PARTE I Parte I Parte II Nota clase Nota Final
|
|
- María del Pilar Torres Aguilar
- hace 2 años
- Vistas:
Transcripción
1 Ejrcicio Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: 1. Sa la función f() =. S pid: 1 a) Hallar los intrvalos d crciminto/dcrciminto d f, así como sus trmos locals y/o globals. b) Hallar todas las asíntotas d f. a) Para studiar l crciminto drivamos la función y studiamos su signo: f ()= ( ( 2) ( 1) 2 1 ) = ( 1) ( 1) = 2, obsrvamos qu su signo vin dtrminado por l signo d 2 pus y ( 1) 2 son simpr positivos. D dond obtnmos qu: f > 0 (2, ), lugo f s crcint n (2, ). f < 0 (, 1) (1, 2), lugo f s dcrcint n (, 1) (1, 2). En cuanto a los trmos locals, sabmos qu f alcanza un mínimo local n = 2 pus satisfac la condición ncsaria d trmo f (2) = 0 y, por l párrafo antrior, también la suficint dl cambio d signo d f. En cuanto a los trmos globals = 2 no pud sr un mínimo global, pus f(2) > 0 > f(0); dado qu lim = s claro qu f no tin máimo global. o b) Para calcular sus asíntotas vrticals obsrvamos qu l dominio d la función s R {1}, si hacmos l límit por la drcha obtnmos lim = 0 =. Análogamnt por la izquirda + lim 1 0 =. Por lo tanto f tin a = 1 como asíntota vrtical. Para las horizontals, si hacmos l límit hacia obtnmos qu lim 1 = = =?, s trata d una indtrminación d tipo L Hopital, drivando numrador y dnominador por sparado obtnmos lim 1 = lim 1 = 1 =. Por lo tanto f no tin asíntota horizontal hacia más infinito. Hacindo l límit hacia obtnmos lim 1 = = 0 = 0 Por lo tanto y = 0 s asíntota horizontal hacia mnos infinito. 1 = 1 = lim = =?, s trata d una indtrminación d tipo L Hopital, aplicando dos vcs st Solo falta comprobar si tin asíntota oblicua n, para llo hacmos lim f() lim 2 = método obtnmos qu lim función no tin asíntotas oblicuas. 2 = lim 2 1 = lim 2 = 2 =, por lo tanto la 1
2 2. San a, b, c númros rals y considrmos la función dfinida por a 2 + 3, < 1 f() = b, = 1 c, > 1 a) Estudiar, sgún los valors d a, b y c la drivabilidad d f n l intrvalo (0, 2). b) Enunciar l torma dl valor mdio y hallar los valors d a, b y c para qu puda aplicars l torma antrior a dicha función n l intrvalo [0, 2]. a) En primr lugar, studiamos si la función s continua n l intrvalo (0, 2). Para llo, obsrvamos qu l único punto qu causa problmas s = 1. Ahora bin, f() s continua n dicho punto cuando s cumpl qu: lim 1 f() = f(1) = lim 1 +f(), s dcir, cuando a + 3 = b = c. Y ahora, suponindo qu f() s continua n = 1, f() s drivabl n = 1 cuando lim 1 f () = lim 1 +f (), s dcir, cuando 2a = c. Por lo tanto, s dduc qu a + 3 = c = 2a, s dcir, a = 1, b = c = 2. Lugo f() s drivabl n l intrvalo (0, 2) cuando a = 1, b = c = 2.. b) El torma dl valor mdio, aplicado a una función f dfinida n l intrvalo [A, B] dic así: Si f s continua n [A, B] y drivabl n (A, B), ist C n l intrvalo (A, B) d forma qu f(b) f(a) = f (C).(B A). Entoncs, para qu dicho torma puda aplicars a la función f antriormnt citada, n l intrvalo [0, 2], s suficint con qu s cumpla qu f s drivabl n (0, 2), pus n s caso s dduc automáticamnt qu f srá continua n dicho intrvalo y, n cualquir caso, f s continua n = 0 y = 2. Lugo s pud aplicar l torma cuando a = 1, b = c = 2.
3 3. Sa y = f() la función dfinida d manra implícita mdiant la cuación ln(+y)+2y = 4+2 crca dl punto (0, 1). S pid: a) Hallar, mdiant f (0), la rcta tangnt a la gráfica d f n l punto = 0, y = 1. b) Calcular aproimadamnt, utilizando la cuación d la rcta tangnt hallada antriormnt, l valor d f( 0.1). a) Drivando la cuación, obtnmos qu 1 + y + y + 2y = 4, lugo sustituyndo n = 0, y = 1, obtnmos qu 1 + y y = 4, lugo f (0) = y = 1. Por tanto, la cuación d la rcta tangnt srá: y 1 = 1.( 0), s dcir, y = + 1. b) f( 0.1) y( 0.1) = = 0.9
4 PARTE II Ejrcicio Part II Puntos Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: 4. Sa C() = C la función d costs d una mprsa monopolista, sindo C 0 0, y dond 0 s l númro d unidads producidas d cirta mrcancía. La función invrsa d dmanda (o prcio por unidad) s p() = S pid: a) Probar qu la función d bnficios s cóncava y, a partir d ahí, dtrminar la cantidad qu maimiza l bnficio. b) Para qué valor d C 0 s cumpl qu la producción qu maimiza l bnficio coincid con la producción qu minimiza l cost mdio (o por unidad)? a) La función d bnficios s: B() = p(). C() = (C ) = = C 0, lugo B () = 0.06 < 0. Por tanto B() s cóncava. Por lo tanto, l punto crítico srá único y maimizador global. Ahora bin: B () = = 0 = = = 500 qu s una solución acptabl, pus s una producción positiva cuyo prcio d vnta s p(500) = 90 (0.02).500 = 80 > 0. Lugo la producción = 500 maimiza l bnficio. b) La función d cost mdio s conva, pus C md () = C() C md () = 2C 0 3 = C satisfac qu > 0. Por lo tanto, l punto crítico srá único y minimizador global dl cost mdio. Ahora bin: C md () = C = 0 = = 100C 0. Lugo st punto coincidirá con l maimizador global dl bnficio cuando 500 = 100C 0 = C 0 = = Por lo tanto, para dicho valor d los costs fijos coincidn las produccions qu maimizan l bnficio y minimizan l cost mdio.
5 5. Dada f() = 1, dfinida n l intrvalo [0, ), s pid: a) Estudiar l crciminto/dcrciminto, y la concavidad/convidad d cualquir primitiva F d f, así como la posibl istncia d trmos (locals y/o globals) y d puntos d inflión. b) Hallar la primitiva F d f qu cumpl F (0) = 1. Sugrncia: no s ncsario conocr la prsión d F () para l apartado a). a) Para studiar l crciminto/dcrciminto, así como los trmos d F, ncsitamos la drivada d F. Pro como F () = f() = 1 Entoncs F s crcint cuando F s positiva, s dcir, n l intrvalo [0, 1). Análogamnt, F s dcrcint cuando F s ngativa, s dcir, n l intrvalo (1, ). Por lo tanto, F alcanza un máimo local y global n l punto = 1. Por otro lado, para studiar la concavidad/convidad, así como los puntos d inflión d F, ncsitamos la drivada sgunda d F. Pro como F () = f () = 2 () 2 < 0 Entoncs F s cóncava n l intrvalo d dfinición, s dcir, n l intrvalo [0, ). Por lo tanto, F no pos ningún punto d inflión. b) En primr lugar, hallmos la cuación d todas las primitivas d f. 1 f()d = d = d = ( )d = + 2 ln() + C Y ahora, como nos intrsa, d ntr todas las primitivas, aqulla q cumpla F (0) = 1, s dduc qu ln(1 + 0) + C = F (0) = 1 = C = 1. Por lo tanto, F () = + 2 ln() + 1.
6 6. Dada la función f() = , s considra l conjunto A limitado por la gráfica d f, la rcta vrtical = 2 y la rcta r, tangnt a la gráfica d f n l punto c = 1. S pid: a) Rprsntar gráficamnt l conjunto A. b) Calcular l ára d dicho conjunto. Sugrncia: probar qu la rcta tangnt r corta a la gráfica d f sólo n l punto d tangncia. a) Como f () = = f (1) = 3 6 = 3. Por lo tanto, la cuación d la rcta tangnt a la gráfica d f n l punto c = 1 srá: y 1 = ( 3)( 1), s dcir, y = Por otro lado, n l intrvalo (1, 2] la gráfica d f quda simpr por ncima d la rcta tangnt hallada antriormnt. Eso pud probars, por jmplo, usando l hcho d qu f s conva n dicho intrvalo, ya qu si 1 < 2 = f () = 6 6 > 0. Admás, como f () = = 3( 2) < 0 si 1 < < 2, s dduc qu f s dcrcint n dicho intrvalo. Finalmnt, obsrvando qu la rcta tangnt y la gráfica cortan, rspctivamnt, a la rcta vrtical = 2 n los puntos (2, 2) y (2, 1), s dduc qu l conjunto A s, aproimadamnt, así: (2,-1) (2,-2) b) Como la gráfica d f quda simpr por ncima d la rcta tangnt r n l intrvalo (1, 2], s dduc qu Ára(A) = 2 1 (f() r())d = 2 1 ( ( 3 + 4))d = = 2 1 ( )d = 2 1 ( 1)3 d = [ ( 1)4 ] 2 1 =
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos
Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay
TEMA 11. La integral definida Problemas Resueltos
Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d
REPRESENTACIÓN DE FUNCIONES
Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:
Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
ANÁLISIS (Selectividad 2014) 1
ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
INTEGRACIÓN POR PARTES
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (
ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:
Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.
http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva
11 Funciones derivables ACTIVIDADES INICIALES
Solucionario Funcions drivabls ACTIVIDADES INICIALES I Cunta la tradición qu sobr la tumba d Arquímds había sculpido un cilindro con una sfra inscrita Arquímds halló la rlación ntr sus volúmns y l volumn
TEMA 4. APLICACIONES DE LA DERIVADA.
7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads
ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x
ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos
Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación
LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.
EJERCICIOS UNIDAD 2: DERIVACIÓN (II)
IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l
Opción A Ejercicio 1 opción A, modelo Septiembre 2011
IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando
-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
12 Representación de funciones
Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
POPIEDADES DE LAS FUNCIONES DEIVABLES. Una sri d aspctos d la gráfica d una función vistos antriormnt monotonía, máimos mínimos otros qu vrmos postriormnt, pudn studiars fácilmnt mdiant drivadas. La maor
Matemáticas II TEMA 7 Límites y continuidad de funciones
Matmáticas II TEMA 7 Límits y continuidad d funcions Límit d una función n un punto Ida inicial Si una función f stá dfinida para todos los valors d próimos a a, aunqu no ncsariamnt n l mismo a, ntoncs,
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
1. LÍMITE DE UNA FUNCIÓN REAL
ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos
Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)
Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )
ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas
CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden
APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión
Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I
Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no
MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO
MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a
Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida
ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),
PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES
Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr
Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por
INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b
( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.
Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(
Límite Idea intuitiva del significado Representación gráfica
LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS
Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7
VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:
Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(
Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos
xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgrals impropias Primra spci-unidad
LIMITES DE FUNCIONES EN 1D
LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular
Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar
Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga
INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL
INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE
Introducción al método de los
Introducción al método d los Elmntos Finitos n D Lcción Discrtizacion Intrpolación n D Adaptado por Jaim Puig-Py (UC) d:. Zabaras, N. Curso FE Analysis for Mch&Arospac Dsign. U. Cornll. 0.. Fish, J., Blytschko,
La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física.
Univrsidad d Chil Facltad d Cincias Vtrinarias y Pcarias DU- Métodos d Cantificación 9, Smstr Otoño Aydant Ignacio Trjillo Silva Eponncials y logaritmos: La fnción ponncial (propiamnt dicha s na fnción
UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN
AGOSTO 6 TITULO DE LA PRACTICA: Solución d la tranformada d la laplac por mdio dl torma fundamntal ASIGNATURA: Matmática III HOJA: DE: UNIDAD TEMATICA: Tranformada d Laplac FECHA DE REALIZACIÓN: d Agoto
PRÁCTICA SUMAS DE RIEMANN CURSO CÁLCULO. Práctica 10 (17/12/2014)
PRÁCTICA SUMAS DE RIEMANN CURSO 4-5 CÁLCULO Prácticas Matlab Práctica (7//4) Objtivos Profundizar n la comprnsión dl concpto d intgración. Calcular intgrals dfinidas d forma aproximada, utilizando sumas
Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y
Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMAS DE MATEMÁTICAS (Oposicions d Scundaria) TEMA 3 FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS RECÍPROCAS. SITUACIONES REALES EN LAS QUE APARECEN.. Introducción.. Funcions circulars... Funcions d Sno y
1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas
ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9
DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3
DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
INTERVALOS ENTORNOS FUNCIONES
FUNCIONES TRIGONOMÉTRICAS D acurdo a la dfinición d razons trigonométricas, los valors d sn α, cos α, tg α, sc α, cosc αy cotg α dpndn dl valor α, sindo α s una variabl ral n l sistma circular o radial.
GRUPOS Y SEMIGRUPOS. Unidad 5
GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos
. Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral
2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación
Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos
Tabla de contenido. Página
Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada
DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.
FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular
168 Termoquímica y Cinética. Aspectos Teóricos
168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin