= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño."

Transcripción

1 F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto d maor tamaño. b) Solo s dsplaza la lnt d modo qu l objto la pantalla prmancn n l mismo sitio s + = 6 ; s = 6+s ; 6 + s s + 6s +5,76 = 0 ; s s = = 0,96 0,96 4,8 m, m s = s = ;, m 4,8 m, m β = = = 0,5 s 4,8 m Lnt convrgnt s /m -9,6-9, -8,8-8,4-8 -7,6-7, -6,8-6,4-6 -5,6-5, -4,8-4,4-4 -3,6-3, -,8 -,4 - -,6 -, -0,8-0,4 0 s/m 5 4,8 4,6 4,4 4, 4 3,8 3,6 3,4 3, 3,8,6,4,,8,6,4,

2 a) Considramos qu l ángulo indicado lo forma l rao con la normal. n θ n θ n θ d θ Los ángulos θ son iguals, por sr dos rctas parallas (las normals) cortadas por una scant. Aplicando la l d Snll. En la primra cara: n snθ = n snθ En la sgunda cara: n snθ = n snθ D dond s dduc qu: n snθ = n snθ = n snθ como los índics d rfracción d los mdios qu limitan a la lámina son iguals s dduc qu b) D la l d Snll calculamos θ snθ = snθ n conscuncia θ = θ 3 sn 30 = sn θ ; snθ = θ = 9,47º 3 La distancia rcorrida por l rao: cm h = =,cm cos 9,47º cm h El dsplazaminto latral qu xprimnta l rao: θ d=h sn(30 9,47) = 0,39 cm F F a) 40 = ; β = = = = 8 s s 0,5 s 5 ; = 8s s 0,5 ; s = 0,56 m

3 b) Si la lnt s convrgnt d radios iguals, s distintos dl cntro óptico. D la cuación d los constructors d lnts rsulta: R = R por star situados a lados = ( n ) = ( n ) ; = (,5 ) ; R = 0,5 m f R R R 0,5 R P = D f ( m ) = 0,5 m = a) f = = = 0,m P 0 D b) 3 = ; = = = 0, 0, 0, 0, 0, 0, ; 0, = = 0,067 m 3 c) La imagn s virtual pus s < 0; la imagn stá a la izquirda dl cntro óptico. 0,067 m β = = = = 0,33; = 0,33 3cm = cm s 0,0 m La imagn s virtual, drcha rspcto dl objto d mnor tamaño. d) F F El rao, qu va parallo al j óptico sal d la lnt como si pasara por l foco imagn. El rao, como pasa por l cntro óptico, no sufr dsviación alguna. 3

4 a) Construcción gométrica qu con la scuadra cartabón s hac aproximadamnt a scala F F F F = ; = = ; = 0,4 m 0,4 0, 0, 0,4 0,4 Para la primra lnt: Para la sgunda lnt: = 0,8 m 0,4 m = 0,4 m = ; s = 0,4 m 0,4 0, b) β = = = = = cm s 0,4 m s 0,4 m ; cm β = = = = = cm s 0,4 m s 0,4 m ; cm La imagn s ral, dircta rspcto dl objto dl mismo tamaño. 0,5 0,0 = ; = = ; = 0,3 m 0,5 0,0 0,0 0,5 0,05 a) β = = = = = = s 0,5 m s 0,3m ; cm cm Imagn ral, invrtida rspcto dl objto d maor tamaño. 4

5 s = 0,4 m 0,3 m = 0,m sta imagn ca n l foco d la sgunda lnt, por lo tanto la b) imagn dfinitiva dl sistma cará n l infinito. En fcto: = ; = = 0 = = 0,0 0,0 0,0 0,0 0 F F F F a) β = = ; = s s 0,30 m s = = = 0,5 m 3 ; ; 0,30 s = f 0,30 0,5 = f f = 0,30 + 0,30 = 0,30 ; f = 0,0 m b) = ; = = = ; = 0,0 m 0,05 0,0 0,0 0,05 0,0 0,0 0,0 m β = = = = s 0,05 m = F F Imagn virtual, drcha rspcto dl objto d dobl tamaño. 5

6 a) F F s 0,5 0,0 0,05 = ; = = = ; = 0,3 m 0,5 0,0 0,0 0,5 0,0 0,5 0,05 0,3 m β = = = = ; = = cm = cm s 0,5 m Imagn ral, invrtida rspcto dl objto d dobl tamaño. b) Para qu al colocar la sgunda lnt la imagn dfinitiva s form n l infinito, la imagn d la lnt antrior dbrá car n l foco objto d ésta sgunda lnt, también convrgnt. La distancia ntr las dos lnts srá: D = + f = 0,30 m + 0,0 m = 0,50 m a) Si la imagn a d producirs n una pantalla tin qu sr una imagn ral db sr producida por una lnt convrgnt. Admás s dic qu l aumnto latral val 3. s + = 4 ; β = 3 = ; = 3s ; s 3s = 4; s = m; = 3m s El objto db star m a la izquirda, d la lnt convrgnt. b) D la cuación d las lnts dlgadas n la zona paraxial = ; = ; f = m = 0,75 m 3 f 3 f 4 La distancia focal positiva confirma qu la lnt db sr convrgnt. 6

7 El dibujo ha qu hacrlo sin ninguna proporción d distancias, pusto qu l tamaño dl objto d cm, s mu pquño frnt a las distancias d varios mtros d s d s. Prtndr consrvar las scalas hac imposibl su rprsntación n l tamaño dl papl. F F b) F F F F D = 0,6 m = ; = ; = 0,3m 0,5 0,0 0,0 0,5 a) s = D = 0,6 m 0,3 m = 0,3 m. Pro al scribir La distancia objto d la sgunda lnt st valor n la cuación d la sgunda lnt, ha qu ponrla ngativa por star a la izquirda d la misma, d dcir s = 0,30 m Tamaños: β β 0,30 0,0 = ; = = ; = 0,6 m 0,30 0,0 0,0 0,30 0,06 0,3 m ; mm 4 mm = = = = = = = s 0,5 m 0,60 m ( ) ; 4 mm 8 mm = = = = = = = s 0,30 m Imagn ral, dircta rspcto dl objto d maor tamaño. 7

8 a) La distancia focal s: R m f = f = = = 0,5 m F=F La imagn s ral, invrtida rspcto dl objto d maor tamaño ) 0,75 + 0,5 + = ; + = ; = + = ; =,5 m s f 0,75 0,5 0,5 0,75 0,5 0,75,5 m β = = = = ; = = 0 cm = 0 cm s 0,75 m Imagn ral, invrtida rspcto dl objto d dobl tamaño. b) Ahora s = 0,75m + 0,5 m = 0,5 m 0,5 + 0,5 + = ; + = ; = + = ; = 0,5 m s f 0,5 0,5 0,5 0,5 0,5 0,5 0,5 m β = = = = ; = = 0 cm = 0 cm s 0,5 m La imagn s virtual, dircta rspcto dl objto d dobl tamaño. F=F Los raos rfljados n l spjo no s cortan, la imagn no s ral. Para buscarla s prolongan hacia atrás n l punto d cort stá la imagn. 8

9 a) La distancia focal imagn s: f = = = P 0 D 0,05 m F F 0,0-0,05 - = ; = - = ; s = - 0,05 m s - 0,0 0,05 s 0,05 0,0 0,0005 s - 0,05 b = = = =,5; =,5 =,5 mm=,5 mm s - 0,0 La imagn s virtual, drcha rspcto dl objto d maor tamaño. b) La imagn no pud rcogrs n una pantalla porqu los raos no s cortan al star l objto dntro d la distancia focal d la lnt. S trata dl instrumnto óptico llamado LUPA. a) Aplicando la l d Snll a la primra cara obtnmos l ángulo ε sn 0º n sn = n sn ; sn 0º =,4 sn ; sn = ; = 4,4º,4 n = n A V 50º D C d En l cuadrilátro AVCD l ángulo D, val: $ d = 360º - ( 90º + 90º + 50º ) = 30º En l triángulo ACD l ángulo val: ) = 80º - + d ( ) ( ) = 80º - 4,4º + 30º = 35,86º 9

10 Aplicando la l d Snll a la sgunda cara rsulta: n sn = n sn ;,4 sn 35,86º = sn ; sn =,4 sn 35,86º ; = 55,º El ángulo d dsviación δ s l formado por la dircción dl rao incidnt, con la dl rao mrgnt, d puntos n la figura. S dmustra qu. d = + - a = 0º + 55,º - 50º = 5,º b) El ángulo d dsviación mínima s d mín = - a ; s produc cuando ángulo d incidncia ε s tal, qu l rao va por dntro dl prisma prpndicular a la bisctriz dl ángulo dl prisma. Entoncs s dduc d la figura qu = (d puntos s dibujan las normals). n = n V 50º D Cuando la dsviación s mínima son = En la figura, los ángulo n l triángulo s vrifica: = son iguals + = 80º - $ d = 80º - 30º = 50º ; = 50º ; = 5º Aplicando la l d Snll: sn =,4 sn =,4 sn 5º ; Þ = 36,3º a = 50º ; d mín = - a = 36,3º - 50º =,6º a) Empzamos por la construcción gométrica. -s - 3cm - s b = = = - ; Þ s = 3 s cm - s F=F V - s = - s; - 3s = - s ; s = - m; s = - 3m -s b) D la cuación d los spjos sféricos: = ; + = ; = = - ; f = - m = - 0,75 m s s f f f R f = ; R = f = (- 0,75 m) = -,5 m 0

11 a) Simpr virtual, obsrva como los raos rfljados ; no s cortan la imagn s obtin d sus prolongacions. F=F C b) En las lnts divrgnts, con indpndncia d qu l objto sté dlant o dtrás dl foco, los raos divrgn no s cortan, por lo qu la imagn no s ral. Prolongando hacia atrás los raos rfractados s obtin la imagn simpr virtual. F F F F a) 30º n = n = 60º D L d Snll a la primra cara: sn 30º = sn ; Þ = 0,7º Ángulo n D, $ d = = 0º ( ) = 80 - ( 0,7-0 ) = 39,3º La aplicación d la L d Snll a la sgunda cara, prmit dtrminar l ángulo d mrgncia: sn 39,3º = sn ; Þ = 63,6º b) Trabajando al rvés: sn = sn 90º = ; Þ = 45º = 80 - ( d + ) = 80- ( ) = 5º ; sn = sn 5º ; Þ =,5º

12 a) Avrigümos primro l valor dl ángulo límit dl matrial. n sn FL = sn 90º ; sn FL = ; Þ FL = 4,8º,5 El rao qu incid prpndicular a la cara AB no s dsvía por ir n la dircción d la normal. Al llgar a la cara BC formará con la normal un ángulo d 45º qu s maor qu l ángulo límit por lo qu sufr rflxión total. b) La dircción dl rao mrgnt s prpndicular a la AC. El rao ha sufrido una dsviación d 90º. B 45º A C a) L d Snll n la primra cara: sn 4,3º = n sn 30º ; Þ n =,3 b) Sgunda cara:,3 sn 30º = sn ; Þ = 4,3º c) El ángulo d dsviación val: d = + - a = 4,3º + 4,3º - 60º =,6º n α ε d) La frcuncia d la luz no cambia dntro dl matrial, pro si la longitud d onda pus c l n= v locidad nl mdio = ; n c l = n n Como n= para l air; n st matrial val n =,3 inxorablmnt varía la longitud d onda λ.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012 FÍSI ID. EMEN ETODINIO 6/Junio/01 TEOÍ (.5 p). a) oncpto d campo léctrico y potncial léctrico. b) S tinn dos cargas léctricas puntuals dl mismo valor y signos contrarios sparadas una distancia d (dipolo

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 1. Los índices de refracción absolutos del agua y el vidrio para la luz amarilla del sodio son 1,33 y 1,52 respectivamente. a) Calcula la velocidad de

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

José Ramón Blasco Fernández. c y. Naturaleza de las ondas electromagnéticas.

José Ramón Blasco Fernández. c y. Naturaleza de las ondas electromagnéticas. Física º de Bachillerato Naturaleza de las ondas electromagnéticas... Una onda electromagnética de longitud de onda 400 nm se propaga a través del eje. El campo eléctrico vibra en la dirección del eje

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1 Solucions modlo 6 d 009 Sa f:r R la función dfinida por f =+ -. Opción A Ejrcicio 1 [0 7 puntos] Dtrmina los intrvalos d crciminto y dcrciminto d f, así como los trmos rlativos o locals d f [0 puntos]

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4.

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4. Problmas capitulo 5 Antna Yagi Considr la antna Yagi d la figura, formada por un dipolo doblado un dipolo parásito, ambos d longitud λ/, sparados una distancia d = λ/4. a) Calcul la impdancia d ntrada

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

ρ = γ = Z Y Problema PTC

ρ = γ = Z Y Problema PTC Probla PTC-18 Dibujar l spctro d aplitud d un cabl con pérdidas n circuito abirto, dtrinando los valors y frcuncias d los valors áxios y ínios. Solución PTC-18 Sabos qu la función d transfrncia d un cabl

Más detalles

Ondas acústicas en dominios no acotados

Ondas acústicas en dominios no acotados Capítulo 3 Ondas acústicas n dominios no acotados 3.1. Introducción Las ondas acústicas qu s propagan librmnt por un dominio no acotado dbn cumplir la cuación d ondas homogéna para l potncial acústico:

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Construcción de triángulos Análisis y construcción de polígonos regulares

Construcción de triángulos Análisis y construcción de polígonos regulares Rctas y puntos notabls, POLIGONOS n l triángulo Construcción d triángulos Análisis y construcción d polígonos rgulars convxos y strllados TEMA3 Objtivos y orintacions mtodológicas En sta unidad tmática

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Enuncie las Leyes de la reflexión y de la refracción de la luz y efectúe los esquemas gráficos correspondientes. b) Defina el concepto de ángulo límite y explique el fenómeno

Más detalles

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2.

a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2. Tara. Rsulta 1. Una art d un instrumnto lctrónico incluy un disositivo qu db sr caaz d roorcionar una corrint léctrica d 10 - A or mdio d fcto fotoléctrico. Si la funt d radiación usada tin una λ =.5 10-7

Más detalles

Cuánto tarda una pelota en dejar de botar?

Cuánto tarda una pelota en dejar de botar? Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato 1. (Junio 1997 ) a) Describe el funcionamiento óptico de un microscopio y analiza las características de sus imágenes. Deduce la expresión de su

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1 Manul José Frnándz mjg@uniovi.s CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

TEMA 4:Transformaciones geométricas

TEMA 4:Transformaciones geométricas TEM 4:Transformacions gométricas BJETIVS: Contactar con la gomtría proyctiva como ampliación d la conocida g. ucldiana. Ralizar transformacions n l plano, tals como la homología y sus casos particulars,

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger- 6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un

Más detalles

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE IV ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE En estas páginas ofrecemos, resueltas, una selección de las actividades más representativas de las unidades que componen este bloque. No debes consultar estas

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles