PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN"

Transcripción

1 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN MARIO ESTANISLAO CESAR ARIET ALEJANDRO SCHULMAN Laboratorio 3, Dpartamto d Física, FCEyN, Uivrsidad d Buos Airs Julio dl 6 El objtivo pricipal dl prst trabajo cosist studiar l comportamito d ua lía d trasmisió formado por u cabl coaxial. Para so hmos ralizado ua sri d xprimtos co pulsos d corta y larga duració rspcto dl timpo d dlay. Admás, cosidrado l cabl como ua cavidad d odas lctromagéticas, studiamos sus frcucias d rsoacias.. INTRODUCCIÓN Ats d mpzar a studiar al cabl coaxial s csario cirto coocimito prvio acrca dl mismo. El cabl coaxial s básicamt ua lía d trasmisió co simtría cilídrica, compusto por u coductor ctral d diámtro r i, otro coductor xtrior d diámtro r y tr los coductors s cutra u mdio diléctrico. Cosidrado la simtría dl cabl y a los coductors idals tocs s scillo calcular los campos tato léctrico como magético dtro dl diléctrico (dod o srá ulos ya qu l diléctrico sta aislado dl xtrior por los coductors), l campo léctrico ti qu sr ormal a las suprficis dl coductor coscucia las lías d campo ti qu sr radials y al cotrario, las lías d campo magético ti qu sr tagcials a las pards d coductor, lo qu sigifica qu srá circulars. Etocs usado la ly d Ampr y l torma d Gauss, la capacitacia y la auto-iductacia d la lía d trasmisió por uidad d logitud so scillas d calcular: πε C = () r l( ) r i µ r L = ( ) () π r i dod ε s la costat dl diléctrico y µ s la prmabilidad dl mismo (qu st caso la cosidramos igual a la dl vacío). Admás como la dsidad d rgía léctrica y magética so iguals y stas val: CV E E = (3) LI EM = (4) Dod V I rprsta l voltaj y la corrit rspctivamt; s v las cuacios qu l cocit V/I s ua costat qu dpd d ε, µ y la gomtría dl mdio. Esta costat s llamada la impdacia caractrística,. Combiado (3) y (4) obtmos: V L µ r = = = l I C π ε ri (5) Por otro lado, podmos cosidrar qu l coductor stá compusto por ua sri d cldas lmtals, rprstado cada cual u sgmto ifiitsimal d la lía d trasmisió. Cada sgmto sta compusto por ua impdacia sri y u capacitor parallo. Llammos L a la iductacia por logitud y C a la capacitacia por uidad d logitud dl cabl. Dsprcimos las prdidas dbidas a la rsistividad d los coductors y a la coductividad dl diléctrico dl cabl d mara qu la lía d trasmisió s pud cosidrar ua structura ida. E st caso, l modlo dpd sólo d los parámtros L y C, d los cuals obtmos u par d cuacios difrcials parcials, ua d llas para la tsió y otra para la corrit, a través d la lía, ambas fució d la posició o distacia x y dl timpo t.

2 LABORATORIO 3 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN JULIO DE 6 V ( x, = L I( x, x t I ( x, = C V ( x, x t (6) (7) y combiádolas obtmos la cuació d oda para u pulso qu s propaga a través dl cabl t t V = LC x I = LC x V I (8) (9) D (8) y (9) podmos cocluir qu u pulso dtro dl coductor s propagara co ua vlocidad v = () LC Admás, si colocamos al fial d la lía ua impdacia puramt rsistiva R podmos cotrar odas rfljadas, cuyo coficit d rflxió Γ sta dado por: R Γ = () R +.. PULSOS DE LARGA DURACIÓN Lugo studiarmos l sistma l límit d baja frcucias, xtdido la duració dl priodo d la sñal d tal modo qu l pulso rfljado vulva ats qu trmi l pulso origial. Estos pulsos s suma crado ua sri qu covrg a la carga d u capacitor, ya qu l limit ua oda costat todos los putos dl cabl stará co l mismo potcial. Etocs usado ua rsistcia R al pricipio d la lía d trasmisió y u pulso iicial d amplitud V l pulso rsultat l cabl tdrá ua amplitud igual a V R () + Si l xtrmo dl cabl sta abirto (l coficit d rflxió srá igual a ) l voltaj al iicio dl cabl lugo d rflxios srá: = ( + Γ + Γ + K + Γ ) (3) V V R + dod Γ rprsta l coficit d rflxió al pricipio dl cabl, l límit cuado tid a ifiito la sri covrg a: = + Γ V V R (4) Usado () s fácil vr qu l voltaj mdido al pricipio dl cabl tid a V para grads, l cocit V + /V pud sr scrito como: + V + Γ = (5) V Γ l dod t = t + + v. D la toría d circuitos sabmos qu u pulso d amplitud V u cabl d capacitacia C, coctado a u grador d fucios mdiat ua rsistcia R l voltaj V C ( stará dado por: V ( = V ( τ ) (6) C Dod τ s l timpo caractrístico dl circuito RC. Etocs dsd l puto d vista d la toría d circuitos la cuació (5) s pud rscribir como: V ( t+ ) = V ( t l ( + ) vτ l vτ Comparado (5) y (7) obtmos: l cτ = Γ l τ = v l( Γ).. RESONANCIAS EN EL CABLE COAXIAL (7) (8) Para compltar l studio d la lía d trasmisió itroducimos ua sñal siusoidal, lugar d u pulso. E st caso la toría d odas lctromagéticas os idica qu aparcrá odas stacioarias l cabl y qu cotrarmos rsoacias para u cojuto discrto d frcucias (qu dpdrá d las codicios d cotoro). Si l cabl trmia co ambos xtrmos abirtos (R = ) las frcucias rsoats srá tals qu la logitud dl cabl s u múltiplo tro d λ/. Aljadro Schulma y Mario E Csar Arit

3 LABORATORIO 3 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN JULIO DE 6. DESARROLLO Fig. : Esquma dl circuito mplado la xpricia. Para la xpricia utilizamos u cabl coaxial RG-6AU d l = 93.3±.m. La figura mustra l dispositivo armado para la xpricia. Alimtamos l circuito co u grador d sñal HP-33A d ua impdacia itra d R = 5Ω. Las rsistcias variabls R y R s g ajustaro sgú las csidads d cada mdició. Tomamos datos a partir d los dos caals d u osciloscopio Tctroix- como idica l squma. R V = V Γ ( Γ ) R + (9) Variado la rsistcia R fuimos midido la tsió dl pulso rfljado l CH. Sabmos d (9) qu sta tsió s proporcioal al valor d Γ co lo cual tmos qu: R V ( R ) = KΓ ( R ) = K R + () La figura mustra la tsió mdida sobr l CH para distitos valors d R. La curva s u ajust d la cuació (). A partir d st ajust obtmos otra mdició d la impdacia caractrística cuyo rsultado s = 94 ± Ω.. IMPEDANCIA CARACTERÍSTICA Co l grador d sñal viamos a través dl cabl ua oda cuadrada d frcucia 5kHz y u acho dl % dl priodo dl pulso. Cuado la sñal llga al fial dl cabl s rfljada sgú () hacia l xtrmo opusto. Si la rsistcia R s igual al valor d la impdacia caractrística dl cabl l coficit d rflxió s ulo y o habrá oda rfljada. Buscado dicha situació obtuvimos como rsultado = 9. ±.5Ω Valor qu coicid co los 93Ω d la ficha técica dl cabl. El rror d la mdició fu tomado como l rror dl multimtro co l cual mdimos la rsistcia... COEFICIENTE DE REFLEXIÓN Cosidrmos qu dl grador d sñal sal ua oda cuadrada (d iguals caractrísticas qu las mdició atrior) co ua amplitud V. La rsistcia R fu cortocircuitada. El cabl sta acoplado a la fut co coficit d rflxió Γ mirado dsd la lía. Hacia l cabl pasa ua fracció d la tsió V dada por () tomado R = 5Ω. Sobr l xtrmo cotrario tdrmos u coficit d rflxió Γ dpdit d la magitud d la rsistcia R. La amplitud dl pulso qu vulv a la fut (valor tomado co CH) sta dada por: Fig. : Estudio dl comportamito dl coficit d rflxió l fial dl cabl al variar la rsistcia R.3. PULSOS DE MUY CORTA DURACION Para dtrmiar la vlocidad d propagació d la oda djamos l xtrmo dl cabl abirto, s dcir, R ifiita. E sta situació l coficit d rflxió s igual a. Eviamos co l grador d sñal ua oda cuadrada d priodo µ s y u acho dl %. Cada pulso d la sñal llga al fial dl cabl y s rflja hacia l comizo dl mismo tardado rcorrr l u timpo 73 ± s. Aljadro Schulma y Mario E Csar Arit 3

4 LABORATORIO 3 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN JULIO DE 6 corrspod al pulso ivrtido l CH. A mdida qu l pulso rcorr l cabl pird amplitud tato por la atuació dl cabl como la distitas rflxios al comizo dl cabl (por qu l coficit s mor qu ). E l fial d la lía (CH) l primr pulso ti ua amplitud mucho mayor qu la amplitud dl la sñal. Esto s db a qu l fial dl cabl s suma la itsidad d la oda qu va y su rflxió qu vulv..4. PULSOS DE LARGA DURACIÓN Fig. 3: Mdició d la sñal y sus postriors rflxios l orig y fial dl cabl. D stos datos obtmos ua vlocidad d propagació d: l v = =.85 ±.c t dod c s la vlocidad d la luz l vacío. Sgú catalogo la vlocidad d propagació l cabl s d c. Co los datos d la impdacia caractrística dl cabl coaxial y la vlocidad d propagació dtrmiamos otros parámtros dl mismo como capacitacia por mtro impdacia por mtro. E la siguit tabla s lista todos los rsultados Parámtro Mdido Esprado Impdacia caract. 9. ±.5Ω 94 ± Ω 93Ω Vlocidad d prop..85 ±.c.84.88c Capacitacia/mtro 4.5.8pFm 44.3pFm Impdacia/mtro 36 ± 7Hm - ± Tabla : Parámtros mdidos y valors rcopilados d catalogo dl cabl coaxial GR-6AU. E la figura 3 Obsrvamos u comportamito mucho más rico. Es vidt qu hay más d ua rflxió. Esto s db a ua difrcia d impdacia l acoplamito dl grador (d 5Ω ) y l cabl (d 93Ω ), st caso tíamos la rsistcia R cortocircuito. El dsacoplamito provoca, al igual qu l fial dl cabl, u coficit d rflxió distito d cro. Admás como la impdacia dl cabl s mayor qu la impdacia dl grador l coficit s gativo para l pulso qu va dsd l cabl hacia l grador, co lo cual part d la sñal s rflja co sigo opusto. Est fcto E sta mdició colocamos ua rsistcia R lvada la trada rspcto a la impdacia caractrística d la lía. Co sto os asguramos qu l coficit d rflxió a la trada dl cabl s crcao a. El otro xtrmo s djo abirto (R ifiita), tocs, co ua rflxió total. Sgú vimos la itroducció los pulsos d ua duració mucho mayor al timpo d dlay dl cabl produc qu la oda s valla suprpoido cosigo misma hasta alcazar la tsió d trada. Qu l acho tmporal dl pulso sa varios órds mayors qu l timpo d dlay sigifica qu la variació d la sñal s suficitmt lta como para qu s trasmita a lo largo d todo l cabl, covirtiédolo u quipotcial. Dado la gomtría d la lía podmos psarla como u capacitor. Las siguits figuras mustra la volució tmporal d la tsió l fial dl cabl para ua rsistcia R =.kω y R = kω. El voltaj pico a pico d la sñal s. ±.5V. La lía color rojo s l ajust d la carga d u capacitor ordiario. Fig. 4: Tsió mdida a través dl timpo l fial dl cabl coaxial para ua R =.kω para ua sñal cuadrada priodo mucho mayor qu l timpo d viaj d la sñal. Aljadro Schulma y Mario E Csar Arit 4

5 LABORATORIO 3 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN JULIO DE 6 Fig. 5: Tsió mdida a través dl timpo l fial dl cabl coaxial para ua R = kω para ua sñal cuadrada priodo mucho mayor qu l timpo d viaj d la sñal. Dl ajust d las curvas d toría d u circuito RC para la rsistcia R =.k Ω obtuvimos u timpo caractrístico y ua capacitacia d τ = 4.53±.7µ s, C = 4.±.F ua rsistcia mucho mayor qu la impdacia caractrística dl cabl logramos u xtrmo qu s prácticamt crrado y qu aú así s trasmita al cabl ua pquña proporció d la sñal dl grador. La figura 6 mustra las amplituds (mdidas dsd l CH) d las corrspodits frcucias rsoats para las siguits codicios d cotoro: R = kω y R = (xtrmo abirto). Obsrvamos qu, como s d sprar, la amplitud d la sñal dca a mdida qu pasamos a modos más altos. Tambié vimos (o s mustra l gráfico) qu cada frcucia d rsoacia la tsió d xcitació y la tsió sobr l cabl staba fas o cotrafas, altrado d modo modo. Etr cada dos modos rsoats coscutivos o hay ua difrcia d frcucias igual a la fudamtal sio qu stos stá sparados por. ±.5 vcs la frcucia fudamtal. Esto s db fudamtalmt a qu la codició d cotoro o so prfctamt abirtos (particularmt l iicio dl cabl). y para l caso R = kω τ = 8.86 ±.3µ s, C = 4.43±.4F Cosidrado qu l cabl s homogéo obtmos qu la capacitacia por mtro toma los valors 44 ± pfm y 4.5 ±.8pFm, rsultados qu cocurda co los valors d la tabla..5. ONDAS ESTACIONARIAS EN EL CABLE COAXIAL Como ya mcioamos podmos cotrar odas stacioarias la lía d trasmisió y sgú las codicios d cotoro (valors d R y R ) habrá u cojuto discrto d frcucias rsoats. Las codicios más scillas so xtrmos abirtos o xtrmos crrados. E u xtrmo crrado o hay difrcia d potcial tr los coductors dl cabl por sr u cortocircuito. Si crramos l fial dl cabl s iútil la mdició dl CH. El comizo dl cabl tampoco s pud cortocircuitar porqu simpr sta la acció d la impdacia propia dl grador d sñal. Por stas razos dscartamos las codicios d xtrmos crrados o mixtas. Djar l fial d la lía abirta s posibl (ya lo hmos usado mdicios atriors). El comizo d la misma o s pud djar abirto dado qu staríamos quitado la acció d grador sobr l cabl. Si mbargo colocado Fig. 6: Espctro d frcucias d rsoacia para l cabl coaxial co xtrmos abirtos. Fialmt la figura 7 mustra como varia la amplitud d rspusta l cabl fució d la frcucia d la sñal dsd los Hz hasta alcazar los.7mhz (u poco mas d la frcucia dl sgudo modo d rsoacia). Como s d sprar para frcucias bajas l cabl s comporta como u capacitor, co lo cual la tsió a bajas frcucias s igual a la tsió d alimtació (.6V). Para vr claramt sta situació la figura 8 s quivalt a la figura 7 co la salvdad d qu s u gráfico smilogaritmico. Aljadro Schulma y Mario E Csar Arit 5

6 LABORATORIO 3 PARÁMETROS CARACTERÍSTICO DE LÍNEAS DE TRANSMISIÓN JULIO DE 6 Fig. 7: Tsió sobr l fial dl cabl al variar la frcucia d la sñal dl grador d fucios. multimtro utilizado). E sgudo lugar stimamos la impdacia d la lía a partir d u ajust d los coficits d rflxió para varios valors d rsistcia. Co l timpo d dlay d la sñal qu tarda d viajar hacia l xtrmo dl cabl y volvr mdimos la vlocidad d propagació. Lugo co la impdacia dl cabl y la vlocidad d propagació stimamos idirctamt los valors d la capacidad por mtro impdacia por mtro. Para pulsos d duració mucho mayors qu l timpo d dlay vimos qu psar al cabl como u capacitor s cogrut co los rsultados obtidos. Admás, co sta mdició pudimos stimar d ua mara altrativa la capacitacia por mtro d la lía. Por ultimo obsrvamos l comportamito dl cabl como ua cavidad rsoat d odas lctromagéticas. E st caso mdimos la tsió sobr l cabl fució d la frcucia d alimtació. Nuvamt para bajas frcucias cotramos qu l cabl tid a comportars como u capacitor. 4. REFERENCIAS Fig. 8: Gráfico smilogaritmico d la figura 7 para obsrvar como la tsió sobr l fial dl cabl tid al valor d la tsió dl grador d sñal para bajas frcucias. 3. CONCLUSIONES Todos los valors mdidos d los parámtros caractrísticos dl cabl RG-6AU cocordaro prfctamt co los datos xtraídos dsd catalogo. El trabajo s baso trs parts. Ralizamos u studio dl cabl para pulsos d duració mors qu l timpo d dlay. Lugo, ralizamos mdicios para pulsos más largos qu l timpo d dlay. Y por ultimo, obsrvamos cualitativamt l comportamito dl cabl como ua cavidad rsoat. La impdacia dl cabl fu mdida d dos maras. E primr lugar la dtrmiamos limiado la rflxió l fial dl cabl. La dsvtaja d st método s o podr asociar ua icrtidumbr a la mdició (solo cosidramos l rror d la dtrmiació d la rsistcia co l [] J.M. Srra, A wav lab isid a coaxial cabl, Faculdad d Ciêcias Uivrsidad d Lisboa (/6/4). [] L. Ciri, M. Flitas, Paramtros lias d trasmisio, Facultad d cicias xactas y aturals, UBA (7/). [3] T.E. Owusu, Masurig coaxial cabl impdac usig oscilloscop to aalyz wavform, Uivrsity of North Carolia At Charlott (7/7/). [4] J.L. Drwiak y R.E. DuBroff, Pulss o Trasmissio Lis, Uivrsity of Missouri-Rolla. [5] David Halliday y Robrt Rsick, Física (CECSA, México, 97). [6] Jacob Millma y Hrbrt Taub, Puls ad Digital Circuits (McGraw-Hill, EE.UU., 956). [7] Frak S. Crawford, Odas, º dició (Rvrt, Barcloa, 97). [8] Joh David Jackso, Classical lctrodyamics ª dició(nw York, NY: Wily, 975). Aljadro Schulma y Mario E Csar Arit 6

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS LCTROMAGNTISMO PARA INGNIRÍA LCTRÓNICA. CAMPOS Y ONDAS Odas mdios abirtos acotados Itroducció Capítulo 7 l caso tratado l capítulo atrior, l cual ua oda s propaga librmt a través d u mdio si frotras i

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

Tema 8. Limite de funciones. Continuidad

Tema 8. Limite de funciones. Continuidad . Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD

FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD APÉNDICE: FÓRMULAS PARA LA ESTIMACIÓN DE LA CAPACIDAD Fórmula uificada d Kimbr Kimbr aglutia la xpricia d muchos años d sayos ralizados por l TRRL Gra Brtaña y propo ua fórmula uificada para l cálculo

Más detalles

Tema 11. Limite de funciones. Continuidad

Tema 11. Limite de funciones. Continuidad Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito

Más detalles

Sistemas de ecuaciones diferenciales lineales

Sistemas de ecuaciones diferenciales lineales 695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

UNIVERSIDAD DE BUENOS AIRES - FACULTAD DE INGENIERÍA

UNIVERSIDAD DE BUENOS AIRES - FACULTAD DE INGENIERÍA rabajo ráctico Nº: sayo idircto NDD D BNO - FCLD D NGNÍ DMNO D LCOCN MÁQN LÉCC 65.6 NYO D MOO NCÓNCO FÁCO COMLMNO XLCO i bi l pricipio d fucioamito y circuito quivalt dl motor asicróico trifásico guarda

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Cálculo de incertidumbres en la medida de caudales en ríos y canales: herramientas y aplicaciones prácticas innovadoras

Cálculo de incertidumbres en la medida de caudales en ríos y canales: herramientas y aplicaciones prácticas innovadoras Cálculo d icrtidumbrs la mdida d caudals ríos y caals: hrramitas y aplicacios prácticas iovadoras Jorg Hlmbrcht 1, Jsús Lópz 2, Jua José Villgas 3 Watr Ida 1, YACU 2, Agècia Catalaa d l Aigua 3 jh@watrida.u,

Más detalles

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación.

TEMA 5: Efectos de los Rectificadores sobre la red de alimentación. TEMA 5 : Efctos d los Rctificadors sobr la rd d alimtació TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. Ídic TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. 5..- Factor d Potcia....

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2

Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2 Tma Drivaa. Técicas Drivació 0.- Itroucció.- Tasa Variació Mia.- Drivaa ua ució u puto..- Drivaas Latrals...- Itrprtació gométrica la rivaa..- Rlació tr cotiuia y rivabilia..- Sigiicao graico la rivaa.

Más detalles

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces

Observación: si en la urna hubiese 1500 bolillas blancas y 500 verdes y se extraen dos bolillas al azar sin reemplazo, entonces art Variabls alatorias rof. María B. itarlli.- Variabls alatorias discrtas imortats Distribució biomial Sa ε u xrimto alatorio. Sa u vto asociado a ε y aotamos Suogamos u xrimto alatorio ε u cuml los siguits

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

Procesamiento Digital de Señales de Voz

Procesamiento Digital de Señales de Voz Procsamto Dgtal d Sñals d Voz Trasparcas: Procsamto d Sñals y Métodos d Aálss para rcoocmto d Voz Autor: Dr. Jua Carlos Gómz Basado : Rabr, L. ad Juag, B-H.. Fudamtals of Spch Rcogto, Prtc Hall,.J., 993.

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

DISENO DE UN CONTROLADOR PIO AUTOSINTONIZADO MEDIANTE LOGICA BORROSA Miguel Strefezza Bianco

DISENO DE UN CONTROLADOR PIO AUTOSINTONIZADO MEDIANTE LOGICA BORROSA Miguel Strefezza Bianco 40. SBAI-Simpósio Brasiliro d Automação Itligt, São Paulo, SP, 08-10 d Stmbro d 1999 DISENO DE UN CONTROLADOR PIO AUTOSINTONIZADO MEDIANTE LOGICA BORROSA Migul Strfzza Biaco Yasuhiko Dot Uivrsidad Sim6

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

6. FAST FOURIER TRANSFORM (FFT)

6. FAST FOURIER TRANSFORM (FFT) 6. FAS FOURIER RASFORM FF Las rasformadas Rápidas d Fourir so algoritmos spcializados qu prmit a u procsador digital acr l cálculo d la rasformada Discrta d Fourir d ua forma ficit, lo qu rspcta a carga

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 8º CNGRES BERAMERCAN DE NGENERA MECANCA Cusco, 23 al 25 d ctubr d 2007 PTMZACÓN ESTRUCTURAL CN MALLAS FJAS Y ANALSS DE SENBLDAD Maul García*, Pirr Boulagrº, Aljadro Rstrpo* *Dpartamto d giría Mcáica Uivrsidad

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

ANÁLISIS DE PLASTICIDAD EN PÓRTICOS PLANOS

ANÁLISIS DE PLASTICIDAD EN PÓRTICOS PLANOS ANÁLISIS DE PLASTICIDAD EN PÓRTICOS PLANOS UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA UNIDAD DE POSGRADOS MAESTRÍA EN MÉTODOS NUMÉRICOS PARA DISEÑO EN INGENIERÍA TEMA: ANÁLISIS DE PLASTICIDAD EN PÓRTICOS

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Máquinas Eléctricas II CT-3311

Máquinas Eléctricas II CT-3311 Sofia Gua Uivsidad Simó Bolíva Dpatamto d Covsió y Taspot d Egía Auto: Sofía Gua. Caé: Pofso: J. M. All Máquias Elécticas II CT-3311 A ua máquia d iducció d 1 kw, 416 V, pas d polos, coxió stlla y 6 Hz,

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB Ejercicios típicos de Líneas 1- Tenemos que instalar un transmisor de 500W, en una radio de FM que trabaja en.1 MHz. Sabiendo que la torre disponible para sostener la antena es de 40m, calcular la potencia

Más detalles

SÍLABO DEL CURSO DE AUDITORIA DE MARKETING

SÍLABO DEL CURSO DE AUDITORIA DE MARKETING SÍLABO DEL CURSO DE AUDITORIA DE MARKETING I. INFORMACIÓN GENERAL: 1.1 Facultad: Ngocios 1. Carrra Profsioal: Admiistració y Marktig 1.3 Dpartamto: ------------- 1.4 Rquisito: Dircció Comrcial 1.5 Priodo

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES Profsor: Mg. Ig. Rafal Bustamat Alvarz Itroducció: El procsamito digital d sñals ti su orig los años 60 co l mplo d las primras computadoras digitals. El dsarrollo d la

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

& fun. viajeglamour Por silvia lópez

& fun. viajeglamour Por silvia lópez viajglamour Por silvia lópz A ts d sumrgirs l rodaj d Holms. Madrid Suit. 1890, la visió dl dtctiv lodis d José Luis Garci ( itrprto a Alcátara, u priodista lgat y romático, amigo d Watso ), l actor Migul

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost).

La gama con sistema HE dispone de un control digital táctil basado en 4 modos de funcionamiento: automático, eco, confort y alta emisión (boost). Radiadors d baja tmpratura Nuva gama d radiadors d altísima misió icluso co salto térmico 30ºC. Idals tato para obra uva como para mrcado d rposició. Válidos para istalacios bitubo o mootubo. Fácil matimito

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA.

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA. SEMN 4 OLÍGONOS Y URILÁTEROS 1. lcul l úmro d digols mdis d u polígoo, dod l úmro d digols s l cuádrupl dl úmro d águlos itros. ) 0 ) 7 ) ) 44 E) to: Nºig.= 4(Nº s itros) id: Nºig.Mdis= ( 1 ) =? Rmplzdo

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Transformada de Laplace

Transformada de Laplace Traformada d Laplac Traformada d Laplac Dada ua fució d variabl cotiua f, u traformada bilatral d Laplac dfi como: t [ f ] f dt L dod ua variabl complja, σ iω Para qu ta itgral covrja, dcir, para qu ita

Más detalles

ε = = d σ (2) I. INTRODUCCIÓN

ε = = d σ (2) I. INTRODUCCIÓN Estudio del comportamiento de un material piezoeléctrico en un campo eléctrico alterno. Eduardo Misael Honoré, Pablo Daniel Mininni Laboratorio - Dpto. de Física -FCEyN- UBA-996. Un material piezoeléctrico

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Diagramas de Bode. Respuesta En Frecuencia

Diagramas de Bode. Respuesta En Frecuencia Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU

Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

La generación eléctrica creció un 5% en lo que va del año

La generación eléctrica creció un 5% en lo que va del año Gatilla d prsa 4 d otr d 2 La graió létria rió 5% lo q va dl año partir d la psta marha d vas trals y l irmto la fiiia d los prosos d matimitos las más atigas, la graió d rgía aompaña l rimito d la dmada.

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS

ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR 2. OSCILACIONES Y ONDAS ESCUELA DE FISICA FACULTAD DE CIENCIAS NATURALES Y MATEMATICA UNIVERSIDAD DE EL SALVADOR. OSCILACIONES Y ONDAS CONTENIDO.1. MOVIMIENTO ARMONICO SIMPLE.. RELACION ENTRE MOVIMIENTO ARMONICO SIMPLE Y CIRCULAR

Más detalles

Capítulo 3 RETENCIÓN SUPERFICIAL

Capítulo 3 RETENCIÓN SUPERFICIAL Capítulo 3 RETENCÓN SUPERFCAL DEFNCÓN La Rtció Suprficial s u térmio qu globa a os compots l ciclo hirológico qu so la trcptació y la Dtció Suprficial. S fi como l agua proct la lluvia qu qua rtia o bi

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

LA DISTRIBUCIÓN BINOMIAL-EXPONENCIAL TRUNCADA CON APLICACIONES EN EL SECTOR DEL SEGURO DE AUTOMÓVILES

LA DISTRIBUCIÓN BINOMIAL-EXPONENCIAL TRUNCADA CON APLICACIONES EN EL SECTOR DEL SEGURO DE AUTOMÓVILES LA DISTRIBUCIÓN BINOMIAL-EPONENCIAL TRUNCADA CON APLICACIONES EN EL SECTOR DEL SEGURO DE AUTOMÓVILES Emilio Gómz-Déiz y José María Sarabia Abstract I this papr w prst a w claim cout distributio with ovrdisprsio.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles