La trascendencia de e y π

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La trascendencia de e y π"

Transcripción

1 La trascendencia de e y π Comenzamos introduciendo unos convenios útiles de notación: Definición 1 Escribiremos h r = r!, de modo que si fz) = m c r z r C[z], entonces fh) representará fh) = m c r h r = m c r r! Igualmente, fz + h) será el polinomio que resulta de sustituir y r por h r = r! en la expresión desarrollada de fz + y). Concretamente: m m r ) r m m ) r fz+y) = c r z+y) r = c r z r k y k = c r )z r k y k, k k r=k luego fz+h) = m m ) r c r )z r k k! = k r=k m m ) r! r k)! c rz r k = r=k m f k) z), donde f k) z) eslak-ésima derivada formal del polinomio f. Observar que pues fz + h) = m c r z + h) r, m c r z + h) r = = m c r m z r ) k) = m m ) k) c r z r m f k) z) =fz + h). 1

2 Así mismo, Sea f0 + h) = Teniendo en cuenta que m f k) 0) = u r z) =r! n=1 m c r r!=fh). z n r + n)!. z n r+n)! r! < z n n!, es claro que la serie converge en todo C y que u r z) <e z. Llamaremos Así, ɛ r z) < 1. ɛ r z) = u rz) e z. Teorema 2 Sea φz) = s c r z r C[z]. Seaψz) = s c r ɛ r z)z r. Entonces e z φh) =φz + h)+ψz)e z. Demostración: En primer lugar r ) r z + h) r = z k h r k = k y por otro lado r!e z u r z)z r = r! = r! r r r! k! zk = r! z k k! r! z n r + n)! zr = r! z k k!, n=1 o sea, z + h) r = r!e z u r z)z r, y por lo tanto r z k k!, e z h r =z + h) r + u r z)z r =z + h) r + e z ɛ r z)z r. z k k! r! k=r+1 Multiplicando por c r y sumando en r obtenemos la igualdad buscada. z k k! 2

3 Teorema 3 Sea m 2 y fx) Z[x]. Definimos los polinomios F 1 y F 2 mediante: F 1 x) = xm 1 m 1)! fx), F 2x) = x m m 1)! fx). Entonces F 1 h), F 2 h) Z, F 1 h) f0) mód m) y F 2 h) 0 mód m). Demostración: Sea fx) = r a r x r, con a r Z. Entonces F 1 x) = s a r x r+m 1 m 1)!, F 1h) = s a r r + m 1)! m 1)! Z y m divide a cada sumando excepto quizá al primero, que es a 0 = f0). Por lo tanto F 1 h) f0) mód m). Con F 2 se razona análogamente. Como último preliminar recordemos que px 1,...,x n ) A[x 1,...,x n ]es un polinomio simétrico si para toda permutación σ de las variables se cumple que px 1,...,x n )=pσx 1 ),...,σx n )). Los polinomios simétricos elementales de n variables son los polinomios e 0,...,e n tales que e i es la suma de todos los monomios posibles formados por i variables distintas. Por ejemplo, los polinomios simétricos elementales de tres variables son e 0 =1, e 1 = x + y + z, e 2 = xy + xz + yz, e 3 = xyz. Vamos a usar los dos resultados siguientes sobre polinomios elementales: Todo polinomio simétrico px 1,...,x n ) es de la forma qe 1,...,e n ), para cierto polinomio qx 1,...,x n ). Los coeficientes x α 1 ) x α n ) son 1) i e i α 1,...,α n ), para i =0,...,n. Teorema 4 El número e es trascendente. Demostración: Si e fuera algebraico sería la raíz de un polinomio con coeficientes enteros. Digamos n c t e t = 0, con n 1, c t Z, c 0 0 si c 0 fuera 0 podríamos dividir entre e y quedarnos con un polinomio menor). Sea p un primo tal que p>ny p> c 0. Sea φx) = xp 1 x 1)x 2) x n))p. 3

4 Por el teorema 2: n 0= c t e t φh) = n c t φt + h)+ n c t ψt)e t = S 1 + S 2. Tomando m = p, el teorema 3 nos da que φh) Z y Si 1 t n, entonces φh) 1) pn n!) p mód p). φt + x) = x + t)p 1 x + t 1)x + t 2) x x + t n)) p, y sacando el factor x queda φt + h) = xp fx), con fx) Z[x]. Por el teorema 3 tenemos que φt + h) Z yesunmúltiplo de p. Ahora, S 1 = n c t φt + h) c 0 φh) c 0 1) pn n!) p 0 mód p), ya que c 0 0yp>n, c 0.Asípues, S 1 Z y S 1 0, luego S 1 1. Como S 1 + S 2 = 0, lo mismo vale para S 2, es decir, S 2 1. Por otro lado, sea φx) = s a r x r. Entonces ψt) = s a r ɛ r t)t r s a r ɛ r t) t r s a r t r. Observemos que a r es el coeficiente de grado r del polinomio x p 1 x +1) x + n))p. Basta ver que si b i es el coeficiente de grado i de x 1) x n)) p, entonces b i es el coeficiente de grado i de x +1) x + n)) p, pero b i = 1) pn i e np i 1,...,n,...,1,...,n) = 1) pn i e np i 1,..., n,..., 1,..., n). 4

5 Por lo tanto podemos concluir: ψt) s a r t r = tp 1 t + 1)t +2) t + n))p, y en definitiva: ψt) t + 1)t +2) t + n) tt +1) t + n))p 1. Pero esta expresión tiende a 0 cuando p tiende a infinito por la convergencia de la serie de la función exponencial). En consecuencia, tomando p suficientemente grande podemos exigir que S 2 = n c t ψt)e t cumpla S 2 < 1, cuando hemos demostrado lo contrario para todo p. Esto prueba que e es trascendente. La trascendencia de π es algo más complicada de probar. Además de los teoremas 2 y 3 necesitaremos otro resultado auxiliar: Teorema 5 Sea px) =dx m + d 1 x m d m 1 x + d m Z[x], sean α 1,...,α m sus raíces en C yseaqx 1,...,x m ) Z[x 1,...,x m ] un polinomio simétrico. Entonces qdα 1,..., dα m ) Z. Demostración: Claramente d m 1 px) =dx) m +d 1 dx) m 1 +dd 2 dx) m 2 + +d m 2 d m 1 dx)+d m 1 d m. O sea, d m 1 px) =rdx), donde rx) =x m + d 1 x m 1 + dd 2 x m d m 2 d m 1 x + d m 1 d m Z[x] es un polinomio mónico y sus raíces son obviamente dα 1,...,dα m. Consecuentemente, rx) =x dα 1 ) x dα m ) y los coeficientes de rx) son 1) i e i dα 1,...,dα m ) para i =0,...m.Así pues, e i dα 1,..., dα m ) Z para i =1,...,m. Por otro lado sabemos que qx 1,...,x m )=re 1,...,e m ) para cierto polinomio rx 1,...,x m ) Z[x 1,...,x m ], luego qdα 1,..., dα m )=re 1 dα 1,...,dα m ),...,e m dα 1,...,dα m )) Z. 5

6 Teorema 6 El número π es trascendente. Demostración: Si π es algebraico también lo es iπ. Sea dx m + d 1 x m d m 1 x + d m Z[x] un polinomio tal que d 0 y con raíz iπ. Sean ω 1,...,ω m sus raíces en C. Como una de ellas es iπ y e iπ +1 = 0, tenemos que 1+e ω 1 ) 1+e ωm) =0, o sea, 1+ 2 m 1 e αt =0, donde α 1,...,α 2 m 1 son ω 1,...,ω m,ω 1 + ω 2,...,ω m 1 + ω m,...,ω ω m. Supongamos que c 1 de ellos son nulos y n =2 m 1 c 1) no son nulos. Ordenémoslos como α 1,...,α n, 0,...,0. Así c 1y c + n e αt =0. 1) Notemos lo siguiente: e i x 1,...,x n )=e i x 1,...,x n, 0,...,0), donde e i es a la izquierda el polinomio simétrico elemental de n variables y a la derecha el de 2 m 1 variables. Por lo tanto e i dα 1,...,dα n )=e i dα 1,...,dα 2 m 1) = e i dω 1,...,dω m,dω 1 + dω 2,...,dω m 1 + dω m,..., dω dω m ). Sea q i x 1,...,x m )=e i x 1,...,x m,x 1 +x 2,...,x m 1 +x m,...,x 1 + +x m ). Claramente se trata de polinomios simétricos con coeficientes enteros y e i dα 1,...,dα n )=q i dω 1,...,dω m ), luego el teorema anterior nos permite afirmar que e i dα 1,..., dα n ) Z. Si sx 1,...,x n ) Z[x 1,...,x n ] es simétrico, entonces s depende polinómicamente de los e i, luego sdα 1,...,dα n ) Z. Sea p un primo tal que p> d, p>c, p> d n α 1 α n. Sea φx) = dnp+p 1 x p 1 x α 1 ) x α n )) p. 6

7 Multiplicamos 1) por φh) y aplicamos el teorema 2. Nos queda Ahora, cφh)+ n φα t + h)+ n ψα t )e αt = S 0 + S 1 + S 2 =0. φx) = xp 1 dp 1 dx dα 1 ) dx dα n )) p. Los coeficientes de y dα 1 ) y dα n ) son polinomios simétricos elementales sobre dα 1,...,dα n, luego son enteros, según hemos visto antes. De aquí se sigue que también son enteros los coeficientes de dx dα 1 ) dx dα n ), con lo que φx) = xp 1 np g r x r, donde cada g r Z. Por el teorema 3 tenemos que φh) Z y φh) g 0 mód p). Concretamente, g 0 = 1) pn d p 1 dα 1 dα n ) p, luego por la elección de p resulta que p g 0 aquí es importante que dα 1 dα n Z porque es el término independiente de y dα 1 ) y dα n ). Como p c, resulta que p S 0 = cφh). Nos ocupamos ahora de S 1. Tenemos que φα t + x) = dnp+p 1 α t + x) p 1 x + α t α 1 ) x + α t α t 1 ) xx + α t α t+1 ) x + α t α n )) p = xp dp dα t + dx) p 1 dx + dα t dα 1 ) dx + dα t dα t 1 ) dx + dα t dα t+1 ) dx + dα t dα n )) p = xp f rt x r, donde f rt = f r dα t,dα 1,...,dα t 1,dα t+1,..., dα n )yf r es un polinomio simétrico respecto a todas las variables excepto la primera, con coeficientes enteros y que no depende de t. En efecto, consideramos el polinomio y x 1 )) p 1 p. y x 2 x 1 )) y x n x 1 ))) 7

8 Sus coeficientes son los polinomios simétricos elementales actuando sobre x 1 p 1 veces) y sobre x 2 x 1,...,x n x 1 p veces cada uno), luego son polinomios simétricos en x 2,...,x n. Digamos que el polinomio es Entonces φα t + x) = s r x 1,...,x n )y r. xp d p s r dα t,dα 1,...,dα t 1,dα t+1,...,dα n )d r x r, es decir, f r = d r+p s r x 1,...,x n ). Por lo tanto, n φα t + x) = xp n ) f rt x r, pero n n f rt = f r dα t,dα 1,..., dα t 1,dα t+1,...,dα n ), y el polinomio n f r x t,x 1,...,x t 1,x t+1,...x n ) es simétrico respecto a todas las variables), luego F r = n f rt depende simétricamente de dα 1,...,dα n y por lo tanto es un entero. Así pues, n φα t + x) = xp F r x r, y por el teorema 3 concluimos que S 1 = n φα t + h) Z yesmúltiplo de p aquí hemos usado que φ 1 + φ 2 )h) =φ 1 h)+φ 2 h), lo cual es evidente). Esto nos da que S 0 + S 1 Z ynoesunmúltiplo de p. En particular S 0 + S 1 1 y, por la ecuación S 0 + S 1 + S 2 = 0 resulta que también S 2 Z y S 2 1. Como en el caso de e, ahora probaremos lo contrario. Sea ψx) = np+p 1 c r ɛ r x)x r. Entonces ψx) = np+p 1 c r ɛ r x)x r d np+p 1 x p 1 np+p 1 c r x r x + α 1 ) x + α n )) p 8

9 por el mismo razonamiento que en la prueba de la trascendencia de e) y así ψx) M 2np+2p 2, donde M es una cota que no depende de p. Como M 2np+2p 2 M 2np+2p = M 2n+2)p = K p = KK p 1, tenemos que ψx) K Kp 1 y la sucesión converge a 0 cuanto p tiende a infinito, pues la serie converge a Ke K. Esto para cada x fijo. Tomando un primo p suficientemente grande podemos exigir que S 2 n ψα t ) e αt < 1, con lo que llegamos a una contradicción. 9

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman: 1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Suma, diferencia y producto de polinomios

Suma, diferencia y producto de polinomios I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,

Más detalles

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7 Tema 7 Reglas de l Hôpital Estudiamos en este tema el método práctico más efectivo para calcular ites de funciones en los que se presenta una indeterminación del tipo [0/0], o [ / ]. Este método se atribuye

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

II Concurso de Resolución de Problemas Curso

II Concurso de Resolución de Problemas Curso II Concurso de Resolución de Problemas Curso 2011-2012 Solución Solución del Problema de la distancia mínima. Hagamos una precisión preliminar sobre la distancia de un punto a una recta: En el plano, dados

Más detalles

2. Derivación y funciones holomorfas.

2. Derivación y funciones holomorfas. 18 Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 2. Derivación y funciones holomorfas. 2.1. Derivación de funciones complejas y funciones holomorfas. Sea Ω abierto contenido en C,

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PROPUESTOS 5.1 Divide los siguientes monomios. a) 54x 5 9x 2 b) 63x 12 3x 5 c) 35xy 6 7y 3 d) 121x 2 y 6 11yx 4 a) 54x 5 9x 2 5 5 4x 2 5 4 x 5 9x 9 x 2 6x 3 c) 35xy 6 7y 3 3 6 5xy 3 3 5 x y

Más detalles

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n. Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Teorema del valor medio

Teorema del valor medio Tema 10 Teorema del valor medio Podría decirse que hasta ahora sólo hemos sentado las bases para el estudio del cálculo diferencial en varias variables. Hemos introducido el concepto general o abstracto

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

A Monomios y polinomios Monomios Operaciones con monomios Polinomios Operaciones con polinomios Identidades notables

A Monomios y polinomios Monomios Operaciones con monomios Polinomios Operaciones con polinomios Identidades notables POLINOMIOS CAPACIDADES ESPECÍFICAS A Monomios y polinomios Monomios Operaciones con monomios Polinomios Operaciones con polinomios Identidades notables Expresión en lenguaje algebraico de relaciones, propiedades

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número

Más detalles

1. Sumar monomios semejantes:

1. Sumar monomios semejantes: FICHA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos 1 S 4 v 2 v 1 5 2 de los Elementos Finitos Parte 9 de los Elementos de Borde Alberto Cardona, Víctor Fachinotti Cimec-Intec (UNL/Conicet), Santa Fe, Argentina Método de Elementos de Borde (MEB) Sea el

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Números y desigualdades

Números y desigualdades 1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

2 x

2 x FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Importante: Visita regularmente ttp://www.dim.ucile.cl/~calculo. Aí encontrarás las guías de ejercicios

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo Los Números Enteros Capítulo 1 1.1 Introducción En este capítulo nos dedicaremos al estudio de los números enteros los cuales son el punto de partida de toda la teoría de números. Estudiaremos una serie

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

1. Construcción de la Integral

1. Construcción de la Integral 1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones

Más detalles

Parte II CALCULO DIFERENCIAL.

Parte II CALCULO DIFERENCIAL. Parte II CALCULO DIFERENCIAL. 165 En esta parte veremos el Cálculo diferencial en forma precisa. 167 168 Capítulo 1 Axiomas Para los Números Reales. En este capítulo daremos las bases en las cuales se

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

Ejercicios de Algebra III. Curso 00-01

Ejercicios de Algebra III. Curso 00-01 Ejercicios de Algebra III. Curso 00-01 Ejercicio 1. Sea x un elemento nilpotente de un anillo A. Probar que 1 + x es una unidad de A. Deducir que la suma de un elemento nilpotente y de una unidad es una

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma

Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma Polinomios Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma p(x) = a 0 + a 1 x +... + a n x n (1) donde x es la variable y a 0,

Más detalles

Números famosos III: El número e.

Números famosos III: El número e. Introducción Números famosos III: El número e. Si ingresamos en un banco 1 al 100 por 100 anual, al cabo de un año tendremos 1+1=2. Si el abono de intereses se realiza mensualmente, al cabo del año tendremos

Más detalles

Ficha de Repaso: Lenguaje Algebraico

Ficha de Repaso: Lenguaje Algebraico Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Aproximación numérica de raíces de ecuaciones y de sistemas de ecuaciones.

Aproximación numérica de raíces de ecuaciones y de sistemas de ecuaciones. 1 Aproximación numérica de raíces de ecuaciones y de sistemas de ecuaciones. Índice 1. INTRODUCCIÓN...2 2. ACOTACIÓN DE RAÍCES DE POLINOMIOS...3 Cota de raíces...3 Número de raíces...6 3. TEOREMA (de Sturm).-...7

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles