Tema 3: Electrostática en. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 2/7 El problema del potencial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3: Electrostática en. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 2/7 El problema del potencial"

Transcripción

1 Tema 3: Electrostática en presencia de conductores Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte /7 El problema del potencial

2 Definición y propiedades del equilibrio electrostático táti Es un estado en el que las cargas de los conductores se encuentran en reposo Implica: El campo eléctrico es nulo en los conductores: E = La densidad de carga es superficial: ρ =, σ s El campo eléctrico exterior es normal a cada superficie La superficie de cada uno es equipotencial: = V No hay líneas de campo que vayan de un conductor a sí mismo El campo eléctrico en la superficie vale E=(σ s /ε )n

3 El problema general del potencial Las densidades d de carga suelen estar en presencia de materiales Causan redistribución de la carga en los conductores Las densidades de carga en los conductores son desconocidas a priori Solo conocemos la carga total, o el potencial al que se encuentran Podemos determinar el campo en todas partes? SÍ 3

4 Ecuaciones del problema del potencial nzález Ferná ández 1, A q la carga total, se sabe que el potencial es constante, aunque desconocido Antonio GonSi lo que se conoce es El cálculo del campo entre conductores se reduce a resolver la ecuación de Poisson en el espacio entre conductores Además hay condiciones de contorno: Sobre cada superficie conductora, S k, el potencial tiene un valor constante, t V k V k r S En el infinito el potencial se anula r k 4

5 Diferencias entre conductores a carga constante t y a potencial constante t Un conductor puede estar tener fijado su potencial o su carga total, pero no ambas magnitudes a la vez Q 1 V 1 Si el conductor está aislado (no conectado a nada) tiene carga constante. La carga se redistribuye pero el total no cambia. El potencial puede variar Un conductor conectado a una fuente de tensión ideal mantiene constante su potencial. La fuente añade oq quita itacargaparaq que eno varíe el potencial 5

6 Ejemplo de conductores a carga constante: t variación ió del potencial A una esfera descargada se acerca una esfera de carga positiva + Q 1 > Q = + V 1 > V > + + La carga atrae cargas negativas a la zona próxima Por ser neutro, se acumulan cargas positivas en el lado opuesto La densidad d de carga superficial σ s no es nula, aunque Q = Hay líneas de campo que van de la esfera hacia el El potencial de la esfera es positivo y su valor depende de Q 1 6

7 Ejemplo de conductores a potencial constante: t variación ió de la carga A una esfera a tierra se acerca una esfera de carga positiva Q > 1 V = V 1 > Q < La carga atrae cargas negativas a la zona próxima Estas cargas provienen de la fuente de tensión (la tierra, en este caso) No puede haber líneas de campo de la esfera al En la esfera sólo entran líneas: la carga neta Q es negativa La carga de la esfera es negativa y su valor depende de Q 1 7

8 Resumiendo... Q= NO implica V= V= NO implica Q= 8 1, Antonio González Fernández

9 Teorema de unicidad para el problema del potencial El problema del potencial, cuando los diferentes conductores están a potencial constante o a carga constante, posee solución única. Basta conocer la carga en el interior y el potencial en toda la frontera Ello permite emplear diferentes métodos o hipótesis Dada una posible solución, sólo hay que verificar que se satisfacen la ecuación y las condiciones de contorno 9

10 Una esfera conductora. Planteamiento del problema Sea una esfera metálica a potencial V. No hay más carga ni más conductores en el sistema Debe resolverse la ecuación de Laplace r R c.c.: V r R r Por la simetría del sistema, podemos suponer que r 1

11 Solución del potencial para una esfera conductora, con V conocido La ec. de Laplace se reduce a 1 d d r r dr dr Integrando dos veces B A A? B? r Imponiendo las condiciones de contorno queda: V ( r R) VR E VR ( r R) u r r r ( r R) ( r R) Resulta una distribución VR V s n E ur u r superficial uniforme de carga R R 11

12 Cómo se calcula la carga total almacenada en la esfera? Si V está fijado, no podemos conocer la carga Q de antemano Una vez resuelto el problema del potencial sí podemos hallar Q: 1, Antonio Gon nzález Ferná ley de Gauss para una superficie que envuelva la esfera ández a) Empleando la Q S S 4 E d S VR d S r RV b) Calculando la densidad de carga superficial e integrando [ ] s n E V R Q d s S 4 RV c) Comparando su comportamiento para r >> R con el desarrollo multipolar VR Q pr r 4 r 4 r Q 4 RV 3 1

13 Y si lo que se conoce es la carga de la esfera? NO hay que suponer nada En el equilibrio, sobre la distribución de la su superficie es carga en la superficie equipotencial Hay que suponer un potencial V, que se determinará más tarde Supuesto el potencial, la solución es idéntica a la anterior V ( r R ) VR ( r R) r Q E d S 4 RV S Conocida la carga se halla el potencial V Q Q 4 R 4 R Q 4r ( r R ) ( r R ) 13

14 Comentarios sobre el caso de un solo conductor esférico Para un solo conductor esférico resulta una distribución de carga uniforme Esto NO ocurre si hay más conductores o más cargas Podemos comparar el caso de conductor esférico con carga Q y una esfera cargada en volumen con la misma carga En el primer caso no hay campo en el interior. El volumen es equipotencial< En el segundo caso el volumen no es equipotencial y hay campo en el interior 14

15 Comparación de dos esferas conductoras con dos esferas cargadas en volumen Las diferencias entre volúmenes conductores y no conductores son más evidentes en sistemas más complejos ández nzález Ferná Antonio Gon 1, A Dos esferas conductoras Dos esferas cargadas en volumen 15

16 Ejemplo: potencial en dos esferas de distinto t radio conectadas por un hilo 1 Si están alejadas y R 1 > R Q Q 4 4 El campo es más intenso cerca de la esfera pequeña (equipotenciales más próximas) RV 1 1 RV Q Q 1 Q es mayor en la grande Q1 V 1 4R1 R 1 Q V 4R R 1 La densidad es mayor en la esfera pequeña E E

17 Ejemplo de un pararrayos en barra y de una zanja El mismo principio p se puede aplicar a una barra cilíndrica o a un hueco, aunque se necesite la solución numérica En el caso de una barra el campo se concentra en su extremo superior y a los lados de la barra En el caso de un hueco o zanja, prácticamente no hay campo en el interior 17

18 Efecto punta: incremento del campo en las puntas de los conductores Cuando se tiene un conductor cuya curvatura varía de un punto a otro, la densidad de carga tiende a ser mayor donde es mayor la curvatura Esta concentración del campo eléctrico es el principio del pararrayos: Mayor densidad de carga implica mayor campo en la zona próxima Si el campo es lo bastante intenso puede ionizar el aire de alrededor Cuando cae el rayo sigue el camino de menor resistencia, impactando en el pararrayos Un medio ionizado conduce mejor la corriente eléctrica Esta corriente es luego desviada a tierra por un cable de conexión 18

19 Apantallamiento y jaulas de Faraday Cuando tenemos un conductor con un hueco y el conductor está a V constante, se dice que tenemos una Jaula de Faraday V ρ 1 ρ Del mismo modo, el potencial fuera no depende de qué hay dentro del hueco Dado que el potencial queda determinado por su valor en la frontera de una región y la densidad de carga dentro, el potencial en el hueco no depende de qué hay fuera El conductor es una Jaula de Faraday 19

20 Conductor con densidades de carga interior: i equipotenciales i y campo Si la carga exterior es nula, el único campo es el interior al hueco. Todas las líneas de campo van a parar a la superficie interior del conductor. Dado que el campo en el material conductor es nulo, en la superficie del hueco hay la misma carga que en su interior, pero de signo contrario. d Q h Q E S s S Q s Q h

21 Conductor con densidades de carga exterior: equipotenciales i y campo ández nzález Ferná Antonio Gon g, y p El potencial en el hueco es nulo si el conductor está a tierra 1, A Si la carga es exterior, no hay campo en el hueco 1

22 Conductor hueco a potencial fijado Incluso cuando el conductor no está a tierra, sino a potencial fijado, el campo en un hueco vacío es nulo Todos los puntos del hueco se encuentran al mismo potencial que el conductor

23 Conductor hueco con carga exterior e interior i Cuando hay carga a ambos lados la solución es la superposición de soluciones independientes ández nzález Ferná Antonio Gon 1, A 3

24 Conductor a carga constante: Jaula de Faraday imperfecta Supongamos un conductor aislado y con carga Q, con una cavidad Q Q1 Q 1 Q 1 Si dentro del hueco hay una carga Q 1, en la pared S int se acumula una igual y opuesta, Q1 Q +Q 1 En la superficie exterior S ext debe haber una carga Q +Q 1 En el exterior sólo se ve la carga que hay en S ext Un observador podría deducir la existencia de Q 1,pero no su posición ni siquiera la existencia del hueco 4

25 El problema del potencial y el principio de superposición ió En un sistema de conductores, la introducción de un conductor adicional (incluso descargado) modifica el campo de los conductores previos ández nzález Ferná Antonio Gon 1, A El campo total NO es la suma de los que crean cada conductor por separado, como si no estuvieran los demás 5

26 Puede aplicarse algún tipo de superposición al problema del potencial? La solución del problema del potencial sí puede escribirse como suma de soluciones 1 ρ 3 El problema general consiste en resolver suponiendo V k en cada superficie conductora S k r S j r k Solución: combinación lineal de soluciones base r 1 r S k k r Sj, j k V k k k Garantizado por el teorema de unicidad 6

27 Ejemplo de superposición: Cuatro conductores y una carga. 1 ρ 4 3 Para ilustrar el significado de la superposición iió de soluciones, veremos el ejemplo de cuatro conductores y una distribución uniforme de carga de forma irregular. 7

28 El ltérmino independiente: e te:la función có La función verifica. 1 3 r S k r r ρ 4 Esta es la distribución de potencial que habría si estuviera la carga frente a todos los conductores puestos a tierra, no la que habría si estuviera la carga y no los conductores. 8

29 Funciones base: la función Por estar en una jaula de Faraday, sólo hay campo en el hueco La función 1 verifica 1 r r 1 1 S1 r S, k 1 k 1 1 r Ésta es la distribución de potencial que habría si no hubiera carga, el conductor 1 estuviera a potencial unidad, y el resto a tierra 9

30 Funciones base: las funciones, 3 y Del mismo modo se pueden construir las funciones base, 3 y 4. Cada una de ellas es el potencial que habría si uno de los conductores estuviera a potencial y el resto a tierra. 3

31 Combinación lineal de funciones base. Ejemplo numérico Supongamos un caso particular P V 1 =1 V ρ = V = 3V V 3 = V V 4 = V Queremos hallar el potencial en el punto P El valor calculado numéricamente es P 1.813V Combinando las funciones base. V. V V La ventaja es que si cambiamos los V V V k no hay que recalcular los V k V 31

32 Un ejemplo analítico del problema del potencial: esferas concéntricas Dos esferas: una maciza de radio a y una fina corteza de radio b (b>a) Entre ellas y fuera se cumple la ecuación de Laplace Con las condiciones r a V1 El problema de contorno se separa r r b V en tres: La corteza funciona como Jaula de Faraday I. r < a II. a<r<b III. r > b Para r < a la solución es trivial: = V 1, E = 3

33 Dos esferas concéntricas: solución del problema exterior Para r > b tenemos la ecuación de Laplace Con las condiciones r b V de contorno r Éste es exactamente el mismo problema que si tenemos una sola esfera de radio b puesta a potencial V La solución en r > b es Vb r E Vb u r r Esta solución no nos dice nada de qué ocurre entre las dos esferas 33

34 Dos esferas concéntricas: solución del problema interior i Para a < r < b tenemos la ecuación de Laplace Con las r a V1 condiciones de contorno de contorno r b V Suponemos simetría de revolución, = (r) Imponiendo las c.c. La solución es B B B A V1 A V A de la forma r a b La solución en bv av abv1 V 1 a < r < b es ba bar E ab V V 1 r b a r u 34

35 Dos esferas concéntricas: solución completa Combinando los resultados V1 r a bv av ab 1 V1 V arb ba bar Vb r b r Esta solución se puede escribir como c.l. V11V 1 r a r a ab arb b a r b r b ab 1 1 ar b b a a r br r b 35

36 Cálculo de las funciones base por separado. Función 1 Si V 1 = V, V = 1, Entre las esferas y fuera se cumple la ec. de Laplace, con las c.c. c 1 (r = a)= V 1 (r = b) = 1 (r ) En el exterior, el =(r En a < r < b es de la forma potencial es nulo. 1 > b) B 1 A a r b En el interior 1 = V (r < a) r Imponiendo las c.c. B B ab 1 1 V Resulta A A a V 1 a rb b b ar b 36

37 Cálculo de las funciones base por separado. Función Si V 1 =,, V =V Entre las esferas (r = a) = y fuera se cumple la ec. de Laplace, (r = b) = V con las c.c. c (r ) En el exterior, es como el de una sola esfera. Vb r r b Entre las dos, es de la forma B A a rb r Imponiendo las c.c. Resulta Vab B B 1 1 a rb A V A a b a a r b 37

38 Sevilla, diciembre de , Antonio González Fernández

Definición y propiedades del equilibrio

Definición y propiedades del equilibrio Problema del potencial Antonio González Fernández Dpto. de Física Aplicada III Universidad de Sevilla Definición y propiedades del equilibrio electrostático 8, A ntonio Gonzá ález Fernánde ez Es un estado

Más detalles

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes Tema 3: Electrostática en presencia de conductores Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 4/7 Condensadores y circuitos equivalentes Definición de condensador:

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

Departamento de Física Aplicada III. Escuela Superior de Ingenieros Camino de los Descubrimientos s/n Sevilla PROBLEMA 1

Departamento de Física Aplicada III. Escuela Superior de Ingenieros Camino de los Descubrimientos s/n Sevilla PROBLEMA 1 Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Examen Final de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. Junio 2005 PROBLEMA 1 Sea una distribución esférica

Más detalles

Función de Green, método de imágenes y separación de variables.

Función de Green, método de imágenes y separación de variables. Física Teórica 1 Guia 2 - Green, imágenes y separación 1 cuat. 2014 Función de Green, método de imágenes y separación de variables. Método de imágenes y función de Green. 1. Una esfera conductora de radio

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

Teoremas que se derivan de las ecuaciones de Poisson y Laplace.

Teoremas que se derivan de las ecuaciones de Poisson y Laplace. c Rafael R. Boix y Francisco Medina Teoremas que se derivan de las ecuaciones de Poisson y Laplace. Identidades de Green Consideremos dos campos escalares u = u(r) y v = v(r).teniendo en cuenta que se

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 1.

Problemas de Electromagnetismo. Tercero de Física. Boletín 1. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 1. 17.- Dos pequeñas esferas conductoras iguales, cada una de masa m, están suspendidas de los extremos

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 3 Carga eléctrica www.clasesalacarta.com Campo léctrico La carga eléctrica es un exceso (carga -) o defecto (carga ) de electrones que posee un cuerpo respecto al estado neutro.

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad.

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. 1- Las siguientes cuestiones ayudan a comprender el proceso de descarga a tierra. a) Por qué un cuerpo metálico esférico

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Técnica Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Segunda convocatoria. Septiembre-2012 PRLEMAS Problema 1.- Sea una corteza esférica

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Capítulo 3: Campos Electromagnéticos Estáticos

Capítulo 3: Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

Pseudo-resumen de Electromagnetismo

Pseudo-resumen de Electromagnetismo Pseudo-resumen de Electromagnetismo Álvaro Bustos Gajardo Versión 0.6β, al 27 de Octubre de 2011 1. Cargas. Ley de Coulomb 1.1. Carga eléctrica La carga eléctrica es una propiedad cuantitativa de la materia,

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Calcular la función de Green de Dirichlet en la región que queda por encima del contorno. Identificar cada contribución.

Calcular la función de Green de Dirichlet en la región que queda por encima del contorno. Identificar cada contribución. FÍSICA TEÓRICA 1-1er. Cuatrimestre 2016 Guía 2: Función de Green, imágenes y separación de variables 1. Una esfera conductora de radio a está conectada a potencial V y rodeada por una cáscara esférica

Más detalles

FÍSICA TEÓRICA 1-2do. Cuatrimestre de Guía 2: Separación de variables, función de Green y método de imágenes

FÍSICA TEÓRICA 1-2do. Cuatrimestre de Guía 2: Separación de variables, función de Green y método de imágenes FÍSICA TEÓRICA 1-2do. Cuatrimestre de 2016 Guía 2: Separación de variables, función de Green y método de imágenes 1. Un cubo de lado a tiene sus tapas al potencial que muestra cada figura. Las tapas donde

Más detalles

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga:

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga: Física Teórica 1 Guia 1 - Repaso 1 cuat. 2015 Repaso de electrostática y magnetostática. Transformaciones de simetría. Ley de Gauss. Ley de Ampere. 1. En cada una de las siguientes distribuciones de carga:

Más detalles

FÍSICA TEÓRICA 1-1er. Cuatrimestre Guía 2: Función de Green, imágenes y separación de variables

FÍSICA TEÓRICA 1-1er. Cuatrimestre Guía 2: Función de Green, imágenes y separación de variables FÍSICA TEÓRICA 1-1er. Cuatrimestre 2011 Guía 2: Función de Green, imágenes y separación de variables 1. Una esfera conductora de radio a está conectada a potencial V y rodeada por una cáscara esférica

Más detalles

Tema: Electrostática 02/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Electrostática 02/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Física 2º Bach. Tema: Electrostática 02/03/06 DEPRTMENTO DE FÍIC E QUÍMIC Problemas Nombre: [3 PUNTO / UNO] 1. Tres partículas con cargas iguales = 4,00 µc están situadas en tres de los vértices de un

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

FISICA III - Ejemplo - Primer Parcial

FISICA III - Ejemplo - Primer Parcial FSCA - Ejemplo - Primer Parcial 1) En cuatro de los cinco vértices de un pentágono regular de lado a se colocan sendas cargas q. a) Cuál es la magnitud de la carga que deberá colocarse en el quinto vértice

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

Boletín Temas 1 y 2 P 1

Boletín Temas 1 y 2 P 1 Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1). 1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje

Más detalles

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017 Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos

Más detalles

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. FISICA TEORICA 1-2do. Cuatrimestre 2007 Método de Separación de Variables. 1. Se tiene un cubo conductor de lado a conectado a tierra. Calcular el potencial electrostático en todo punto del espacio dividiendo

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

FIS1533/FIZ I1

FIS1533/FIZ I1 FIS1533/FIZ0221 - I1 Facultad de Física Pontificia Universidad Católica de Chile Segundo Semestre 2016-16 de Septiembre Tiempo para responder: 120 minutos Nombre: Sección: Buenas Malas Blancas Nota Instrucciones

Más detalles

Tema 2: Postulados del Electromagnetismo

Tema 2: Postulados del Electromagnetismo Tema 2: Postulados del Electromagnetismo 1 Índice La carga eléctrica Corriente eléctrica Ecuación de continuidad Ecuaciones de Maxwell en el vacío Fuerza de Lorentz Forma integral de las ecuaciones de

Más detalles

Inducción, cuasi-estacionario y leyes de conservación.

Inducción, cuasi-estacionario y leyes de conservación. Física Teórica 1 Guia 4 - Inducción y teoremas de conservación 1 cuat. 2014 Inducción, cuasi-estacionario y leyes de conservación. Aproximación cuasi-estacionaria. 1. Se tiene una espira circular de radio

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

Grau Enginyeria Telecomunicacions

Grau Enginyeria Telecomunicacions - Examen final (16-01-2017) 1 Cognom 1 Nom DNI GRUP 1. Un móvil se está moviendo en la dirección positiva del eje x con una velocidad constante de 3 m/s. En el instante t = 1 s acelera hacia la derecha

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al Primer Parcial. Junio 2013 Bien Mal

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descurimientos s/n 41092 Sevilla Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 27 de junio de

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placa"de"aire" Placa"de"vidrio" a" #σ"

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placadeaire Placadevidrio a #σ Electromagnetismo I Semestre: 15- Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución Tarea 6 Solución por Christian Esparza López 1. Problema: (pts)

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Soluciones 1er parcial de Fisica II Comisión B1 - Sábado - Tema 1

Soluciones 1er parcial de Fisica II Comisión B1 - Sábado - Tema 1 Soluciones er parcial de Fisica II Comisión B - Sábado - Tema 2 de septiembre de 205. Ley de Coulomb.. Enunciado Se conoce que el campo eléctrico que genera un hilo de longitud innita cargado con densidad

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 2. Solución analógica del problema del potencial 2.1. Objeto de la práctica El

Más detalles

Electricidad. Error! Marcador no definido.

Electricidad. Error! Marcador no definido. Las cargas eléctricas pueden originar tres tipos de fenómenos físicos: a) Los fenómenos electrostáticos, cuando están en reposo. b) Las corrientes eléctricas. c) Los fenómenos electromagnéticos, cuando

Más detalles

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

COMPROMISO DE HONOR MATRÍCULA:... PARALELO:

COMPROMISO DE HONOR MATRÍCULA:... PARALELO: ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA PRIMERA EVALUACION DE FISICA C 8 DE JULIO DE 05 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo.

TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo. TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo. Ley de Coulomb. La interacción eléctrica entre dos partículas cargadas

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

Método de imágenes. Función de Green. Separación de variables.

Método de imágenes. Función de Green. Separación de variables. 1 Una carga puntual q está ubicada entre dos planos conductores semi-infinitos y perpendiculares entre sí que se encuentran conectados a tierra. Hallar el potencial electrostático en la región que contiene

Más detalles

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga?

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga? Repartido de Ejercicios Electrostática Física 6º Medicina Segundo Semestre 2018 Masa del electrón=9,31 x 10-31 kg; Carga elemental=1,6 x 10-19 C; Masa del protón = 1,67 x 10-27 kg; e 0 = 8,85 x 10-12 C

Más detalles

Campo eléctrico. Electricidad elektron ámbar. posteriormente. La esfera se mueve hacia La varilla. La esfera se mueve hacia La varilla

Campo eléctrico. Electricidad elektron ámbar. posteriormente. La esfera se mueve hacia La varilla. La esfera se mueve hacia La varilla Campo eléctrico Electricidad elektron ámbar TELA Thales de Mileto posteriormente ámbar El poder del ámbar era algo natural El vidrio igual VIDRIO Frotamos una varilla de vidrio y la acercamos sin llegar

Más detalles

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez -

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 11 1. Fórmulas y constantes 1.1. Conductores

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2 Página 1 de 11 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1998. TEORÍA T1. Dos esferas conductoras de radios R 1 y R 2 ( R 1 = 2 R 2 ) están suficientemente alejadas una de otra como para suponer

Más detalles

Relación 2 idénticas conductor 6a. 6b. 7.

Relación 2 idénticas conductor 6a. 6b. 7. Relación 2 1. Tenemos tres esferas idénticas, hechas de un material conductor. La esfera 1 tiene una carga 1.0 C, la 2 tiene una carga 2.0 C y la 3 es neutra. Se encuentran muy alejadas entre sí. La esfera

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

Auxiliar N o 3 FI33A

Auxiliar N o 3 FI33A Auxiliar N o 3 FI33A Prof. auxiliar: Luis Sánchez L Fecha: 02/04/08 Problema 1 Una varilla delgada de dielectrico de seccion trasversal A se extiende sobre el eje z desde z = 0 hasta z = L. La polarizacion

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C?

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C? Capítulo 1 SEMINARIO CAMPO ELÉCTRICO 1. Una esfera metálica de masa 10 g con carga +2 µc, se cuelga de un hilo y se le aproxima otra esfera con carga del mismo signo. Cuando ambas están separadas 10 cm

Más detalles

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de

Más detalles

Electromagnetismo Electrostática en el vacío 2

Electromagnetismo Electrostática en el vacío 2 Electromagnetismo 18 Electrostática en el vacío Plan de la clase: Electromagnetismo 18 Electrostática en el vacío 1 Conductores y dieléctricos. Introducción Campo electrostático en conductores 3 Puesta

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles