LECCIÓN 11 CÉLULAS SOLARES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LECCIÓN 11 CÉLULAS SOLARES"

Transcripción

1 ÓN CÉUAS SOAS NTODUÓN tr los dispositivos basados smicoductors, la célula solar s uo d los más adcuados para tdr cómo las propidads itríscas básicas dl smicoductor, combiació co las propidads tríscas coscucia dl dopado y técicas d prparació, dtrmia las caractrísticas y rdimito dl dispositivo. l rdimito d ua célula solar itrvi las propidads ópticas dl smicoductor, así como las propidads d trasport y las propidads d los portadors fura d quilibrio. Ats d dscribir l pricipio d fucioamito d ua célula solar rcordarmos la dfiició d los parámtros ópticos d u matrial. PAÁMTOS ÓPTCOS. a itracció tr ua oda lctromagética y u mdio matrial pud dscribirs, dsd u puto d vista macroscópico, mdiat los llamados parámtros ópticos, rlacioados co la fució diléctrica dl matrial. Supogamos qu ua oda lctromagética icid sobr la suprfici d u mdio matrial smiifiito. Si llamamos al flujo lumioso icidt al flujo lumioso rfljado, s dfi la rflctividad dl matrial como: Si llamamos T al flujo trasmitido, y al coficit d absorció dl matrial para dicha radiació, tdrmos: T stos parámtros fomológicos stá rlacioados co la costat diléctrica dl matrial, qu srá, gral, ua magitud complja ε ε + i ε. Dada la dfiició dl ídic d rfracció compljo, tmos: ε ε +iε +iκ κ +iκ ε κ ε κ dod s l ídic d rfracció y κ l ídic d tició. cordmos la cuació dl campo léctrico d la oda lctromagética l mdio matrial: r r,t r iiκ k iωt κ k ik ωt Dado qu l flujo lumioso s proporcioal al cuadrado dl módulo dl campo léctrico, tmos:, t κ k 4πκ λ Si comparamos sta cuació co la dl flujo trasmitido cuació 6, obtmos : 4πκ/λ dod λ s la logitud d oda d la radiació lctromagética l vacío.

2 cuato a la rflctividad, las cuacios d Frsl para odas co icidcia ormal prmit obtr: + κ + + κ 3 PNCPO D FUNCONAMNTO D UNA CÉUA SOA Ua célula solar s ua uió p o ua htrouió. a figura a mustra l squma d bada d ua uió p bajo ilumiació. auscia d ilumiació, l quilibrio térmico s alcaza mdiat itrcambio d portadors mayoritarios, lo qu collva la aparició d ua zoa d carga d spacio y d u campo léctrico itro qu s opo al movimito d los portadors mayoritarios. l quilibrio térmico s alcaza cuado la corrit d arrastr origiada por l campo d la uió compsa la corrit d difusió. Cuado s ilumia ua uió p co ua radiació d rgía suprior a la bada prohibida dl smicoductor, s romp l quilibrio térmico. a istcia d ua barrra qu favorc l movimito d los portadors mioritarios hac qu aqullos portadors mioritarios qu llgu a la barrra sa arrastrados por l campo y gr ua corrit l circuito trior o ua d.d.p. si l dispositivo stá circuito abirto. a célula solar bajo ilumiació srá pus quivalt a u diodo parallo co ua fut d corrit d valor qu dpdrá dl flujo lumioso icidt y d los parámtros dl dispositivo. Si la oscuridad la caractrística dl diodo s: q kt s bajo la ilumiació srá s q kt CA a figura mustras las caractrísticas d u fotodiodo la oscuridad y bajo ilumiació. Dfiimos la itsidad d cortocircuito como: PM PM y la tsió d circuito abirto como:

3 kt CA l + q s Cuado trazamos la caractrística dfiimos la tsió y la corrit como positivas cuado stamos polarizació dircta s dcir, cuado aplicamos tsió positiva a la part P. sas codicios la corrit circula d la part P a la part N dtro dl diodo. Cuado l fotodiodo stá bajo ilumiació si polarizació la corrit circula d N a P dtro dl diodo, y d P a N la rsistcia trior. Por tato, co l critrio d sigos dfiido, auscia d polarizació, cuado l fotodiodo sumiistra rgía, stamos l cuarto cuadrat <, >. a potcia sumiistrada por l fotodiodo o célula solar dpdrá dl puto d trabajo. Para cada célula solar habrá u puto óptimo l qu la potcia sumiistrada s máima. Si llamamos a la potcia lumiosa icidt, l rdimito srá: η PM PM S dfi l factor d llado FF como PM PM FF CA Co sa dfiició y llamado S a la suprfici d la clda y S al flujo rgético lumioso watios por uidad d suprfici, tdrmos S S y l rdimito s prsará: η CA FF S CA FF S S dod s la dsidad d corrit d cortocircuito. 4 NDMNTO MÁXMO Y AO ÓPTMO D GAP l rdimito máimo qu s pud obtr d ua célula fabricada co u smicoductor dado dpd úicamt dl valor d la bada prohibida o gap g dl smicoductor y d la forma dl spctro d ilumiació.. Por ua part, la tsió d circuito abirto máima qu s pud obtr co u diodo p corrspod al valor dl gap CAMa g /. Por otra part, la dsidad d corrit máima srá la qu corrspoda al flujo total d fotos absorbidos por l smicoductor. Si llamamos a la dsidad spctral d flujo lumioso fotos por uidad d suprfici y uidad d rgía d fotó, la potcia por uidad d suprfici icidt sobr la mustra srá: S a dsidad d corrit máima qu s pud obtr co u smicoductor d gap g srá: g Dado qu l valor máimo dl factor d llado s, l rdimito máimo srá:

4 η ma FF ma CA ma M ma S Por cada tipo d spctro d ilumiació habrá u valor dl gap óptimo. a figura mustra, por ua part, l spctro solar fura d la atmósfra, qu corrspod, básicamt, al spctro dl curpo gro a 58 K. s l llamado spctro AM las siglas AM idica la masa d air atravsada qu trasporta u flujo rgético d 353 /m. Al ivl dl mar, y icidcia ormal a la suprfici, l spctro solar s dsiga como AM uos /m. Para icidcia oblicua, la masa d air atravsada srá mayor, por lo qu s rducirá l flujo rgético. l úmro qu acompaña a las ltras AM s la proporció d air atravsada rspcto al valor míimo icidcia ormal, s dcir, la scat dl águlo d icidcia mdido rspcto a la ormal. a figura mustra l spctro AM /m. g g g g a siguit figura mustra l valor dl rdimito fució dl gap para l spctro solar AM.5. Tato para u valor grad dl gap como para u valor pquño l rdimito tid a cro. Para u valor grad, mayor qu 3, porqu l smicoductor apas absorb fotos dl spctro solar. Para u valor pquño dl gap, mor qu.3, porqu solo s aprovcha ua ífima part d la rgía d los fotos absorbidos, ya qu todo l cso d rgía dl fotó sobr la rgía dl gap s trasforma calor, al trmalizars rápidamt l lctró y l huco grados al míimo máimo d la bada d coducció valcia. Para l spctro solar AM.5 l valor óptimo dl gap stá tr. y.4, por lo qu smicoductors como l Si, P, GaAs o CdT rsulta adcuados para fabricar células solars. Dsd u puto d vista cocptual, s importat sñalar qu la limitació dl rdimito a valors toro al 3 % o s ua limitació trmodiámica básica, sio

5 ua limitació dbida a las particularidads dl dispositivo. Dato qu l "foco calit" sría la tmpratura corrspodit al spctro solar T C 58 K y l "foco frío" sría la tmpratura d la célula solart F 3K, la limitació trmodiámica sría T F /T C 3/ %. Si lugar d u smicoductor pudiésmos utilizar dos, sparado l spctro solar rgios adaptadas al gap d cada smicoductor, l rdimito sría: η ma g + g g g g Hmos supusto g < g. Optimizado los valors d ambos gaps sría, pricipio, posibl obtr rdimitos supriors al 6%. 5 MTACONS D NDMNTO SPCTO A AO MÁXMO 5. spusta spctral Dado qu o todos los fotos d rgía suprior al gap so absorbidos, i todos los pars lctróhuco llga a la zoa d la barrra ats d rcombiars, la fotocorrit s v rducida rspcto a su valor máimo. a dsidad d corrit cc ralmt obtida srá proporcioal al flujo lumioso y dpdrá d la rspusta spctral dl fotodiodo. S sul fabricar dispositivos co ua zoa muy dlgada y muy dopada qu apas cotribuy a la fotocorrit. Para simplificar l tratamito, prscidirmos d la cotribució d la zoa N. Cosidrarmos dos cotribucios, la d la zoa d agotamito, d achura, y la d la zoa P. la zoa d agotamito, todos los portadors so grados la zoa dl campo y todos cotribuy a la corrit. Si o s l flujo icidt, l flujo d portadors citados srá igual al flujo d fotos absorbido por la zoa d grosor, y la dsidad d corrit asociada srá Dod s la rflctividad dl matrial. Para la zoa P, platamos la cuació d difusió d los portadors mioritarios lctros: d D d a solució gral srá: A + B dod los dos primros térmios corrspod a la solució gral d la cuació homogéa y l último térmio s ua solució particular d la cuació o homogéa. os valors d A y B s obti impoido codicios d cotoro adcuadas. Para

6 la zoa P, l bord co la zoa d agotamito impodríamos la codició todo l cso d portadors s arrastrado por l campo d la barrra. l cotacto dl fodo, la codició d cotoro dpdría d la rcombiació suprficial la itrfas smicoductor/cotacto: H H S d d D dod H s l grosor d la célula. a prsió qu s obti s ua fució complicada dl coficit d absorció, la logitud d difusió y la vlocidad d rcombiació suprficial. Si l grosor s mucho mayor qu la logitud d difusió, la coctració db tdr a cro para H, por lo qu s db prscidir dl primr térmio d la solució gral y la codició d cotoro os daría: B y, por tato: d d a cotribució d la zoa P sría: + D d d D P a fotocorrit sría: + P + + Dfiimos l rdimito cuático para ua rgía d fotó dada como la rlació tr la fotocorrit y corrit máima qu produciría u flujo dado d fotos d sa rgía : + η + Para u dtrmiado tipo d spctro, la fotocorrit vdrá dada por: g η

7 Pérdidas por rflctacia: l térmio qu aparc l rdimito cuático rprsta ua importat limitació dl rdimito d la célula solar. l caso dl silicio, para l qu l ídic d rfracció s suprior a 4, las pérdidas por rflctacia supo más dl 35%. a mara más ficaz d vitar sta limitació cosist l uso d capas atirrflctats, qu so capas d matrial ormalmt, u óido co u ídic d rfracció itrmdio tr l dl air y l dl smicoductor y co u spsor d uas dcas d aomtros. l spsor d sas capas s pud lgir d mara qu los fctos itrfrcials tr la luz rfljada la itrfas air/óido y la luz rfljada la itrfas óido smicoductor rduc la rflctacia a valors dl ord dl %, valors qu pud rducirs aú más utilizado varias capas suprpustas. 3 Pérdidas por rsistcia itra d la célula l circuito quivalt d ua célula solar idal s ua fut d S corrit parallo co u diodo. ua célula solar ral hay qu tr cuta, por ua part, la rsistcia d la zoa utra dl smicoductor, por lo qu hay qu añadir ua rsistcia P sri S al circuito quivalt y, por otra part, las posibls pérdidas la barrra dl diodo, qu s da lugar a u fcto similar al qu tdría ua rsistcia P parallo co l diodo. l circuito quivalt sría l qu mustra la figura y su caractrística sría: S kt S + s P Como coscucia d sas rsistcias, s produc pérdidas d rdimito, las qu la tsió circuito abirto s v afctada fudamtalmt por la rsistcia parallo co pérdidas mayors cuato mor s P y la corrit d cortocircuito s v afctada fudamtalmt por la rsistcia sri co pérdidas mayors cuato mayor s la rsistcia sri.

2. Utilizando el método adimensional basado en el factor de calidad Q, determine:

2. Utilizando el método adimensional basado en el factor de calidad Q, determine: Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito

Más detalles

Capítulo IV. Estadísticas cuánticas.

Capítulo IV. Estadísticas cuánticas. Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8

Más detalles

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES

5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS LCTROMAGNTISMO PARA INGNIRÍA LCTRÓNICA. CAMPOS Y ONDAS Odas mdios abirtos acotados Itroducció Capítulo 7 l caso tratado l capítulo atrior, l cual ua oda s propaga librmt a través d u mdio si frotras i

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro

Más detalles

Fonones: Cuantización de las vibraciones de la red cristalina.

Fonones: Cuantización de las vibraciones de la red cristalina. Foo: Cuatizació d la ibracio d la rd critalia. Oda d logitud larga Oda lática... Oda d logitud corta λ a o πa tmo qu tr cuta la tructura atómica dl crital. foó logitudial foó traral a mooatómica: Coidrmo

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu

Más detalles

al siguiente límite si existe: . Se suele representar por ( x )

al siguiente límite si existe: . Se suele representar por ( x ) UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.

Más detalles

Fallas de la aproximación estática. cristal

Fallas de la aproximación estática. cristal Diámica d la rd Foos Fallas d la aproximació stática para l cristal Propidads térmicas dl quilibrio: Calor spcífico: Las vibracios d la rd so la pricipal causa d absorció d calor y da cuta dl calor spcífico

Más detalles

2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12)

2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12) . ALGEBRA LINEAL (._AL_T_06, Rvisió: 8-03-06, C). CONCEPTOS FUNDAMENTALES: ESPACIOS VECTORIALES, BASES, DIMENSIONES... INTRODUCCIÓN. Notació: utilizamos abcdario latio para vctors, grigo para scalars (úmros).

Más detalles

Tema 5: Transistor Bipolar de Unión (BJT)

Tema 5: Transistor Bipolar de Unión (BJT) Tma 5: Trasistor ipolar d Uió JT) 5.1 troducció otidos 5.2 ucioamito dl trasistor Zoa Activa Dircta 5.3 Modlo d orrits dl Trasistor. Modlo d rs-moll 5.4 Modos o Zoas d Opració 5.5 Modlos Spic 5.6 jmplos

Más detalles

El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2

El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2 EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir

Más detalles

TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS

TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.

Más detalles

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...

Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

Tema 5: Transistor Bipolar de Unión (BJT)

Tema 5: Transistor Bipolar de Unión (BJT) Tma 5: Trasistor ipolar d Uió JT) 5.1 troducció otidos 5.2 ucioamito dl trasistor Zoa Activa Dircta 5.3 Modlo d orrits dl Trasistor. Modlo d rs-moll 5.4 Modos o Zoas d Opració 5.5 Modlos Spic 5.6 jmplos

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

TEMA 2. ESPACIOS Y OPERADORES LINEALES CONTENIDO

TEMA 2. ESPACIOS Y OPERADORES LINEALES CONTENIDO TEMA. ESPACIOS Y OPERADORES LINEALES CONTENIDO ESPACIOS LINEALES SOBRE UN CAMPO INDEPENDENCIA LINEAL, BASES Y CAMBIOS DE BASES OPERADORES LINEALES Y SUS REPRESENTACIONES SISTEMAS DE ECUACIONES ALGEBRÁICAS

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES

Más detalles

Cap. II: Principios Fundamentales del Flujo de Tránsito

Cap. II: Principios Fundamentales del Flujo de Tránsito Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos

Más detalles

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal) PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad

Más detalles

Señales y Sistemas. Análisis de Fourier.

Señales y Sistemas. Análisis de Fourier. Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas

Más detalles

FAyA Licenciatura en Química Física III año 2006 MECANICA CUANTICA

FAyA Licenciatura en Química Física III año 2006 MECANICA CUANTICA FAyA Licciatura Química Fíica III año 006 MECANICA CUANTICA E la mcáica cláica l tado d u itma dcrib u itat dtrmiado dado toda u coordada q y u vlocidad q. E mcáica cuática l tado d u itma dfi dado ua

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen. Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

Para explicar la física que interviene en el interior de una estrella vamos a repasar algunos

Para explicar la física que interviene en el interior de una estrella vamos a repasar algunos 6. Propidads d la matria 6. PROPIEDADES DE LA MATERIA Para xplicar la física qu itrvi l itrior d ua strlla vamos a rpasar alguos cocptos grals sobr las propidads y l comportamito d la matria las codicios

Más detalles

1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.

1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día. Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr

Más detalles

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo. TALLER : Prparació parcial fial Cálculo Itgral UdA 5- Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d)

Más detalles

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.

TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo. TALLER : Prparació parcial fial Cálculo Itgral UdA - Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d) +

Más detalles

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria. Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE

MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril

Más detalles

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho. 6 Itgral dfiida Ejrcicio rsulto EJERCICIOS PROPUESTOS Obté, co l método visto, l ára dl trapcio limitado por la rcta y +, l j X y las vrticals y Calcula l ára gométricamt y compara los rsultados S divid

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación.

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación. TEMA 5 : Efctos d los Rctificadors sobr la rd d alimtació TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. Ídic TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. 5..- Factor d Potcia....

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

Fenómenos de enlace atómico en una dimensión

Fenómenos de enlace atómico en una dimensión Joural of Basic Scics Vol. ( Mayo-gosto 05 Fómos d lac atómico ua dimsió E. Ruda Solis Divisió cadémica d Igiría y rquitctura Uivrsidad Juárz utóoma d Tabasco C.P. 86690 Cuduacá Tabasco Mx. rudas@gmail.com

Más detalles

PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martínez Morales

PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martínez Morales CARTOGRAFÍA MATEMÁTICA PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martíz Morals INTRODUCCIÓN El físico, astróomo y matmático alsaciao J.H.Lambrt tuvo ua prolífica producció l ára d la cartografía

Más detalles

CÁLCULO NUMÉRICO ( )

CÁLCULO NUMÉRICO ( ) CÁLCULO NUMÉRICO (808068) Tma. Fudamtos d la Toría d Errors Octubr 0. Al studiar l fómo diario d la variació qu primta las codicios mtorológicas, s suprim muchas variabls qu dbría d itrvir los cálculos.

Más detalles

DECAIMIENTO RADIOACTIVO

DECAIMIENTO RADIOACTIVO DECIMIETO RDIOCTIVO El dcaimito radioactivo s idpdit dl modo d dcaimito, y s aplica a todos llos: α,β +, β -, CE (captura lctróica), γ, y fisió spotáa. Postulados: LEY DE DESITEGRCIO RDIOCTIV. La probabilidad

Más detalles

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE TEMA MODELO DE REGRESIÓN LINEAL SIMPLE. INTRODUCCIÓN A LA REGRESIÓN SIMPLE! 4 Supogamos qu la varal s ua fucó lal d otra varal, dod la rlacó tr y dpd d parámtros! y! dscoocdos. Itroduccó a la Rgrsó Smpl!

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió A/D y D/A L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió AD y DA L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

En este Capítulo procederemos a identificar los procesos que tienen lugar dentro de una

En este Capítulo procederemos a identificar los procesos que tienen lugar dentro de una 8. El itrior d ua strlla 8. EL INTERIOR DE UNA ESTRELLA E st apítulo procdrmos a idtificar los procsos qu ti lugar dtro d ua strlla co los rsultados hallados apítulos atriors. Tambié icluirmos alguas hrramitas

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

TEMA 1: CALCULO DIRECTO DE LÍMITES

TEMA 1: CALCULO DIRECTO DE LÍMITES INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL

Más detalles

PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN

PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN MARIO ESTANISLAO CESAR ARIET ALEJANDRO SCHULMAN Laboratorio 3, Dpartamto d Física, FCEyN, Uivrsidad d Buos Airs Julio dl 6 El objtivo pricipal dl prst

Más detalles

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor

Más detalles

TEMA 3: ESTIMACIÓN PUNTUAL.

TEMA 3: ESTIMACIÓN PUNTUAL. TEMA 3: ESTIMACIÓN PUNTUAL..- S tra ua mustra por m.a.s. d tamaño d ua poblacó qu sgu l modlo d Posso. Obtr l stmador por l método d los momtos y l stmador por l método d máma vrosmltud. Solucó: El método

Más detalles

PANELES SANDWICH PANELES SANDWICH. Carlos Navarro. Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

PANELES SANDWICH PANELES SANDWICH. Carlos Navarro. Departamento de Mecánica de Medios Continuos y Teoría de Estructuras PNELES SNDWIH PNELES SNDWIH arlos Navarro Dartamto d Mcáica d Mdios otiuos Toría d Estructuras PNELES SNDWIH (a) Núclo d suma (foam) (b) Núclo d ido d abja (c) Núclo wb (d) Núclo corrugado PNELES SNDWIH

Más detalles

CASTILLA-LA MANCHA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA-LA MANCHA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CASILLA-LA MANCHA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO El aluo dbrá cottar a ua d la do ocio routa A o B. Lo robla utúa 3 uto cada uo y la cutio uto cada ua. S odrá utilizar ua calculadora y ua rgla.

Más detalles

MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos

MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro

Más detalles

La distribución canónica y la aproximación clásica. Espacio de fases clásico. Distribución de velocidades de Maxwell. Aplicaciones de la distribución

La distribución canónica y la aproximación clásica. Espacio de fases clásico. Distribución de velocidades de Maxwell. Aplicaciones de la distribución La distibució caóica y la aoiació clásica. Esacio d fass clásico. Distibució d locidads d Mawll. Alicacios d la distibució d locidads d Mawll. Efusió y hacs olculas La distibució caóica sgú la aoiació

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

CASO DE ESTUDIO N 8. Análisis de un tornillo de transmisión

CASO DE ESTUDIO N 8. Análisis de un tornillo de transmisión Vrsió 01 CAPITULO POYECTO DE ELEMENTOS DE SUJECIÓN, ANCLAJE Y CIEE CASO DE ESTUDIO N 8 Aálisis u torillo trasmisió Vrsió 01 1. Itroucció Los torillos trasmisió stá somtios a cosirabls solicitacios bias

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1 MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O Fcios aalíticas Dmostrar q s aalítica todo l plao complo Z. Siglaridads d a ció Estdiar las siglaridads d las sigits cios calclado límit: a b c 9 cos d 7 Trasormació

Más detalles

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.

Tema 5. Análisis de Fourier para Señales y Sistemas Discretos. Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

LECCIÓN 9 DISPOSITIVOS METAL/ÓXIDO/SEMICONDUCTOR (MOS / MIS)

LECCIÓN 9 DISPOSITIVOS METAL/ÓXIDO/SEMICONDUCTOR (MOS / MIS) LEIÓ 9 IPOITIO METL/ÓXIO/EMIOUTOR (MO / MI ITROUIÓ. IGRM E B E LO IPOITIO MO La tructura mtal / óxido /micoductor (MO o mtal / ailat / micoductor (MI o la ba d ua gra varidad d dioitivo tato aalógico como

Más detalles

ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007)

ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007) Apts d clas d coomtría II / 6 STIMADOR D AITKN Y ROIDADS DL MISMO Última rvisió: d marzo d 7 rof. Rafal d Arc rafal.darc@am.s stimació d los parámtros dl MBRL por máxima vrosimilitd Apoádoos la hipótsis

Más detalles

(Ejercicios resueltos)

(Ejercicios resueltos) ESCUEA TECNICA SUPERIOR DE INGENIEROS INDUSTRIAES Y DE TEECOMUNICACION UNIVERSIDAD DE CANTABRIA INSTRUMENTACION EECTRÓNICA DE COMUNICACIONES (5º Curso Igiría d Tlcomuicació) Tma IV: Ruidos itrrcias: Técicas

Más detalles

(50 minutos) Ejercicio 1 Para el circuito de la figura adjunta, se pide: Datos: L 1 ; R 1 = 10 Ω; U red = 380 V; f = 50 Hz

(50 minutos) Ejercicio 1 Para el circuito de la figura adjunta, se pide: Datos: L 1 ; R 1 = 10 Ω; U red = 380 V; f = 50 Hz EXAMEN FINA DE SEIEMBE DE EECÓNICA DE OENCIA (6/7) Normas d xam El alumo db djar bi visibl sobr la msa ua idtifiaió válida (aré d la sula, DNI ). No s pud usar libros i aputs y, por tato, ua vz mpzado

Más detalles

5. LA TEORÍA CUÁNTICA ANTIGUA

5. LA TEORÍA CUÁNTICA ANTIGUA 5. La Toría Cuática Atigua 5. LA TEORÍA CUÁNTICA ANTIGUA Itroducció El itto d rsolvr l problma d la istabilidad dl átomo d Ruthrford llvó a Nils Bohr a formular 93 ua toría simpl d la structura atómica,

Más detalles

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ).

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ). CAPITULO. l átoo d idógo ) Atoo d idógo idogoid Z úo atóico o úo d poto dl úclo Z (H); (H + ); (Li + ). F q q / ε F q q / θ.6-9 cul.8 - u N u cul /( ε ) / φ V() -Z / ( u ) Hˆ Hˆ Hˆ + Ψ (, ) ψ ( )ψit( )

Más detalles

ESPECTRO ELECTROMAGNÉTICO

ESPECTRO ELECTROMAGNÉTICO ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:

Más detalles

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD APÉNDICE: FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD Fórmula uificada d Kimbr Kimbr aglutia la xpricia d muchos años d sayos ralizados por l TRRL Gra Brtaña y propo ua fórmula uificada para l cálculo

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

El transistor bipolar de unión (BJT)

El transistor bipolar de unión (BJT) l rasisor biolar d uió (JT roducció 1948-1949: illia hockly, Joh ard y alr H. raai dscubr s disosiivo y modla su riciio d fucioamio. s l rasisor más uilizado circuios discros. Prsa mayors vlocidad d rsusa

Más detalles

8. Distribuciones continuas

8. Distribuciones continuas 8. Disribucios coiuas Trasformacios d variabls alaorias rso l f 3/ / 3 > + < F / w u u u Y Dsidad Disribució Trasformació o cambio d variabl alaoria Cuál srá la fució d dsidad d probabilidad rasformada

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Tema 4. El Diode II: Característiques I-V

Tema 4. El Diode II: Característiques I-V Tma 4. El iod : Caractrístiqus -V. Equilibri tèrmic. Caractrístiqus -V qualitativs 3. 'quació dl diod idal: la d trball 4. ducció d l'quació dl diod idal 5. trrtació d rsultats. 6. sviacios rsct al diod

Más detalles

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost).

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost). Radiadors d baja tmpratura Nuva gama d radiadors d altísima misió icluso co salto térmico 30ºC. Idals tato para obra uva como para mrcado d rposició. Válidos para istalacios bitubo o mootubo. Fácil matimito

Más detalles

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción

ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente.

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente. SUCESIONES 1. El it d l sucsió d térmio grl A) B) 1 C) 0 + 1 3 + + 3 vl: (Covoctori juio 001. Exm tipo G) El it d u potci s igul l it d l bs lvdo l it dl xpot. + 1 1 Límit d l bs: 3 + 3 Límit dl xpot:

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

CALIBRACIÓN DE RESPONSIVIDAD ABSOLUTA DE DETECTORES FOTOMÉTRICOS PARA LA REALIZACIÓN DE LA CANDELA

CALIBRACIÓN DE RESPONSIVIDAD ABSOLUTA DE DETECTORES FOTOMÉTRICOS PARA LA REALIZACIÓN DE LA CANDELA imposio d trología 25 al 27 d Octubr d 2006 CALBRACÓN DE REPONVDAD ABOLUTA DE DETECTORE FOTOÉTRCO PARA LA REALZACÓN DE LA CANDELA J. C. olia, J. C. Brmúdz Ctro Nacioal d trología, km 4,5 Carrtra a los

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

1 OTRA MANERA DE VISUALIZAR LA EXPANSIÓN DE UN GAS

1 OTRA MANERA DE VISUALIZAR LA EXPANSIÓN DE UN GAS Toría dl Gas Ral 0 OTRA MAERA DE VISUALIZAR LA EXPASIÓ DE U GAS. Itroducció E l prst capítulo s ivita al lctor a aalizar d otra mara la pasió o comprsió d u gas. E bas a sta mara difrt d ivolucraros l

Más detalles

OBTENCIÓN DE LA MATRIZ DE VARIANZAS Y COVARIANZAS A TRAVÉS DE LOS PRODUCTOS KRONECKER PARA MODELOS BALANCEADOS

OBTENCIÓN DE LA MATRIZ DE VARIANZAS Y COVARIANZAS A TRAVÉS DE LOS PRODUCTOS KRONECKER PARA MODELOS BALANCEADOS UNVERSS SCENRUM Rvista d la Facultad d Cicias ulio-dicimbr d PONFC UNVERSDD VERN Vol. 8, 9- OBENCÓN DE L MRZ DE VRNZS Y COVRNZS RVÉS DE LOS PRODUCOS RONECER PR MODELOS BLNCEDOS Luz Maria Moa Moa Facultad

Más detalles

COLEGIO DE POSTGRADUADOS

COLEGIO DE POSTGRADUADOS COLEGIO DE POSTGRADUADOS INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS CAMPUS MONTECILLO SOCIOECONOMÍA, ESTADÍSTICA E INFORMÁTICA ESTADÍSTICA PRUEBAS DE BONDAD DE AJUSTE Y DE RAZÓN DE

Más detalles

Página 76. Página 78. Página 77. Página 79. Y de la primera: 1. Resolvemos por sustitución: a) Despejo x de la primera y la sustituyo en la segunda:

Página 76. Página 78. Página 77. Página 79. Y de la primera: 1. Resolvemos por sustitución: a) Despejo x de la primera y la sustituyo en la segunda: Solucios d ls ctividds Pági 6. Rsolvmos por sustitució: ) Dspjo d l primr l sustituo l sgud: ( ) 8 0 Co lo cul: ( ) b) Si multiplico l primr por -, obtgo: + 8 Co lo cul tgo dos rcts coicidts, s dcir, l

Más detalles

Prob PI-1. Forma débil de un problema de flujo de calor estacionario en 2D (Cálculos a mano) T k. Q y

Prob PI-1. Forma débil de un problema de flujo de calor estacionario en 2D (Cálculos a mano) T k. Q y p Q S d ds d S q d ds d ] [ ] [ ] ([ d Q d ] [ j i Prob PI-. Forma débil d u problma d flujo d calor stacioario D (Cálculos a mao Cosidérs l problma dfiido la figura siguit: La EDP asociada s: co Q ua

Más detalles

De la medición surge un valor, llamado valor de la magnitud y que indica el número de veces que la unidad elegida está contenida en la magnitud.

De la medición surge un valor, llamado valor de la magnitud y que indica el número de veces que la unidad elegida está contenida en la magnitud. Máquias, Métodos y Cotrol Dimsioal dl Procsamito METROLOGÍA MECÁNICA MEDICIONES Dfiició: Efctuar ua mdició, sigifica cotrar la distacia tr dos putos dados. Est caso s l más frcut, cuado las mdicios s rfir

Más detalles

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado. MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid

Más detalles