FIS1533/FIZ I1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FIS1533/FIZ I1"

Transcripción

1 FIS1533/FIZ I1 Facultad de Física Pontificia Universidad Católica de Chile Segundo Semestre de Septiembre Tiempo para responder: 120 minutos Nombre: Sección: Buenas Malas Blancas Nota Instrucciones No se descontarán las respuestas incorrectas. No se puede usar calculadora Code efga-87a-58 1

2 1. La siguiente Figura 1 muestra las líneas de campo producidas por tres cargas con magnitud +1C, +1C y 1C, aunque no necesariamente en este orden. La superficie gaussiana que se muestra en la figura es una esfera que contiene dos de las cargas. Cuál de las siguientes afirmaciones es correcta para el flujo eléctrico Φ a través de esta superficie? Figura 1: a) Φ = 2C ε 0 b) Φ = + 2C ε 0 c) Φ = 0 d) Dependerá de la distancia a la que se encuentren las cargas que están adentro e) Dependerá de la distancia a la que se encuentre la carga que está afuera Solución: Las líneas de campo dentro de la superficie gaussiana salen de una carga y entran en la otra. Esto significa que las dos cargas tienen signos opuestos y la carga total dentro de la superficie es +1C 1C = 0C. Por lo tanto, el teorema de Gauss implica que Φ = Considere la configuración de cargas de la Figura 2. Cada una de las cargas están separadas por una distancia d de las otras. Sea U la energía potencial del sistema, o sea el trabajo necesario para lograr esta configuración, si inicialmente las cargas estaban infinitamente separadas las unas de las otras. U está dada por: Figura 2: a) U = 5q2 8πε 0d 2

3 b) U = + 5q2 4πε 0d c) U = 5q2 4πε 0d d) U = + 5q2 8πε 0d e) Ninguna de las anteriores Solución: El resultado se obtiene aplicando la fórmula U = 1 1 4πε k j j=1 q j q k r jk donde q 1 = q 2 = q, q 3 = 2q y r jk = d para todos j, k = 1, 2, 3. Entonces 1 3 U = q j q k 8πε 0 d = j=1 k j 1 ( ) q(q + 2q) + q(q + 2q) + +2q(q + q) 8πε 0 d = + 5q2 4πε 0 d. 3. En la Figura 3 se muestra un plano infinito (muy, muy grande) localizado en y = 0 (i.e., el plano x z) con densidad superficial de carga σ = q/(25πd 2 ). Además, se tiene una carga puntual q en el punto (x, y, z) = (0, d, 0). Entonces, el campo eléctrico producido por el sistema en el punto (0, 2d, 4d) es q a) E q [13 = 50ε 0 πd 2 10ŷ + 10ẑ] 4 b) E q [11 = 50ε 0 πd 2 10ŷ + 10ẑ] 3 c) E q [17 = 50ε 0 πd 2 10ŷ + 10ẑ] 4 d) E q [ 9 = 50ε 0 πd 2 10ŷ + 10ẑ] 3 Figura 3: Plano infinito y carga puntual 3

4 e) Ninguna de las anteriores Solución: Llamemos E q y E σ a los campos eléctricos creados por la carga q y el plano infinito respectivamente. Por el principio de superposición, tenemos que el campo en el punto pedido r = (0, 2d, 4d) es E( r) = E q ( r) + E σ ( r). Además sabemos que E σ = σ q = 2ε 0 50πd 2 ŷ. ε 0 Para calcular E q usamos, con r = (0, d, 0), la fórmula usual E q = 1 4πε 0 q( r r ) r r 3 = q 500πd 2 ε 0 (3ŷ + 4ẑ), donde usamos que r r = (0, 3d, 4d) = d(3ŷ + 4ẑ) y que r r = 5d. De esto encontramos que E = q 50ε 0 πd 2 [13 10ŷ ẑ] 4. Considere el sistema de la Figura 3. El trabajo mínimo que debe realizar un agente externo para transportar una carga de prueba q 0 desde el punto (0, d, d) hasta el punto (0, d, d) es a) W = + 5q 0q 8πε 0 d b) W = 13q 0q 25πε 0 d c) W = + 13q 0q 50πε 0 d d) W = 5q 0q 8πε 0 d e) Ninguna de las anteriores Solución: El trabajo requerido es equivalente (invirtiendo el camino) al trabajo realizado por el campo para ir desde el punto (0, d, d) hasta el punto (0, d, d), o equivalentemente, como la diferencia de energía potencial U entre estos dos puntos. Por esto, es claro que U = U q + U σ. Dado que los puntos de partida y llegada están en la misma superficie equipotencial, tanto del campo E q como de E σ, concluimos que U q = 0, U σ = 0 U = Considere el sistema de la Figura 3. Asuma que σ, q, q 0 > 0. Suponiendo que ponemos una carga de prueba q 0 en reposo en el punto (0, d, 0). Entonces, la energía cinética K de q 0 en el punto (0, 2d, 0) es a) K = 47 q 0 q 300 πε 0 d b) K = 37 q 0 q 600 πε 0 d c) K = 41 q 0 q 400 πε 0 d 4

5 d) K = 17 q 0 q 600 πε 0 d e) Ninguna de las anteriores Solución: Dado que la carga parte del reposo tenemos por conservación de la energía K = U = U q + U σ = (U q ( r 1 ) U q ( r 2 )) + (U σ ( r 1 ) U σ ( r 2 )), donde r 1 = (0, d, 0) y r 2 = (0, 2d, 0) son los puntos de partida y llegada respectivamente. Claramente, Además, usando la fórmula usual Por lo tanto, U q ( r) = qq 0 4πε 0 r r U σ = q 0 σ ε 0 d = qq 0 25πε 0 d. U q ( r 1 ) U q ( r 2 ) = qq 0 4πε 0 ( 1 2d 1 3d ) = qq 0 24πε 0 d. K = 37 q 0 q 600 πε 0 d. 6. Se tiene un anillo uniformemente cargado con una densidad lineal de carga λ > 0. En su interior se encuentra una superficie esférica concéntrica al anillo y de radio menor, que no encierra ninguna carga como muestra la Figura 4. Es correcto afirmar que: a) El flujo eléctrico neto a través de la superficie esférica no es nulo. b) El potencial eléctrico en cada zona de la superficie esférica es cero. c) El flujo eléctrico neto a través de la superficie esférica es nulo y el campo eléctrico en cada zona de la superficie esférica no es nulo. d) El campo eléctrico en el plano del anillo es nulo. e) El campo eléctrico en cada zona de la superficie esférica es nulo. Figura 4: 7. Se tiene un medio anillo de radio R con densidad lineal de carga λ constante. Determine la magnitud del campo eléctrico en el punto O de la Figura 5. a) E = λ 4πε 0R b) E = λ 4πε 0R c) E = λ 2ε 0R d) E = λ 4ε 0R e) E = λ 2πε 0R 5

6 Figura 5: 8. Una carga se encuentra en una esquina de un cubo con largo, ancho y altura L como indica Figura 6. Cuánto flujo eléctrico Φ = E d a pasa por la cara gris de este cubo? Figura 6: a) Φ = q 16 b) Φ = q 8 c) Φ = q 4π d) Φ = q 16π e) Ninguna de las anteriores 9. Considere la siguiente densidad de carga expresada en coordenadas cartesianas ( x 2 + y 2 + z 2 ) ρ(x, y, z) = ρ 0. (1) Cuánto vale el valor absoluto del campo eléctrico en el espacio? a) E = ρ ( 0 (x 2 + y 2 + z 2 ) 3/2 ) 5a 2 6 a 2

7 b) E = ρ 0 c) E = ρ 0 d) E = ρ 0 ( (x 2 + y 2 + z 2 ) 3/2 ) 4a 2 ( (x 2 + y 2 + z 2 ) 3/2 ) 3a 2 ( (x 2 + y 2 + z 2 ) 3/2 ) 2a 2 e) Ninguna de las anteriores 7

8 10. Se tiene un conductor cilíndrico neutro de radio exterior r a y radio interior r b. La cavidad interior (r < r b ) está llena con un material no conductor con densidad de carga ρ(r) = µ/r, donde r es la distancia al eje de simetría del cilindro (ver Figura 7). En la aproximación en que el cilindro es infinito, determine el potencial eléctrico en las regiones r < r b y r > r a. Asuma que V (0) = 0. Figura 7: a) V (r) = µr para r < r b y V (r) = µr ( b rb ) ln para r > r a. r b) V (r) = µr ( b rb ) ln para r < r b y V (r) = µr ( a ra ) ln para r > r a. r r c) V (r) = µr para r < r b y V (r) = µr ( ( b ra ) ) ln 1 para r > r a. r d) V (r) = µr ( ( b rb ) ) ln 1 para r < r b y V (r) = µr ( ( a ra ) ) ln 1 para r > r a. r r e) Ninguna de la anteriores. Solución: Primero calculemos el campo eléctrico en ambas regiones. Para r < r b, usando la Ley de Gauss en un cilíndro concéntrico de radio r y altura L, obtenemos E ds = Q enc S E(r)2πrL = 2πL r ρ(r )r dr E(r) = µ. ɛ 0 0 = 2πrLµ Similarmente, para r > r a tenemos E ds = Q enc S E(r)2πrL = 2πL r ρ(r )r dr 0 = 2πr blµ E(r) = µ r b r, 8

9 donde hemos usado que el conductor es neutro. Fijando V (0) = 0, el potencial en la región interior es simplemente, r V (r) V (0) = E d l µr 0 = µr V (r) =. En la región exterior encontramos V (r) V (r a ) = r r a = µr b E d l ( ) V (r) = µr ( ( b ra ln r r ln r a ) ) 1, donde hemos usado que el potencial debe ser continuo y que V (a) = V (b) = µr b / al tratarse de un conductor. 11. En el problema anterior, calcule la densidad de carga en la superficie interior del conductor. a) σ = µ. b) σ = 2µ. c) σ = µ. d) σ = µ 2. e) Ninguna de la anteriores. Solución: Al tratarse de un conductor, el flujo eléctrico a través de un cilindro de radio r b < r < r a y largo L es cero. Luego, la carga encerrada por la superficie debe anularse. La carga total del cilindro interior es (ver problema anterior) Q = 2πr b Lµ; la superficie r = r b acarrea la carga opuesta Q b = 2πr b Lµ. Dividiendo por el área obtenemos que la densidad de carga es σ = µ. 12. Entre dos planos geométricos infnitos y paralelos ubicados en x = ±a, se encuentra una distribución de carga homogénea con densidad ρ. El campo eléctrico en la región x > a es a) E = signo(x) ρa 2 ˆx b) E = signo(x) ρa ˆx c) E = ρa 2 ˆx d) E = signo(x) ρa ˆx e) Ninguna de las anteriores. Solución: Tomemos como superficie Gaussiana un cilindro de radio R, orientado de forma perpendicular a los planos y cuyas tapas se ubican en x > a y x < a. Suponiendo que E = E(x)ˆx, el flujo total es E ds = πr 2 E(x) πr 2 E( x) S = 2πR 2 E(x), 9

10 donde hemos usado la simetría del sistema E( x) = E(x). Por otro lado, la carga total encerrada es Q enc = ρπr 2 2a. Así, la ley de Gauss nos entrega E(x) = ρa ρa x > a x < a E = signo(x) ρa ˆx. Note que este es el mismo campo que produce un plano infinito ubicado en x = 0 y con densidad de carga superficial σ = 2aρ. 10

11

12

13

6. Flujo Eléctrico y Ley de Gauss

6. Flujo Eléctrico y Ley de Gauss 6. Flujo Eléctrico y Ley de Gauss Recordemos que dibujamos las ĺıneas de campo eléctrico con un número de ĺıneas N: N A E El número de ĺıneas N se llama flujo eléctrico: Φ E = N = E A [ Nm2 C ] Flujo Eléctrico

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS12: FÍSICA GENERAL II GUÍA # 2: Campo eléctrico, Ley de Gauss Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Definir el concepto de flujo

Más detalles

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 6. Ley de Gauss 22 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FI533 - Electricidad y Magnetismo // -28 Profesor: Giuseppe De Nittis - gidenittis@uc.cl. Fórmulas y constantes.. Ley de Gauss Ayudantía 6 Ley

Más detalles

Electromagnetismo I. Semestre: TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 214-2 TAREA 2 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruíz 1.- Problema: (2pts) a) Una carga puntual q está localizada en el centro de un cubo

Más detalles

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez -

Ayudantía 11. Conductores, Ecuación de Poisson y Condensadores 12 de Abril de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 11 1. Fórmulas y constantes 1.1. Conductores

Más detalles

Ayudantía 5 - Soluciones Ley de Gauss

Ayudantía 5 - Soluciones Ley de Gauss Ponticia Universidad Católica de Chile Facultad de Física Electricidad y Magnetismo: Fis 153-1; Fiz 1-1 Ayudantía 5 - Soluciones Ley de Gauss Profesor: Ricardo Ramirez (rramirez@puc.cl) Ayudante: Daniel

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011 Clase 8 Flujo Eléctrico y ley de Gauss Flujo eléctrico El signo del flujo eléctrico Por su definición el flujo eléctrico a través de una cierta superficie puede ser positivo, negativo o nulo. De hecho

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2)

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2nd. Semestre 2010 Electrostática, Varias cargas puntuales CAMPO ELECTRICO DE VARIAS CARGAS

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1)

Electromagnetismo I. 0.5$m$ F q cos θ = F g sin θ, (1) Electromagnetismo I Semestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución a la Tarea 2 1.- Problema: (10pts) Solución por Christian

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA Francisco Fernández La duda es la escuela de la inteligencia. Curso 2012-2013 F. Bacon 1 Ley de Coulomb Ley de Coulomb: La magnitud de la

Más detalles

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado

Electromagnetismo II. Semestre: TAREA 6 Dr. A. Reyes-Coronado Electromagnetismo II Semestre: 2015-1 TAREA 6 Dr. A. Reyes-Coronado Por: Pedro Eduardo Roman Taboada 1.- Problema: (10pts) Un modelo primitivo para el átomo consiste en un núcleo puntual con carga +q rodeada

Más detalles

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga:

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga: Física Teórica 1 Guia 1 - Repaso 1 cuat. 2015 Repaso de electrostática y magnetostática. Transformaciones de simetría. Ley de Gauss. Ley de Ampere. 1. En cada una de las siguientes distribuciones de carga:

Más detalles

Tema: Electrostática 02/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Electrostática 02/03/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Física 2º Bach. Tema: Electrostática 02/03/06 DEPRTMENTO DE FÍIC E QUÍMIC Problemas Nombre: [3 PUNTO / UNO] 1. Tres partículas con cargas iguales = 4,00 µc están situadas en tres de los vértices de un

Más detalles

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 1. Dos largas placas paralelas conductoras están separadas por una distancia d y cargadas de modo que sus tensiones son +V 0 y V 0. Una pequeña esfera

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

Auxiliar N o 3 FI33A

Auxiliar N o 3 FI33A Auxiliar N o 3 FI33A Prof. auxiliar: Luis Sánchez L Fecha: 02/04/08 Problema 1 Una varilla delgada de dielectrico de seccion trasversal A se extiende sobre el eje z desde z = 0 hasta z = L. La polarizacion

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE Facultad de Física Electrodinámica Prof. Jorge Alfaro S. I1 Viernes 16 de Octubre de 215 Problema 1. Dos esferas conductoras concéntricas de radio interior a y

Más detalles

q 1 q 3 r12 r13 q Energía potencial electrostática

q 1 q 3 r12 r13 q Energía potencial electrostática 3.4 nergía potencial electrostática q q r 3 r r q q q q 3 r 3 Primero colocamos una carga q en el punto. No hay más cargas, no cuesta energía Traemos del infinito una carga q al punto. llo cuesta una igual

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 015-1 Reposición de primer parcial: Solución Dr. A. Reyes-Coronado Por: Jesús Castrejón Figueroa Problema 1 5pts) Calcula el campo el eléctrico E magnitud y dirección) a

Más detalles

Instituto de Física Universidad de Guanajuato Septiembre 10, José Luis Lucio Martínez

Instituto de Física Universidad de Guanajuato Septiembre 10, José Luis Lucio Martínez Instituto de Física Universidad de Guanajuato Septiembre 10, 2007 Física III José Luis Lucio Martínez Conceptos que se introducen en este capítulo 1. El flujo neto de campo eléctrico a través de una superficie

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1 1. Carga y Campo léctrico Carga eléctrica. Conservación de la carga. Ley de Coulomb. Campo eléctrico. Potencial. Ley de Gauss. Conductor cargado en equilibrio electrostático. Carga eléctrica Dos tipos:

Más detalles

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placa"de"aire" Placa"de"vidrio" a" #σ"

Electromagnetismo I. y fuera de ellas D = 0. Solución por Christian Esparza López. Placadeaire Placadevidrio a #σ Electromagnetismo I Semestre: 15- Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López Solución Tarea 6 Solución por Christian Esparza López 1. Problema: (pts)

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 1.

Problemas de Electromagnetismo. Tercero de Física. Boletín 1. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 1. 17.- Dos pequeñas esferas conductoras iguales, cada una de masa m, están suspendidas de los extremos

Más detalles

Pseudo-resumen de Electromagnetismo

Pseudo-resumen de Electromagnetismo Pseudo-resumen de Electromagnetismo Álvaro Bustos Gajardo Versión 0.6β, al 27 de Octubre de 2011 1. Cargas. Ley de Coulomb 1.1. Carga eléctrica La carga eléctrica es una propiedad cuantitativa de la materia,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. FISICA TEORICA 1-2do. Cuatrimestre 2007 Método de Separación de Variables. 1. Se tiene un cubo conductor de lado a conectado a tierra. Calcular el potencial electrostático en todo punto del espacio dividiendo

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Boletín Temas 1 y 2 P 1

Boletín Temas 1 y 2 P 1 Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que

Más detalles

Departamento de Física Aplicada III. Escuela Superior de Ingenieros Camino de los Descubrimientos s/n Sevilla PROBLEMA 1

Departamento de Física Aplicada III. Escuela Superior de Ingenieros Camino de los Descubrimientos s/n Sevilla PROBLEMA 1 Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Examen Final de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. Junio 2005 PROBLEMA 1 Sea una distribución esférica

Más detalles

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo

GUÍA 1: CAMPO ELÉCTRICO Electricidad y Magnetismo GUÍA 1: CAMPO ELÉCTRICO Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 3 Carga eléctrica www.clasesalacarta.com Campo léctrico La carga eléctrica es un exceso (carga -) o defecto (carga ) de electrones que posee un cuerpo respecto al estado neutro.

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

se indica en la figura. Calcule la fuerza sobre una carga puntual el punto P situado en la mitad de la distancia d entre las varillas.

se indica en la figura. Calcule la fuerza sobre una carga puntual el punto P situado en la mitad de la distancia d entre las varillas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA PRIMERA EVALUACION DE FISICA C JULIO 2 DEL 2014 1. Dos varillas de una longitud L= 0.60m se

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- ELECTROSTÁTICA DEL VACÍO 3 Electrostática

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 0221, FIS 1532 INTERROGACIÓN 1 23/09/2006

ELECTRICIDAD Y MAGNETISMO FIZ 0221, FIS 1532 INTERROGACIÓN 1 23/09/2006 PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE FÍSICA ELECTRICIDAD Y MAGNETISMO FIZ 221, FIS 1532 INTERROGACIÓN 1 23/9/26 TIEMPO: 2 HORAS NO USAR CALCULADORA NI APUNTES SI USTED USA LÁPIZ GRAFITO

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Técnica Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Segunda convocatoria. Septiembre-2012 PRLEMAS Problema 1.- Sea una corteza esférica

Más detalles

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves Soluciones er parcial de Fisica II Comisión B - Jueves 6 de julio de 05. Ley de Coulomb.. Enunciado El siguiente conjunto de cargas se encuentra alineado en forma equidistante sobre la horizontal. Figura

Más detalles

Ayudantía 23. Fuerza magnética sobre conductores, torque magnético y Ley de Ampere 31 de Mayo de 2018 Ayudante: Matías Henríquez -

Ayudantía 23. Fuerza magnética sobre conductores, torque magnético y Ley de Ampere 31 de Mayo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS15 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 2 Fuerza magnética sobre conductores, torque

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Ayudantia 1. Objetivos: Calcular el campo eléctrico para una distribución continua de carga.

Ayudantia 1. Objetivos: Calcular el campo eléctrico para una distribución continua de carga. Profesor: Giuseppe De Nittis Ayudantes: Sergio Carrasco - Cristóbal Vallejos Electricidad y Magnétismo FIZ22/FIS533 26-2 Facultad de Física Ayudantia Objetivos: Calcular el campo eléctrico para una distribución

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

Calcular la diferencia de potencial entre el centro de la esfera y el infinito.

Calcular la diferencia de potencial entre el centro de la esfera y el infinito. Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.

Más detalles

1. Fórmulas y constantes

1. Fórmulas y constantes Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-2018 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 5 Potencial eléctrico, trabajo y energía

Más detalles

Soluciones 1er parcial de Fisica II Comisión B1 - Sábado - Tema 1

Soluciones 1er parcial de Fisica II Comisión B1 - Sábado - Tema 1 Soluciones er parcial de Fisica II Comisión B - Sábado - Tema 2 de septiembre de 205. Ley de Coulomb.. Enunciado Se conoce que el campo eléctrico que genera un hilo de longitud innita cargado con densidad

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (2)

TEORIA ELECTROMAGNETICA FIZ 0321 (2) TEORIA ELECTROMAGNETICA FIZ 0321 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Solución de problemas de electrostática Ecuación de Laplace Coordenadas

Más detalles

Ayudantía 2 - Solución

Ayudantía 2 - Solución Ayudantía - Solución Profesor: Ricardo Ramírez Ayudante: Juan Pablo Garrido L (jbgarrid@puc.cl) Problema Un recipiente semihemisferico no conductor de radio a tiene una carga total Q uniformemente distribuida

Más detalles

Ayudantía 12. b) La densidad de cargas en la interfaz de los materiales. (Desprecie efectos de borde). Figura 1:

Ayudantía 12. b) La densidad de cargas en la interfaz de los materiales. (Desprecie efectos de borde). Figura 1: Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Alonso Ruiz (airuiz@uc.cl) Problema 1 Ayudantía 12 Considere 2 placas

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Electromagnetismo I. 1.- Problema: (25pts)

Electromagnetismo I. 1.- Problema: (25pts) Electromagnetismo I emestre: 2015-2 Prof. Alejandro Reyes Coronado Ayud. Carlos Alberto Maciel Escudero Ayud. Christian Esparza López olución del Examen Final olución por Carlos Maciel Escudero 1.- Problema:

Más detalles

FIS1533. Interrogación N o 2. Miércoles 1 de Octubre, 18:30 a 21:00 hs. Buenas Malas Blancas Nota

FIS1533. Interrogación N o 2. Miércoles 1 de Octubre, 18:30 a 21:00 hs. Buenas Malas Blancas Nota FIS1533 Interrogación N o 2 Miércoles 1 de Octubre, 18:30 a 21:00 hs Nombre completo: Sección: Buenas Malas Blancas Nota Instrucciones para la primera parte - Marque con X el casillero correspondiente

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. ISICA TEORICA 1 - do c 004 Método de Separación de Variables 1 Se tiene un cubo conductor de lado a conectado a tierra Calcular el potencial electrostático en todo punto del espacio dividiendo la región

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

Ayudantía 13. A = 1, Ωm m = 0,26 Ω 0,26 Ω = 1, W

Ayudantía 13. A = 1, Ωm m = 0,26 Ω 0,26 Ω = 1, W Pontificia Universidad Católica de Chile Facultad de Física FIS533 Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Felipe Canales, correo: facanales@uc.cl Ayudantía 3 Problema. En el sistema

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

Física 3: Septiembre-Diciembre de 2011 Clase 11, Lunes 17 de octubre de 2011

Física 3: Septiembre-Diciembre de 2011 Clase 11, Lunes 17 de octubre de 2011 Clase 11 Potencial Eléctrico Fuerza y campo eléctrico El campo eléctrico presente en una determinada región del espacio actúa sobre la materia cargada en esa región modificando su comportamiento dinámico.

Más detalles

2.1 Introducción. 2.2 Flujo sobre una superficie. 42 Ley de Gauss

2.1 Introducción. 2.2 Flujo sobre una superficie. 42 Ley de Gauss 2 Ley de Gauss 42 Ley de Gauss 2.1 Introducción En el capítulo anterior enunciamos las leyes fundamentales de la electrostática. La ley de Coulomb para una carga puntual y el principio de superposición

Más detalles

Ayudantía 19 Ley de Ampere

Ayudantía 19 Ley de Ampere Ponticia Universidad Católica de Chile Facultad de Física Electricidad y Magnetismo: Fis 1532-1; Fiz 221-1 Ayudantía 19 Ley de Ampere Profesor: Ricardo Ramirezrramirez@puc.cl) Ayudante: Daniel Narrias

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

Los grandes logros son efecto de los grandes riesgos o sacrificios; simplemente, el Final depende del Principio

Los grandes logros son efecto de los grandes riesgos o sacrificios; simplemente, el Final depende del Principio ELECTROMAGNETISMO Departamento de Física Taller A (primer corte) Docente: Alexánder Contreras Físico/Physicist (El presente taller es únicamente una guía de estudio para los estudiantes) (No se conformen

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Energía potencial eléctrica 2) Potencial eléctrico 3) Diferencia de potencial 4) Relación entre campo y potencial 5) Superficies equipotenciales

Más detalles

Función de Green, método de imágenes y separación de variables.

Función de Green, método de imágenes y separación de variables. Física Teórica 1 Guia 2 - Green, imágenes y separación 1 cuat. 2014 Función de Green, método de imágenes y separación de variables. Método de imágenes y función de Green. 1. Una esfera conductora de radio

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

FLUJO ELECTRICO Y LA LEY DE GAUSS

FLUJO ELECTRICO Y LA LEY DE GAUSS 21 UNIVRSIDAD NACIONAL SANTIAGO ANTÚNZ D MAYOLO FACULTAD D INGNIRÍA CIVIL CURSO: FISICA III FLUJO LCTRICO Y LA LY D GAUSS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PRÚ I. INTRODUCCIÓN Para realizar

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles