Escuela Técnica Superior. de Ingeniería Informática. Curso 2015/2016. Boletín de Problemas. Geometría Computacional. Dpto. de Matemática Aplicada I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Escuela Técnica Superior. de Ingeniería Informática. Curso 2015/2016. Boletín de Problemas. Geometría Computacional. Dpto. de Matemática Aplicada I"

Transcripción

1 Escuela Técnica Superior de Ingeniería Informática Curso 2015/2016 Boletín de Problemas de Geometría Computacional Dpto. de Matemática Aplicada I

2 1) Sean u(u 1,u 2 ) y v (v 1,v 2 ) dos vectores del plano. Se define el producto cruz como u u v = 1 u 2 v 1 v 2 a) Probar que el producto cruz de dos vectores coincide con el área (con signo) del paralelogramo cuyos lados son dichos vectores. b) Comprobar con un ejemplo que el signo del producto cruz es el mismo que el del ángulo formado por los vectores. Es decir es negativo (alternativamente, positivo) si, situados los vectores con un mismo punto origen, el desplazamiento desde u hasta v se hace en sentido de las agujas del reloj (alternativamente, contrario a las agujas del reloj). c) Qué ocurre si el producto cruz vale 0? 2) Dados tres puntos p(p 1,p 2 ), q(q 1,q 2 ) y r(r 1,r 2 ), probar que al realizar la trayectoria p q r hacemos un giro a la izquierda (alternativamente, derecha) si el siguiente determinante es positivo (alternativamente, negativo): 1 p 1 p 2 1 q 1 q 2 1 r 1 r 2 3) Diseñar un método, utilizando el producto cruz, para saber si dos segmentos pq y rs se cortan. En caso afirmativo, indicar cómo se obtiene el punto de corte. 4) Diseñar un algoritmo que resuelva el siguiente problema: dada una colección P de n puntos en el plano, encontrar un valor l > 0 tal que si transformamos cada punto (x,y) de P en el (x+ly,y), el orden de los puntos de P no cambia en la dirección del eje de las X. 5) Probar que dado un conjunto de puntos en el plano, se puede encontrar en tiempo O(nlogn) un polígono simple que tenga a dicho conjunto como sus vértices. 6) Sea P un polígono monótono (existe una recta tal que toda perpendicular a dicha recta a lo más corta en dos puntos al polígono). Diseñar un algoritmo que calcule su envolvente convexa en tiempo lineal. 7) Dado un conjunto de puntos ordenados según su coordenada x, dar un algoritmo que calcule su envolvente convexa en tiempo O(n). 8) Dado un conjunto S, un semiplano soporte de S es todo semiplano cerrado que contenga a S. r es una recta soporte de S si uno de los semiplanos que genera es soporte de S y no contiene a ningún semiplano soporte de S. a) Dado un polígono convexo P de n vértices y un punto q exterior a él, dar un procedimiento que permita hallar las rectas soporte a P pasando por q en tiempo O(log(n)). b) Dados dos polígonos convexos P y Q, dar un procedimiento para calcular las rectas soporte de ambos polígonos en tiempo O(n). 9) Dado un conjunto de puntos en el plano S, demostrar que las siguientes dos definiciones de envolvente convexa son equivalentes: a) La envolvente convexa es la intersección de todos los convexos que contienen a S. b) La envolvente convexa es el conjunto convexo de menor perímetro que contiene a S. Para ello probar que: i. La intersección de dos convexos en es un convexo. Esto implica que la intersección de una familia finita de convexos es a su vez un convexo. ii. El polígono de menor perímetro P que contiene a S es convexo. iii. Cualquier conjunto convexo que contenga a S también debe contener a P. 10) Dos conjuntos de puntos A y B se dicen que son linealmente separables si existe una recta r de forma que cada uno de los conjuntos está contenido en uno distinto de los dos semiplanos abiertos (es decir, excluyendo la recta) que define dicha recta. E.T.S.I.Informática Página 1

3 a) Demostrar que dos conjuntos son linealmente separables si y sólo si lo son sus envolventes. b) Demostrar que dos convexos son linealmente separables si y sólo si son disjuntos. c) Diseñar un algoritmo que decida cuando dos conjuntos son linealmente separables. 11) Probar que todo polígono convexo tiene cuatro vértices N, S, E, O (que pueden coincidir entre ellos) y cuatro cadenas monótonas entre ellos que son de N a W descendente hacia la izquierda, de W a S descendente hacia la derecha, de S a E ascendente hacia la derecha y de E a N ascendente hacia la izquierda. 12) Un polígono se dice ortogonal si todas sus aristas son verticales u horizontales. Y un polígono ortogonal se dice ortogonalmente convexo si al intersectar dicho polígono con una línea vertical u horizontal resulta un segmento (pudiendo reducirse a un punto o ser vacío). a) Encontrar una caracterización similar a la del Problema 11 para polígonos ortogonales ortogonalmente convexos. b) Diseñar un algoritmo que decida cuando un polígono ortogonal es ortogonalmente convexo. c) Diseñar un algoritmo que encuentre el menor polígono ortogonalmente convexo que contiene a un polígono ortogonal dado. 13) Sea S un conjunto de n círculos con el mismo radio que pueden cortarse entre sí. Se pide: a) Demostrar que la envolvente convexa de S está formada por arcos de círculos de S y segmentos. b) Demostrar que cada círculo de S aparece a lo más una vez en la frontera de la envolvente convexa, salvo casos degenerados de discos alineados, es decir sus centros están en la misma recta. c) Sea S el conjunto de los centros de los círculos de S. Demostrar que un círculo de S aparece en la frontera de la envolvente convexa si y sólo si su centro aparece en la envolvente convexa de S. d) Dar un algoritmo O(nlogn) que calcule la envolvente convexa de S. 14) Sea E un conjunto no ordenado de n segmentos que forman los lados de un conjunto convexo. Dar un algoritmo O(n log n) que calcule, a partir de E, la lista de vértices del polígono ordenados angularmente. 15) Dar un algoritmo que, con un preprocesamiento lineal, determine en tiempo O(log(n)) si un punto está en el interior o exterior de un polígono de vértices y-monótonos. 16) Dar ejemplos de PSLG para los que el método de la banda requiera un preprocesamientode O(n) y O(n 2 ). 17) Seaun conjunto S de n segmentosdisjuntos dosados. Diremosque dospuntos se ven si existe un segmento que los tiene como extremos y que no corta a ningún elemento de S. Dar un algoritmo tal que, dado un punto p del plano que no esté sobre ningún segmento: a) Calcule los segmentos de S que son visibles desde p (p ve a algún punto del segmento). b) Calcule los segmentos totalmente visibles desde p (p ve a todos los puntos del segmento). 18) Describir las mediatrices (el conjunto de puntos que equidistan) de: a) Un punto y una recta. b) Dos rectas. c) Un punto y un segmento. d) Dos segmentos. 19) Construir el diagrama de Voronoi de tres puntos con las siguientes métricas: a) d 1 ((x 1,y 1 ),(x 2,y 2 )) = x 1 x 2 + y 1 y 2. b) d ((x 1,y 1 ),(x 2,y 2 )) = máx{ x 1 x 2, y 1 y 2 }. 20) Diseñar un algoritmo, indicando su complejidad, para dados dos conjuntos de puntos A y B, cada uno de ellos con n puntos, encontrar el mínimo de la distancia de un punto de A a uno de B. E.T.S.I.Informática Página 2

4 21) Cuál es la complejidad (número de vértices + aristas + caras) de un diagrama de Voronoi de n puntos (lineal, cuadrático...)? Cuántos vecinos tiene, de media, cada generador? 22) Dados n puntos en el plano, dar un algoritmo que encuentre el círculo de menor radio que los contenga. 23) Queremos construir dos centros que den servicio a un conjunto de n ciudades. Su localización debe estar dentro de la envolvente convexa que delimitan, cumpliendo en cada caso que: a) Minimicen la mayor distancia a las ciudades (localización de un recurso deseado, como un hospital). b) Maximice la menor distancia a las ciudades (localización de un recurso no deseado, como un vertedero). Dar algoritmos que resuelvan los problemas de localización en tiempo O(nlogn). 24) Preprocesar un conjunto S de n puntos en el plano de tal forma que se pueda responder en tiempo logarítmico a la siguiente pregunta: dado un punto q encontrar el radio del mayor círculo centrado en q que no contenga puntos de S. 25) Encontrar un algoritmo tal que dado un conjunto S de n puntos en el plano encuentre el círculo centrado en algún punto del interior de su envolvente convexa que no contenga puntos de S y que tenga el mayor radio posible. 26) Dados dos triángulos que comparten una arista formando un cuadrilátero convexo, un flip diagonal consiste en sustituir la arista que tienen en común por la otra diagonal del cuadrilátero. Demostrar que dadas dos triangulaciones distintas de un conjunto de puntos siempre es posible pasar de una a otra mediante una secuencia de flips diagonales. 27) Es cierto que todo árbol binario es el dual de la triangulación de un polígono? Demostrarlo en caso afirmativo o dar un contraejemplo en caso negativo. 28) Sea P un polígono de n vértices {P 1,P 2,...,P n }. Diremos que tres vértices consecutivos P i 1 P i P i+1 constituyen una oreja del polígono si el segmento P i 1 P i+1 es una diagonal. a) Probar que el dual de una triangulación es un árbol con vértices de valencia máxima 3. b) Probar que toda triangulación de un polígono tiene al menos dos orejas. c) Describir un algoritmo de triangulación de un polígono, basado en la eliminación de orejas. Indicar su complejidad. 29) El Teorema de las dos orejas(teorema de Meister) dice: Excepto los triángulos, todo polígono tiene al menos dos orejas no superpuestas (o sólo comparten un lado o la intersección es vacía). Probar que dadas dos triangulaciones distintas de un mismo polígono siempre es posible pasar de una a otra mediante flips (Indicación: fijar una oreja y utilizar inducción en el resto del polígono). 30) Dado un polígono de n vértices, se pide: a) Demostrar que todas las triángulaciones de dicho polígono tienen el mismo número de triángulos. b) Cuántos triángulos y diagonales tiene cualquier triangulación del polígono?. c) Calcular la suma de los ángulos internos del polígono. d) Cuánto suman los ángulos exteriores del polígono? 31) Dadas dos triangulaciones de una nube de puntos, diseñar un algoritmo cuadrático que lleve una triangulación a la otra mediante flips. 32) El grafo de Gabriel de un conjunto S de n puntos en el plano se define como sigue: dos puntos p y q están unidos mediante una arista del grafo de Gabriel si y sólo si el círculo de diámetro pq no contiene ningún otro punto de S. a) Probar que el grafo de Gabriel de S está contenido en la triangulación de Delaunay de S. b) Probar que p y q son adyacentes en el grafo de Gabriel de S si y sólo si la arista de Delaunay que une p y q corta su arista de Voronoi dual. E.T.S.I.Informática Página 3

5 c) Dar un algoritmo O(nlogn) que calcule el grafo de Gabriel de un conjunto de n puntos. 33) Sea S un conjunto de n puntos. Una triangulación voraz (o greedy) de S se obtiene ordenando por su longitud todas las posibles aristas entre puntos de S y añadiéndolas a la triangulación de menor a mayor, siempre y cuando la nueva arista no corte a ninguna que se haya añadido anteriormente. a) Estudiar los tiempos de ejecución asociados a cada paso en la construcción de una triangulación voraz, así como orden de ejecución del algoritmo. b) Dados los siguientes enunciados probar si son ciertos o dar un contraejemplo si son falsos (donde d(x,y) representa la distancia euclídea entre dos puntos x e y): i. Supongamos que estamos en un paso intermedio de la construcción de la triangulación, y tenemos ya dos triángulos abc y bcd (que comparten la arista bc) sin puntos en su interior, formando un cuadrilátero convexo, entonces d(b, c) = d(a, d). ii. Consideramos dos puntos p y q de S y sea C el círculo centrado en el punto medio entre p y q y de diámetro d(p,q). El segmento pq divide a C en dos semicírculos. Si ambos semicírculos contienen al menos un punto de S, entonces pq no puede formar parte de la triangulación voraz de S. c) Dar un conjunto cuyas triangulaciones voraz y Delaunay sean distintas. 34) Una triangulación de una nube S de puntos en el plano se dice que es una triangulación de Pitteway si para cada triángulo (a,b,c), cualquier punto en su interior tiene a uno de los tres puntos a, b o c como el punto más cercano de la nube. Probar: a) Toda triangulación de Pitteway es una triangulación de Delaunay. b) No toda triangulación de Delaunay es de Pitteway y por tanto existen nubes de puntos que no admiten triangulación de Pitteway. c) Caracterizar las triangulaciones de Delaunay que son de Pitteway. 35) Un corte en un rectánguloes en guillotina si esparaleloauno de loslados y es maximalen el subrectángulo en el que es dado. Esto es: el primer corte ha de ir de lado a lado y divide el rectángulo en dos subrectángulos, el siguiente corte también ha de ir de lado a lado en alguno de los subrectángulos obtenidos en el paso anterior y así sucesivamente. a) Diseñar un algoritmo que determine si un rectángulo está dividido por cortes en guillotina. b) Diseñar un algoritmo que determine, dado un rectángulo dividido por cortes en guillotina, un orden en el que se han producido dichos cortes. c) Diseñar un algoritmo que localice un punto en un rectángulo dividido por cortes en guillotina. 36) Dado un conjunto con n puntos rojos y n puntos azules, dar un algoritmo que construya una poligonal que separe ambos conjuntos. 37) (Policías y ladrones) Dados dos conjuntos de n puntos en el plano P y L. Un punto en el plano se dice a salvo si está en el interior de un triángulo formado por puntos de P, en peligro si no está a salvo y está en el interior de un triángulo formado por puntos de L y sospechoso si no está a salvo ni en peligro. Determinar un preprocesamiento que permita decidir en tiempo logarítmico si un punto dado está a salvo, en peligro o es sospechoso. 38) Dado un conjunto con n puntos rojos y n puntos azules, dar un algoritmo que una cada punto rojo con un único punto azul mediante segmentos que no se corten entre sí (emparejamiento geométrico bicromático perfecto). Indicación: Utilizar el Teorema del corte ham-sandwich (Lo, Matousek y Steiger, 1997) 39) Preprocesar un conjunto S de n segmentos disjuntos de tal forma que se pueda responder en tiempo logarítmico a la siguiente pregunta: dado una semirecta horizontal en el sentido positivo r determinar el primer segmento de S que intersecta r. 40) Dado un conjunto de puntos S y un objeto geométrico G, decimos que G recubre a S si S está incluido en G. Diseñar algoritmos que dado S encuentren: E.T.S.I.Informática Página 4

6 a) El mínimo cuadrado recubridor paralelo a los ejes. b) El rectángulo recubridor paralelo a los ejes de mínima área. c) El rectángulo recubridor de mínima área. d) El polígono convexo recubridor de mínima área. e) El mínimo círculo recubridor. 41) Se considera un conjunto de n rectángulos en el plano, de lados paralelos a los ejes coordinados y cuyo lado inferior se encuentra sobre el eje OX. Se pide: a) Dar un algoritmo que calcule el contorno de su unión en tiempo O(nlogn). b) Describir un preprocesamiento en tiempo O(nlogn) tal que, dado un punto sobre el eje OX, nos permita encontrar, en tiempo O(log n), a cuántos rectángulos pertenece. 42) Se considera un conjunto de n intervalos en la recta. Se pide: a) Dar un algoritmo que obtenga su unión en tiempo O(nlogn). b) Describir un preprocesamiento en tiempo O(nlogn) tal que, dado un punto sobre el eje OX, nos permita encontrar, en tiempo O(log n), a cuántos intervalos pertenece. 43) Dada una nube de n puntos en el plano, en posición general (no existen ni tres puntos alineados ni cuatro cocirculares), a) Cuántos triángulos distintos se pueden formar? b) Un triángulo se dice vacío si no contiene a ningún otro punto de la nube. Existen siempre triángulos vacíos? c) Cuántos triángulos vacíos pueden formarse simultáneamente sin que se corten sus lados?, depende este número únicamente de n? d) Existen nubes de puntos en las que todos los triángulos son vacíos? e) Diseñar un algoritmo que encuentre un triángulo vacío, indicando su complejidad computacional. 44) Sea S un conjunto de n puntos rojos y n puntos azules en el plano. Añadimos un nuevo punto p: a) Supongamos que p no tiene color, y le asignaremos el color del punto de S más cercano. Diseñar un algoritmo que calcule la frontera entre las regiones en las que los nuevos puntos tomarán el color azul y en las que tomarán el color rojo. b) Si p es un punto rojo, se pide: 1. Qué condición debe cumplir p para que la frontera entre los puntos rojos y azules no varíe? 2. En el caso en que sí varíe la frontera, indicar un procedimiento para actualizarla. (En cada apartado se debe indicar el algoritmo empleado y justificar su complejidad) 45) Dada una nube S de n puntos en el plano, a) Demostrar que el punto más cercano a cada punto es un vecino suyo en el diagrama de Voronoi (sus regiones son limítrofes). b) Diseñar un algoritmo, que corra en tiempo O(nlogn), para obtener la pareja de puntos de S más cercanos. 46) Sea S una nube de puntos en el plano. Se define el grafo EMSP(S) como el árbol recubridor de los puntos de S, de forma que la suma de las longitudes de sus aristas es mínima. Se pide: a) Probar que el grafo EMSP(S) es un subgrafo del grafo de Delaunay, D(S), que no es otro que el grafo cuyos vértices son los puntos de la nube y las aristas son las aristas de la triangulación de Delaunay. b) Diseñar un algoritmo para encontrar el grafo EM SP(S), indicando su complejidad. E.T.S.I.Informática Página 5

Tema 5. Triangulaciones. Fundamentos de Geometría Computacional I.T.I. Gestión

Tema 5. Triangulaciones. Fundamentos de Geometría Computacional I.T.I. Gestión Índice 1. (modelado de terrenos) 2. (problema de la galería de arte) Modelado de terrenos Modelado de terrenos Modelado de terrenos QUÉ ES UN S.I.G.? (Sistema de Información Geográfica) DATOS Recolección

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

BLOQUE II. GEOMETRÍA.

BLOQUE II. GEOMETRÍA. BLOQUE II. GEOMETRÍA. PROBLEMAS SELECTIVIDAD (PAU) CANTABRIA 2000-204 I.E.S. LA MARINA. CURSO 204/205. MATEMÁTICAS II. Condidera el plano y la recta r dados por : ax + 2y 4z 23 = 0, r: 3 a) ( PUNTO) Halla

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

Geometría. 2 (el   representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.

GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad. PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

BLOQUE II : GEOMETRIA EN EL ESPACIO.

BLOQUE II : GEOMETRIA EN EL ESPACIO. MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=

Más detalles

GEOMETRÍA ANALÍTICA. 6.- Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

GEOMETRÍA ANALÍTICA. 6.- Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. GEOMETRÍA ANALÍTICA 1.- a) Expresa en forma paramétrica y continua la ecuación de la recta que es perpendicular a la recta s de ecuación s: 5x y + 1 = 0 y pasa por el punto B: (, 5). b) Halla la ecuación

Más detalles

TEMA 6. ANALÍTICA DE LA RECTA

TEMA 6. ANALÍTICA DE LA RECTA TEMA 6. ANALÍTICA DE LA RECTA = 2 + 5t 1. Dadas las rectas r: = 4 3t cada una de ellas. = 1 + 9t y s: = 8 6t, indicar tres vectores directores y tres puntos de 2. Dada la recta 2x 3y + 8 = 0, encontrar

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 Tema 7 Rectas y planos en el espacio Matemáticas II - º Bachillerato 1 ÁNGULOS EJERCICIO 33 : Halla el ángulo que forma la recta y el plano π: x y + 4z 0. 3x y z + 1 0 r : x + y 3z 0 EJERCICIO 34 : En

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t . [04] [EXT-A] Dados los puntos A(,0,-), B(,-4,-), C(5,4,-) y D(0,,4) a) Calcular el área del triángulo de vértices A, B y C. b) Calcular el volumen del tetraedro ABCD.. [04] [EXT-A] Dados los planos x-z-

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos.

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos. TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN Vectores (1) 1.- Sea el vector AB, en el que el punto A(3, 2) es el origen y B(5, 6) el extremo. a) Si cada uno de los puntos C(9, 3), D( 4,4) y

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Ejercicios Selectividad Temas 6 y 7 Geometría en el espacio Mate II 2º Bach. 1 TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO EJERCICIO 1 : Julio 11-12. Optativa (3 ptos) Para los puntos A(1,0,2) y B(-1,2,4) y la

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

TEMA 5: GEOMETRÍA PLANA. Contenidos:

TEMA 5: GEOMETRÍA PLANA. Contenidos: Contenidos: - Elementos básicos del plano: punto, recta y segmento. Rectas paralelas y perpendiculares. Ángulos: definición, clasificación y medida. - Instrumentos de dibujo. Construcción de segmentos,

Más detalles

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior x 1 y 1. Distancia entre la recta = = z y el plano (x, y, z) = (0, 1, 0) + τ(, 5, 1) + λ(1, 0, ) 3 5. Distancia del punto (, 3, 5) a la recta x 1 z = y = x + z y 3. Distancia entre las rectas r = y = y

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

Perpendiculares, mediatrices, simetrías y proyecciones

Perpendiculares, mediatrices, simetrías y proyecciones Perpendiculares, mediatrices, simetrías y proyecciones 1. Calcular en cada caso la ecuación de la recta perpendicular a la dada, y que pasa por el punto P que se indica: a) 5x 2y 3 0 P( 1, 3) b) x 4 y

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

Geometría Computacional. Dr. Antonio Marín Hernández

Geometría Computacional. Dr. Antonio Marín Hernández Geometría Computacional Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana anmarin@uv.mx www.uv.mx/anmarin Contenido Introducción Intersección de segmentos

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos

Más detalles

Triangulación de polígonos

Triangulación de polígonos Computación Geométrica Triangulación de polígonos Algoritmos iniciales Introducción a la Geometría Computacional Copyright 2010-2011 Universidad de Alicante 1 Índice Historia Conceptos previos Triangulación

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

Matemáticas II Hoja 7: Problemas métricos

Matemáticas II Hoja 7: Problemas métricos Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 7: Problemas métricos Ejercicio : Se dan la recta r y el plano, mediante: x 4 y z x + y z 7 3 Obtener los puntos de la recta cuya

Más detalles

6 Propiedades métricas

6 Propiedades métricas 6 Propiedades métricas ACTIVIDADES INICIALES 6.I Dados los puntos P(, ) Q(, 5), la recta r :, calcula: a) d(p, Q) b) d(p, r) c) d(q, r) 6.II Se tienen las rectas r :, s : 4 t :. Halla: a) d(r, s) b) d(r,

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I Unidad 8. Geometría analítica BACHILLERATO Matemáticas I Determina si los puntos A(, ), B (, ) y C (, ) están alineados. AB (, ) (, ) (, ) BC (, ) (, ) ( 8, ) Las coordenadas de AB y BC son proporcionales,

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente al plano OXY de forma que A, B y C estén alineados. Sol: 2. Considera la recta de ecuaciones.

Más detalles

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 1) Hallar los puntos de corte de la recta x+ y= 3 y la cfa: x 2 + y 2 = 5 2) Sea v= ( 1,2) tal que OB v. Halle el área del triángulo OBC

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

Geometría Analítica Agosto 2015

Geometría Analítica Agosto 2015 Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. 1) A(3, 3), B( 3, 1), C(0, 3) 2) O( 2, 3), P(2, 3), Q(0, 2) 3) R(4, 4), S(7, 4), T(6,

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.

Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen

Más detalles

Departamento de matemáticas

Departamento de matemáticas Geometría con solución Problema 1: Sea r y s las rectas dadas por: a) Hállese el valor de m para que ambas rectas se corten. b) Para m = 1, hállese la ecuación del plano que contiene a r y s Problema 2:

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Introducción a la Geometría Computacional. Análisis de Algoritmos

Introducción a la Geometría Computacional. Análisis de Algoritmos Introducción a la Geometría Computacional Análisis de Algoritmos Geometría Computacional La Geometría Computacional surgió a finales de los 70s del área de diseño y análisis de algoritmos. Estudio sistemático

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Introducción Aplicaciones Primer Algoritmo Segundo Algoritmo - Algoritmo de Fortune. Diagrama de Voronoi. Jose Luis Bravo Trinidad 1 / 29

Introducción Aplicaciones Primer Algoritmo Segundo Algoritmo - Algoritmo de Fortune. Diagrama de Voronoi. Jose Luis Bravo Trinidad 1 / 29 1 / 29 Definición Propiedades geométricas Índice 1 Introducción Definición Propiedades geométricas 2 Análisis de recursos Triangulaciones Robótica Diseño 3 Implementación 4 Segundo - de Fortune 2 / 29

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º. MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

EJERCICIOS DE GEOMETRÍA RESUELTOS

EJERCICIOS DE GEOMETRÍA RESUELTOS EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.

Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido. TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:

Más detalles

Diagramas de Voronoi. comp-420

Diagramas de Voronoi. comp-420 Diagramas de Voronoi comp-420 http://www.ifweassume.com/2012/10/the-united-states-of-starbucks.html furthest point from a company-owned Starbucks (~140 miles). http://www.ifweassume.com/2012/10/the-united-states-of-starbucks.html

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2 FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMATICA CATEDRA DE ALGEBRA Y GEOMETRÍA ANALITICA I CARRERA: Licenciatura en Física TRABAJO

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

Relaciones geométricas IES BELLAVISTA

Relaciones geométricas IES BELLAVISTA Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos

Más detalles

Unidad 6 Geometría euclídea. Producto escalar

Unidad 6 Geometría euclídea. Producto escalar Unidad 6 Geometría euclídea Producto escalar PÁGINA 131 SOLUCIONES 1 La recta 4 x 3y + 6 = 0 tiene de pendiente 4 m = 3 4 Paralela: y 1 = ( x ) 4x 3y 5 = 0 3 4 Perpendicular: y 1 = ( x ) 3x + 4y 10 = 0

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Dada la recta del plano de ecuación x 6y + = 0, escríbela en forma continua, paramétrica, vectorial y explícita. La recta x 6y + = 0 pasa por el punto (0,

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

1. Sea la recta de ecuaciones paramétricas x = 2 - t; y = 3 + 2t. Escribe la ecuación de esta recta en forma continua, general y explícita.

1. Sea la recta de ecuaciones paramétricas x = 2 - t; y = 3 + 2t. Escribe la ecuación de esta recta en forma continua, general y explícita. UNIDAD 4: Geometría afín del espacio CUESTIONES INICIALES-PÁG 94 Sea la recta de ecuaciones paramétricas x = - t; y = 3 + t Escribe la ecuación de esta recta en forma continua, general y explícita Las

Más detalles

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS

Más detalles

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),

Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ), Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los

Más detalles

Localización en subdivisiones

Localización en subdivisiones en subdivisiones Elija su pais de destino: del problema Dado un PSLG y un punto adicional, en qué región se encuentra el punto? del problema Y como la multitud de leyes sirve muy a menudo de disculpa

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Funciones (1) 1. Halla el dominio de las siguientes funciones: 1 d. f(x)= x h. f(x)= e. f(x)= a. f(x)=2x. g. f(x)= x

Funciones (1) 1. Halla el dominio de las siguientes funciones: 1 d. f(x)= x h. f(x)= e. f(x)= a. f(x)=2x. g. f(x)= x TEMA 4. Funciones() Nombre CURSO: BACH CCSS Funciones (). Halla el dominio de las siguientes funciones: a. f()=2 d. f()= 2 6 b. f()= 3 2 e. f()= 2 5 6 c. f()= f. f()= 2 6 g. f()= 2 4 h. f()= 2 2 3 2 5

Más detalles

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección...

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección... TEMA 8 RECTAS Y ÁNGULOS TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección....... Línea recta Cada una de las partes en

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l.

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l. UNIDAD 3 LA RECTA SU ECUACIÓN CARTESIANA OBJETIVOS ESPECÍFICOS. Al término de la unidad, el alumno: Conocerá las distintas formas de representación de la recta e identificará cuál de ellas conviene usar.

Más detalles

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6 1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal

Más detalles

b ( x + a ) ( x a ) c ( 3 a x ) ( a + 3 x ) 4-1 INGRESO A 4º AÑO - L. M. G. A. - Prueba de MATEMÁTICA CUESTIONARIO- ENERO/2004

b ( x + a ) ( x a ) c ( 3 a x ) ( a + 3 x ) 4-1 INGRESO A 4º AÑO - L. M. G. A. - Prueba de MATEMÁTICA CUESTIONARIO- ENERO/2004 4-1 INGRESO A 4º AÑO - L. M. G. A. - Prueba de MATEMÁTICA CUESTIONARIO- ENERO/2004 S i a a = 2 / 3, x = 2, halle el valor numérico de 3 a 3 x + 2 a 2 x 2 6 a b ( x + a ) ( x a ) c ( 3 a x ) ( a + 3 x )

Más detalles

023 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z:

023 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z: Solucionario 3 calcula la ecuación general de los planos que contienen a dos de los ejes coordenados. Eje X y eje Y: Eje X y eje Z: Eje Y y eje Z: x y z x y z x y z = z = = y = = x = Determina la posición

Más detalles

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la

Más detalles

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO.

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO. Página 1 de 22 GUÍA N 1 ÁREA: MATEMATICAS GRADO: 601 602 603 Docente: NANCY DE ALBA PERIODO: PRIMERO IH (en horas): 4 EJE TEMÁTICO POLÍGONOS CUERPOS GEOMÉTRICOS Y MOVIMIENTOS EN EL PLANO. DESEMPEÑO Identifica

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1 Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea. Completa las igualdades usando el dibujo. γ β = α β = β + θ = θ + ε + ω = θ + ε = β + θ + ω = α + ε = β + δ =.

Más detalles

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2). 1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente

Más detalles

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S DE GEOMETRÍA ANALÍTICA CONCEPTOS BÁSICOS 1.- Hallar la distancia entre los pares de puntos cuyas coordenadas son: a) A (4, 1), B (3, 2)

Más detalles

x = - y = 1+2 z = -2+2 y s:

x = - y = 1+2 z = -2+2 y s: 1. [ANDA] [EXT-A] Considera el plano de ecuación 2x+y+3z-6 = 0. a) Calcula el área del triángulo cuyos vértices son los puntos de corte del plano con los ejes coordenados. b) Calcula el volumen del tetraedro

Más detalles