Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por"

Transcripción

1 INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b Ejrcicio.- Sa g : (0;+ ) R la fnción dada por g() = ln (ln dnota logaritmo npriano). (a) [0'75 pntos] Jstifica q la rcta d cación s la rcta tangnt a la gráfica d g n l pnto d abscisa =. (b) ['75 pntos] Calcla l ára dl rcinto limitado por la gráfica d g, l j d abscisas la rcta tangnt dl apartado antrior. b) nidads d ára..a Dada la fnción g: R R, dfinida por g ( ) (a) [pnto] Esboza la gráfica d g. (b) [,5 pntos] Calcla g ( )d 0 a) b).b San f : R R g: R R las fncions dfinidas por (a) [0,5 pntos] Esboza las gráficas d f g. f ( ) g ( ) (b) [ pntos] Calcla l ára dl rcinto limitado por dichas gráficas. a) b).a Ln Ln [,5 pntos] Calcla d.b Sa f : R R la fnción dfinida por f ( ) (a) [ pnto] Jstifica q la rcta d cación s la rcta tangnt a la gráfica d f n l pnto d abscisa. (b) [,5 pntos] Calcla l ára dl rcinto limitado por la gráfica d f, l j d ordnadas la rcta tangnt dl apartado antrior. a) En fcto b)

2 INTEGRALES MATEMATICAS II 0-0.A San f : R R g: R R las fncions dfinidas mdiant f ( ) g ( ) (a) [0,75 pntos] Dtrmina los pntos d cort d las gráficas d f g. (b) [,75 pntos] Calcla l ára dl rcinto limitado por dichas gráficas. a) (, - ), (, 0) (-, - 5) b).b [,5 pntos] Calcla: ln 5.A [,5 pntos] San f : R R g: R R las fncions dadas por 0 d (ln dnota la fnción logaritmo npriano) f ( ) g( ) a (con a > 0) S sab q l ára dl rcinto limitado por las gráficas d las fncions f g s /. Calcla l valor d la constant a. a = 5.B [,5 pntos] Calcla ln d (ln dnota la fnción logaritmo npriano) 9.A Considra las fncions f : 0, R g : (0, + ) R dfinidas por sn f ( ) g( ) ln (ln dnota la fnción logaritmo npriano) cos (a) [,5 pntos] Halla la primitiva d f q toma l valor cando (s pd hacr l cambio d variabl t = cos ) (b) [,5 pntos] Calcla g d. a) b) ln C cos.b Sa g : R R la fnción dfinida por g( ). (a) (0,5 pntos) Esboza la gráfica d g. (b) (0,75 pntos) Dtrmina la cación d la rcta tangnt d g n l pnto d abscisa =. (c) (,5 pntos) Calcla l ára dl rcinto limitado por la gráfica d g l j d abscisas a) b) = 0 c) Ejrcicios d intgrals 009.A Considra las fncions f, g : R R dfinidas por f ( ), (a) ( pnto) Esboza l rcinto limitado por ss gráficas. (b) (,5 pntos) Calcla l ára d dicho rcinto. a) b) A= / g( ).

3 INTEGRALES MATEMATICAS II 0-0 f()=abs() f()=-^.b La rcta tangnt a la gráfica d la fnción f : R R, dfinida por f() = m +n, n l pnto (, -), s paralla a la rcta d cación = -. (a) (,5 pntos Dtrmina las constants m n. Halla la cación d dicha tangnt. (b) (,5 pntos) Calcla l ára dl rcinto limitado por la gráfica d la fnción, la rcta tangnt antrior l j d ordnadas. a) m = n = -5 b) a = /.A La crva divid al rctánglo d vértics A = (0, 0), B = (, 0), C = (, ) D = (0, ) n dos rcintos. (a) (0,75 pntos) Dibja dichos rcintos. (b),75 pntos) Halla l ára d cada no d llos a) b) A = 5 A = A A B (,5 pntos) Sa f la fnción dfinida por: f ( ) 9 Halla la primitiva F d f q cmpl F (0) =. (Sgrncias: tiliza l cambio d variabl t ) : F() = F ( ) arcsn( ).A (Sa f : R R la fnción dfinida por f ( ). (a) (0,5 pntos) Esboza la gráfica d f. (b) 0,75 pntos) Comprba q la rcta d cación = s la rcta tangnt a la gráfica d f n l pnto d abscisas = 0. (c) (,5 pntos) Calcla l ára dl rcinto limitado por la gráfica d f la d dicha tangnt. a) - - b) f ( 0)( 0) f ( 0) = c) A = /.B Considra la crva d cación (a) (0,5 pntos) Halla la cación d la rcta tangnt a la crva n l pnto d abscisas = - (b) ( pntos) Calcla l ára dl rcinto limitado por la crva dada la rcta =. a) = b) A = 7/

4 INTEGRALES MATEMATICAS II 0-0.A Sa f :[0, + ] R la fnción dfinida por f ( ) ln( ), sindo ln la fnción logaritmo npriano. (a) ( pnto) Comprba q la rcta d cación s la rcta tangnt a la gráfica d f n l pnto d abscisa = (b) (,5 pntos) Calcla l ára dl rcinto limitado por la gráfica d f, l j d abscisas la rcta tangnt dl apartado. a) f ( ) f ( ) b) A = -/.B S considran las fncions f :[0, + ] R g : R R dfinidas por f ( ), g( ) (a) (0,5 pntos) Esboza ss gráficas. (b) Calcla l ára dl rcinto limitado por las gráficas d ambas fncions a) b) A = 5.A (a) (,5 pntos) Calcla snd. (b) (,5 pntos) San las fncions f, g : R R, dfinidas por f ( ), g ( ) Calcla l ára dl rcinto limitado por ss gráficas. a) cos sn C b) A = 9/ 5.B Las dos gráficas dl dibjo corrspondn a la fnción f: (0, + ) R dfinida por f ( ) ln( ) a la d s drivada f : (0, + ) R (ln dnota logaritmo npriano) (a) 0,5 pntos) Indica, razonando la rspsta, cál s la gráfica d f cál la d f. (b) ( pntos) Calcla l ára d la rgión sombrada. La gráfica stá mal rprsntada.a San f : R R g : R R las fncions dfinidas por f ( ), g ( ) (a) ( pnto) Dtrmina los pntos d cort d las gráficas d f g. Esboza dichas gráficas. (b) (,5 pntos) Calcla l ára dl rcinto limitado por dichas gráficas a) A(-,) B(,) b) A = 7/.B (,5 pntos) Calcla n númro positivo a, mnor q, para q l rcinto limitado por la parábola d cación = las dos rctas d cacions = = a, tnga n ára d a = nidads cadradas.

5 INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00.A [ 5 pntos] Sa f : (,+ ) R la fnción dfinida por f() = ln( + ). Halla na primitiva F d f q vrifiq F(0) = 0. (ln dnota l logaritmo npriano). F() = (+) ln(+) - - ln().b [ 5 pntos] Calcla l valor d a > 0 sabindo q l ára dl rcinto comprndido ntr la parábola = + a la rcta + = 0 val nidads cadradas. a = 5.A (Jnio) [ 5 pntos] Calcla Sgrncia: Efctúa l cambio t 0 sn d.b (Jnio) Considra la fnción f dada por f() = 5 la fnción g dfinida como g( ) para 0. (a) [ pnto] Esboza l rcinto limitado por las gráficas d f g indicando ss pntos d cort. (b) [ 5 pntos] Calcla l ára d dicho rcinto. 5 a) b) Ln().A [ 5 para. pntos] Dada la fnción f dfinida por f ( ) 5 Calcla l ára dl rcinto limitado por la gráfica d f, l j d abscisas, las rctas =, =. Ára = Ln() f()=^- f()=-^.b Considra la fnción f : R R dfinida por f() =. (a) [ pnto] Esboza s gráfica. (b) [ 5 pntos] Calcla l ára dl rcinto limitado por la gráfica d f, l j d abscisas la rcta d cación =. a) b).a Considra las fncions f, g : R R dfinidas por f() = g() =. 5

6 INTEGRALES MATEMATICAS II 0-0 (a) [ pnto] Esboza ss gráficas n nos mismos js coordnados. (b) [ 5 pntos] Calcla l ára dl rcinto limitado por las gráficas d f g. a) b) 7.B Dada la fnción f : (0,+ ) R dfinida por f() = ln, dond ln s la fnción logaritmo npriano, s pid: (a) [0 75 pntos] Comprba q la rcta d cación = + + s la rcta normal a la gráfica d f n l pnto d abscisa =. (b) [ 75 pntos] Calcla l ára d la rgión limitada por la gráfica d f, l j d abscisas la rcta normal dl apartado (a). a) Rcta normal = + + b) 5 5.A (Sptimbr) Sa I d (a) [ pnto] Eprsa I hacindo l cambio d variabl t. (b) [ 5 pntos] Dtrmina I. a) 0 dt b) 0Ln t t 5.B (Sptimbr) Considra la fnción f : R R dada por f() = +. (a) [0 75 pntos] Halla la cación d la rcta tangnt a la gráfica d f n l pnto d abscisa =. (b) [ 75 pntos] Esboza l rcinto limitado por la gráfica d f, l j d ordnadas la rcta d cación = +. Calcla s ára. a) = + b).a [ 5 pntos] Sa la fnción f dada por f ( ) para 0. Dtrmina la primitiva F d f tal q F() =. F ( ) Ln Ln Ln.B San f, g : R R las fncions dfinidas por f() = + g() = + (a) [ pnto] Esboza las gráficas d f g, halla s pnto d cort. (b) [ 5 pntos] Calcla l ára dl rcinto limitado por las gráficas d ambas fncions l j d ordnadas. a) Pnto d cort (, ) b) Ejrcicios d intgrals 0.A ['5 pntos] Calcla l valor d b > 0, sabindo q l ára d la rgión comprndida ntr la crva = la rcta = b s d / nidads cadradas. b = ½..B ['5 pntos] Sa f : la fnción dfinida por f() = ( - ln()), dond ln dnota la fnción logaritmo npriano. Dtrmina la primitiva d f ca gráfica pasa por l pnto P(; ).

7 INTEGRALES MATEMATICAS II 0-0.A Considra las fncions f; g : R R dfinidas por f() = g() = - (a) [0'75 pntos] Esboza ss gráficas n nos mismos js coordnados calcla ss pntos d cort. (b) ['75 pntos] Calcla l ára dl rcinto limitado por las gráficas d f g. a) (0.0) (,) b) / g() f() B San f; g : R R las fncions dfinidas por f() = (a) [0'75 pntos] Halla la cación d la rcta tangnt a la gráfica d f n l pnto d abscisa = -. (b) ['75 pntos] Esboza l rcinto limitado por las gráficas d ambas fncions la rcta = +5. Calcla l ára d st rcinto. f()=- f()=+ f()=^ a) = +5 b) =+5 g() f() A San f : R R g : R R las fncions dfinidas por: (a) [ pnto] Esboza las gráficas d f g. Dtrmina ss pntos d cort. (b) ['5 pntos] Calcla l ára dl rcinto limitado por las gráficas d f g. a) b) /.B Calcla:.A ['5 pntos] Calcla n númro positivo a, mnor q, para q l rcinto limitado por la parábola d cación las dos rctas horizontals d cacions = a =, tnga n ára d nidads cadradas. a = /..B Dada la fnción f : R R dfinida por f() = (a) [0'5 pntos] Prba q las rctas = - + = - son tangnts a s gráfica. 7

8 INTEGRALES MATEMATICAS II 0-0 (b) [ pntos] Halla l ára dl rcinto limitado por la gráfica d f las rctas mncionadas n l apartado antrior. a) = -+ s tangnt n l pnto (,0). Y = - s tangnt n l pnto (0,). b) 5.A ['5 pntos] Dtrmina la fnción f : (0;+) R tal q f () s gráfica tin tangnt horizontal n l pnto P(; ). 5.B ['5 pntos] Calcla: f()=ln(+) f()= Rllno.A Sa f : (-;+ ) R la fnción dfinida por f() = ln( + ), dond ln dnota la fnción logaritmo npriano. (a) [0'75 pntos] Esboza l rcinto limitado por la gráfica d f, l j OY la rcta =. Calcla los pntos d cort d las gráficas. (b) ['75 pntos] Halla l ára dl rcinto antrior. a) b) -.B ['5 pntos] Halla: Sgrncia: fctúa l cambio d variabl t =. d

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2. MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

x. Determina las asíntotas de la gráfica de f.

x. Determina las asíntotas de la gráfica de f. Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1 Solucions modlo 6 d 009 Sa f:r R la función dfinida por f =+ -. Opción A Ejrcicio 1 [0 7 puntos] Dtrmina los intrvalos d crciminto y dcrciminto d f, así como los trmos rlativos o locals d f [0 puntos]

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) . Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt f d g t dt h d i d j d t m d n d o d p + d ( t dt l d (Soluc: a / b / c j d t / l m t / f 8 8 n o g t

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

(Soluc: 1) 1/x 2) x 6 /36 3)

(Soluc: 1) 1/x 2) x 6 /36 3) INTEGRALES INDEFINIDAS º BACH.. Calcular las siguints intgrals potncials (y comprobar la sombrada: d d d 6 d t t dt d 7 t dt d 9 d 0 d t d d d + d ( t dt d (Soluc: / 6 /6 0 t 7 /7 t 6 /6 8 8 7 t / + 9

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Al integrar cada miembro de esta ecuación se obtiene la fórmula de integración por partes:

Al integrar cada miembro de esta ecuación se obtiene la fórmula de integración por partes: Intgración por parts Spón q tnmos dos fncions ( ) y ( ) continamnt difrnciabls dfinidas n n intralo abirto I. D acrdo con la rgla d la difrncial dl prodcto tnmos q: O qialntmnt: d ( ) = d + = d ( ) d Al

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) EJERCICIOS d INTEGRAL INDEFINIDA º BACH.. Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt d g t dt d i d j d t m d n d o d + d ( t dt l d (Soluc: a / b

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES

PROBLEMAS CÁLCULO INTEGRAL Y ECUACIONES DIFERENCIALES Licnciatura n Administración y Dircción d Emprsas (LADE) Facultad d Cincias Jurídicas y ocials (FCJ) Univrsidad Ry Juan Carlos (URJC) PROBLEMA CÁLCULO INTEGRAL Y ECUACIONE DIFERENCIALE Matmáticas Primr

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv a Dtrminar la intgral dfinida f ( ). g ( ) d, bosqjar l ára rprsntada por b la crva y las rctas a y b, con rspcto l j, aplicando l método d intgración por parts d cada no d los sigints problmas: Ejmplo

Más detalles

Tema 13. Aplicaciones de las derivadas

Tema 13. Aplicaciones de las derivadas Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,

Más detalles

Concepto de derivada y de función derivada Recordemos que la pendiente de una recta nos indica la mayor o menor inclinación de ésta.

Concepto de derivada y de función derivada Recordemos que la pendiente de una recta nos indica la mayor o menor inclinación de ésta. º BACHILLERATO (LOMCE) MATEMÁTICAS II TEMA 8.- DERIVACIÓN DE FUNCIONES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO Y CÁLCULO DE DERIVADAS Concpto d drivada y d función drivada Rcordmos qu la pndint d una

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

PROBLEMAS RESUELTOS DE INTEGRALES. b) Calcula I. Descomponemos el integrando en suma de fracciones simples:

PROBLEMAS RESUELTOS DE INTEGRALES. b) Calcula I. Descomponemos el integrando en suma de fracciones simples: Matmáticas Intgrals PROBLEMAS RESUELTOS DE INTEGRALES ) Sa I d. a) Eprsa I hacindo l cambio d variabl t. I d t dt dt d d dt t dt t t t ( t ) b) Calcula I. Dscomponmos l intgrando n suma d fraccions simpls:

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES a. (6-M-A-) (.5 puntos) Calcula el valor de a > para el que se verifica d. +. (6-M-B-) (.5 puntos) Considera la función : R R f

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es

Más detalles

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles