de las relaciones. Sea R una relación binaria sobre un conjunto A. R podría tener alguna de las siguientes propiedades: Jorge Baier Aranda, PUC 7

8 Refleja: R es refleja si y sólo si: ara, para todo a A. Simetría: R es simétrica si y sólo si: arb entonces bra, para todo a, b A. Asimetría: R es asimétrica si y sólo si: arb entonces b Ra, para todo a, b A. Antisimetría: R es antisimétrica si y sólo si: arb y bra implica que a = b, para todo a, b A. Transitividad: R es transitiva si: arb y brc implica que arc, para todo a, b, c A. Una relación de equivalencia es una relación simétrica, refleja y transitiva. Jorge Baier Aranda, PUC 8

9 Clausuras de Relaciones Si P representa una propiedad o una colección de propiedades de relación, entonces, la clausura-p de una relación binaria R sobre un conjunto A, es el subconjunto más pequeño de A A, que cumple la propiedad y que contiene a R. Normalmente, la clausura refleja y transitiva de una relación R sobre un conjunto cualquiera A, se anota como R y se puede construir a partir de R siguiendo las siguientes reglas: Si (a, b) R, entonces (a, b) R (a, a) R, para todo a A. Si (a, b) R y (b, c) R, entonces (a, c) R. Nada más pertenece R Jorge Baier Aranda, PUC 9

10 Sea R = {(1, 3), (1, 1), (1, 4), (3, 2)}, definida sobre S = {1, 2, 3, 4}. Siguiendo las reglas de construcción de arriba se obtiene que: R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (1, 2), (1, 4), (3, 2)}. Jorge Baier Aranda, PUC 10

11 Conjuntos Infinitos No tiene mucho sentido hablar del tamaño de un conjunto infinito. Sin embargo, es razonable cuestionarse algunas cosas. Como por ejemplo: Hay más racionales que naturales? Son más los múltiplos de 2 que los de 4? Quienes son más, los reales o los naturales? Para poder comparar tamaños de conjuntos infinitos se de define la noción de equinumeroso, con la idea intuitiva que dos conjuntos equinumerosos tienen la misma cantidad de elementos. Definición 2. [Conjuntos equinumerosos] Dos conjuntos A y B son equinumerosos si es que es posible definir una función biyectiva f : A B Jorge Baier Aranda, PUC 11

12 Ejemplo: El conjunto de múltiplos de 2 y el de múltiplos de 4 son equinumerosos. La función biyectiva está dada por: f(2k) = 4k. Ejercicio: Demuestre que Z y N son equinumerosos. Ejercicio: Demuestre N y N N son equinumerosos. Si A es un conjunto infinito, entonces se dice que A es contable si es que A y N son equinumerosos. Jorge Baier Aranda, PUC 12

13 Conjuntos incontables Hay muchos conjuntos que son incontables. El ejemplo más clásico es el caso de 2 N (Teorema de Cantor). Demostración: En efecto, supongamos que 2 N es contable. Esto significa que los elementos de 2 N pueden ser enumerados como: 2 N = {S 0, S 1, S 2,...} Si esta construcción es válida entonces podríamos formar el siguiente conjunto: D = {n N n S n } Debido a que D es un conjunto de naturales entonces debería ser igual a S k para algún k. La pregunta que nos hacemos es k D? Sólo hay dos posibilidades: Jorge Baier Aranda, PUC 13

14 1. Supongamos que la respuesta es sí. Entonces k S k, pero por la definición de D, k D, es decir k S k. 2. Supongamos que la respuesta es no. Entonces k S k y luego, dado que la propiedad de D se verifica, tenemos que k D y por lo tanto k S k.. Podemos concluir que tal enumeración para 2 N no existe y por lo tanto 2 N es incontable. Jorge Baier Aranda, PUC 14

15 Inducción El principio de inducción matemática es esencial para demostrar propiedades de los números naturales. Sin embargo, este principio se puede usar en general para demostrar cualquier propiedad de conjuntos de elementos que se pueden construir inductivamente. Nos referiremos al principio de inducción en los naturales y a definciones inductivas. Jorge Baier Aranda, PUC 15

16 Inducción en los Naturales Sea P (n) una propiedad acerca de un número natural arbitrario n, por ejemplo: n i = i=0 n(n + 1) 2 Si se logra establecer: 1. P (0). (caso base) 2. Si se cumple P (n) implica que se cumple P (n+1), para n 1 (paso inductivo). Una vez demostrados estos dos puntos, es posible concluir que la P (n) se cumple para cualquier natural n. Ejercicio: Demuestre que n i=0 i = n(n+1) 2. Jorge Baier Aranda, PUC 16

17 El principio de inducción completa establece que para demostrar una propiedad P sobre los naturales, basta con demostrar: 1. P (0). (caso base) 2. Si se cumple P (0), P (1),..., P (n) implica que se cumple P (n+1), para n 1 (paso inductivo). Jorge Baier Aranda, PUC 17

18 Definiciones Inductivas Las definiciones inductivas están inspiradas en el principio de inducción. Para definir una función (o propiedad) en forma inductiva se definen los casos básicos y luego los casos inductivos. En el caso básico se define la función (o propiedad) para los entes u objetos más simples 1. El (o los) casos inductivos tienen como característica que las definiciones de la función (propiedad) de un ente se hace en función de el valor de la función (propiedad) para entes más sencillos. La siguiente es una definición inductiva para la función factorial sobre los naturales: fact(n) = { 1 si n = 0 n fact(n 1) en otro caso 1 Los que no se definen en términos de otros Jorge Baier Aranda, PUC 18

19 La serie de los números de Fibonacci también se puede definir de esta manera: 0 si n = 0 f n = 1 si n = 1 f n + f n 1 en otro caso El principio de inducción es especialmente adecuado para demostrar propiedades de funciones definidas en forma inductiva. Ejemplo: Demuestre que para todo natural n 1 f 2 n = f n 1 f n+1 + ( 1) n+1, Jorge Baier Aranda, PUC 19

20 Grafos Un grafo finito no dirigido G = (V, E) es un par formado por: V : Un conjunto de vértices, o nodos. E: Un conjunto de pares no ordenados de vértices llamados aristas, o arcos. Ejemplo: V = {1, 2, 3, 4} E = {(i, j) i j = 1 o i = j} Corresponde a la siguiente representación gráfica: Un camino en un grafo G = (V, E) es una secuencia de vértices v 1, v 2,..., v n tal que cada par (v i, v i+1 ) E para cada 1 i < n. Jorge Baier Aranda, PUC 20

21 Un grafo dirigido es un grado en el cual las aristas tienen un sentido. Formalmente, es un par (V, E) donde V es un conjunto de vértices. E es un conjunto de pares ordenados de elementos de V. Ejemplo: V = {1, 2, 3, 4} E = {i j i j = 2 o i = j} Si el arco u v E, entonces se dice que u es el antecesor de v y que u es el sucesor de v. Jorge Baier Aranda, PUC 21

22 Árboles Un árbol es un tipo especial de grafo dirigido, que cumple las siguientes propiedades: 1. Hay un nodo v que no tiene predecesores y desde el cual hay un camino a cada nodo del grafo. (Tiene una raíz). 2. Exceptuando a la raíz, cada vértice tiene exactamente un predecesor. (Un nodo tiene a lo más un padre). En la jerga de árboles, se acostumbra decir padre en vez de antecesor e hijo en vez de sucesor. Adicionalmente, se puede suponer que los hijos de un mismo nodo están ordenados de izquierda a derecha. Jorge Baier Aranda, PUC 22

23 Símbolos, Alfabetos y Palabras Un símbolo es una entidad abstracta que no definiremos formalmente. Una definción del diccionario de la RAE: Tipo de abreviación de carácter científico o técnico, constituida por signos no alfabetizables o por letras, y que difiere de la abreviatura en carecer de punto Los símbolos que utilizaremos en este curso son dígitos y letras. Un alfabeto es un conjunto finito de símbolos. Ejemplos: Alfabeto binario = {0, 1} Alfabeto romano = {a, b, c, d, e,...} Alfabeto griego = {α, β, γ, δ,...} Frecuentemente, usaremos la letra Σ para referirnos a alfabetos. Jorge Baier Aranda, PUC 23

24 Una palabra es una secuencia finita de símbolos yuxtapuestos de algún alfabeto. La palabra ε es una palabra con 0 símbolos. Se acostumbra llamarla palabra vacía El conjunto de las palabras sobre un alfabeto Σ puede ser definido por: ε es una palabra. Si w es una palabra, entonces wa es una palabra, para todo a Σ. Ejercicio: Demuestre que aba es una palabra sobre Σ = {a, b, c}. Un lenguaje formal sobre un alfabeto Σ es un conjunto (posiblemente infinito) de palabras sobre Σ. Jorge Baier Aranda, PUC 24

25 Por ejemplo, si Σ = {a, e, i, o, u}, los siguientes son lenguajes: L 1 = {auu, eae, a} L 2 = L 3 = {ε, a, oa} Es importante notar la diferencia entre los lenguajes y {ε}. Jorge Baier Aranda, PUC 25

26 Convenciones Frecuentemente usaremos letras para designar tanto a símbolos como palabras. Para distinguirlos usamos las siguientes convenciones: Las letras minúsculas a, b, c y d serán usadas normalmente para designar símbolos. Las letras minúsculas u, v, w, x, y, z y w son usadas para designar palabras. Las letras mayúsculas L, R y S son usadas para designar lenguajes. Jorge Baier Aranda, PUC 26

27 Largo El largo de una palabra w corresponde al número de símbolos que ésta tiene y se anota como w. Ejemplo: abaco = 5. Podemos definir inductivamente la función largo por: ε = 0, wa = 1 + w, donde w es una palabra. Ejercicio: Usando la definición, demuestre que abaco = 5 Jorge Baier Aranda, PUC 27

28 Concatenación Es posible concatenar dos palabras a través de la operación de concatenación. De esta manera, si w 1 = ca y w 2 = sa, w 1 w 2 = casa La función de concatenación se puede definir inductivamente mediante: x ε = x, para toda palabra x. x wa = (x w)a, donde a es un símbolo y x y w son palabras. Ejemplo: Demuestre que ε x = x. Hacemos la demostración por inducción en el largo de x. Jorge Baier Aranda, PUC 28

29 Caso base. x = ε ( x = 0). ε x = ε ε = ε (por definición de largo) = x Paso inductivo. Supongamos que la propiedad se cumple para toda palabra w, de largo k. Demostraremos que, entonces, la propiedad se cumple para cualquier palabra de largo k + 1. (Hipótesis inductiva: ε w = w.) Demostración: ε wa = (ε w)a (por definición de concatenación) = wa (por hipótesis inductiva) Ejercicio: Demuestre que x y = x + y. Ejercicio: Demuestre que (x y) z = x (y z). Jorge Baier Aranda, PUC 29

30 Reverso Frecuentemente interesa obtener el reverso de una palabra w. El reverso de una palabra w, escrito por w r, es una palabra que contiene los mismos elementos que w, pero con los sus símbolos en secuencia inversa. La función reverso se define de la siguiente manera: ε r = ε. (xa) r = ax r, donde a Σ y x es una palabra sobre Σ. Ejercicio: Demuestre que (x y) r = y r x r. Jorge Baier Aranda, PUC 30

31 Concatenación de Lenguajes También es posible definir la función de concatenación para lenguajes. De esta manera: L 1 L 2 = {x y x L 1, y L 2 } Por ejemplo, si L 1 = {aa, bda, ɛ} y L 2 = {a, bb}, L 1 L 2 = {aaa, aabb, bdaa, bdabb, a, bb} Nótese que L = y que L {ε} = L ( por qué?). La notación L i se ocupa para denotar al lenguaje que resulta de la concatenación de L i veces consigo mismo. L i se puede definir inductivamente por: L 0 = {ɛ} L i+1 = L i L Jorge Baier Aranda, PUC 31

32 Clausura de Kleene La clausura de Kleene de un lenguaje L, que se anota como L, está definida por, L = L i. i=0 Ejemplo: Si L = {a}, L = {ε, a, aa, aaa, aaaa, aaaaa,...} Si L = {0, 1}, L = {ε, 0, 1, 00, 01, 10, 11, 000, 001,...} Generalizando, si Σ es un alfabeto cualquiera, entonces Σ es el conjunto de todas las palabras sobre Σ. Normalmente, se utiliza la notación L + como una abreviación de L L. Jorge Baier Aranda, PUC 32

33 Sufijos, Prefijos y Subpalabras Una palabra x es prefijo de una palabra w, si existe una palabra y tal que xy = w. Una palabra x es prefijo propio de una palabra w, si existe una palabra y, con y > 0 tal que xy = w. Una palabra x es sufijo de una palabra w, si existe una palabra y tal que yx = w. Una palabra x es sufijo propio de una palabra w, si existe una palabra y, con y > 0 tal que yx = w. Una palabra y es subpalabra de una palabra w, si existen palabras x y z tales que xyz = w. Jorge Baier Aranda, PUC 33

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura.

PRELIMINARES. En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1 PRELIMINARES 1. CONJUNTOS En este capítulo vamos a dar, sin ser muy estrictos, algunas nociones necesarias para la compresión de la asignatura. 1.1 Def:. Se define un conjunto como una colección de objetos.

Más detalles

Análisis Matemático I: Numeros Reales y Complejos

Análisis Matemático I: Numeros Reales y Complejos Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Capítulo 6. Relaciones. Continuar

Capítulo 6. Relaciones. Continuar Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS A. 1 Conjuntos. A. TEORÍA DE CONJUNTOS. Un conjunto

Más detalles

TEORÍA DE CONJUNTOS.

TEORÍA DE CONJUNTOS. TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.

CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe. CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer

Más detalles

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves

Una manera de describir un conjunto es por extensión y consiste en enumerar sus elementos entre llaves CONJUNTOS: DEFINICIÓN Y CARDINAL DE UN CONJUNTO : Un conjunto es una colección bien definida de objetos en la que el orden es irrelevante. Dichos objetos pueden ser reales o conceptuales y se llaman elementos

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

PRODUCTO CARTESIANO RELACIONES BINARIAS

PRODUCTO CARTESIANO RELACIONES BINARIAS PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt holger.billhardt@urjc.es Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

DE LOS NÚMEROS NATURALES Y ENTEROS

DE LOS NÚMEROS NATURALES Y ENTEROS Capítulo 2 DE LOS NÚMEROS NATURALES Y ENTEROS Objetivo general Presentar y afianzar algunos conceptos de los números naturales y números enteros relacionados con el estudio de la matemática discreta. Objetivos

Más detalles

Principio de inducción y Sumatorias

Principio de inducción y Sumatorias Semana06[1/14] 3 de abril de 007 Principio de inducción: Primera forma Semana06[/14] Una categoría importante de proposiciones y teoremas es la de las propiedades de los números naturales. Aquí tenemos,

Más detalles

GRAMÁTICAS LIBRES DE CONTEXTO

GRAMÁTICAS LIBRES DE CONTEXTO GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto

Más detalles

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas

Espacios Vectoriales. Tema Introducción. 1.2 Repaso de Estructuras Algebraicas Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas se han escrito con el ánimo de facilitar al estudiante una guía para el estudio de la asignatura, y no como un libro de texto o manual de Álgebra

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Teoría de Autómatas y Lenguajes Formales

Teoría de Autómatas y Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Alvaro E. Campos Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Marzo 1995 Contents 0 PROLOGO 5 0.1 Qué

Más detalles

0. Conjuntos y relaciones

0. Conjuntos y relaciones 0 En este capítulo presentamos las nociones elementales que utilizaremos a lo largo del libro 1 Conjuntos La noción básica con la que vamos a trabajar es la de conjunto A nuestros fines, un conjunto es

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse

Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse Ordenación parcial Un orden parcial es una relación binaria R sobre un conjunto X, que cumple las propiedades: Reflexiva: R es reflexiva sii para todo a A ara Antisimétrica: R es antisimétrica sii para

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

Las Gramáticas Formales

Las Gramáticas Formales Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Semana 4: Relaciones de equivalencia

Semana 4: Relaciones de equivalencia Semana 4: Relaciones de equivalencia 1. Una clasificación primaria Comenzaremos con una lista de propiedades que una relación sobre un conjunto puede satisfacer y que son relevantes en muchas aplicaciones

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 2015 Lic. Manuel

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

CAPÍTULO II TEORÍA DE CONJUNTOS

CAPÍTULO II TEORÍA DE CONJUNTOS TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =

Más detalles

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada Josemiguel.buenaposada@urjc.es Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares Luis Peña Lenguaje Regular Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si existe

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

TEMA 1.- PROBABILIDAD.- CURSO

TEMA 1.- PROBABILIDAD.- CURSO TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

TEORIA DE CONJUNTOS. Profesor: JOHN JAIRO HERRERA

TEORIA DE CONJUNTOS. Profesor: JOHN JAIRO HERRERA Conceptos históricos TEORIA DE CONJUNTOS Profesor: JOHN JAIRO HERRERA En el último cuarto del siglo XIX se vivió un episodio apasionante de la historia de las matemáticas que las ligaría desde entonces

Más detalles

El axioma del innito

El axioma del innito Capítulo 2 El axioma del innito 2.1. El conjunto ω Ya observamos que con los axiomas anteriores podemos formar conjuntos nitos tan grandes como querramos. El axioma que introduciremos ahora nos permitirá

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

ARITMÉTICA MODULAR. Unidad 1

ARITMÉTICA MODULAR. Unidad 1 Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.

Más detalles