Ejercicios resueltos Distribuciones discretas y continuas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios resueltos Distribuciones discretas y continuas"

Transcripción

1 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s distribuy normalmnt con mdia 6000 kilogramos por cntímtro cuadrado y dsviación stándar d 00 kilogramos por cntímtro cuadrado. a) Cuál s la probabilidad d qu la rsistncia d una mustra d cmnto tomada al azar, sa mnor a 6250 Kg/cm 2? b) Cuál s la probabilidad d qu la rsistncia d una mustra d cmnto s ncuntr ntr 5800 y 5900 Kg/cm 2? c) Cuál s l valor d la rsistncia qu s suprado por l 95% d las mustras d cmnto? 2) ara cortar corchos dstinados a usars n botllas d vino, s utilizan dos máquinas. La primra produc corchos cuyos diámtros s distribuyn normalmnt con mdia 3 cm y dsviación stándar 0. cm. La sgunda produc corchos cuyos diámtros también s distribuyn normalmnt con mdia 3.04 cm y dsviación stándar 0.02 cm. Un corcho s acptabl si su diámtro s ncuntra n l intrvalo [2.9 ; 3.]. Un corcho producido por cuál d las dos máquinas tin mayor probabilidad d sr acptado? 3) La duración, n horas, d una lámpara s una variabl alatoria con distribución N (200 horas; ). El 97 % d las lámparas dura ntr 78.3 y22.7 horas. a) Calcul la probabilidad d qu una lámpara adquirida n dicha fábrica dur por lo mnos 25 horas. b) Calcul la probabilidad d qu, n una mustra alatoria d 0 lámparas qu s adquirn n dicha fábrica, a lo sumo una dur más d 25 horas. c) Si s obsrvan n forma sucsiva la duración d 0 lámparas slccionadas al azar, calcul la probabilidad d qu las primras 5 durn más d 200 horas y las siguints 5 durn a lo sumo 200 horas. 4) La rsistncia d una alación d aluminio varía alatoriamnt con distribución normal, sindo la mdia y la dsviación stándar igual a 0 y.4 gigapascals rspctivamnt. a) Dtrmin l rcorrido intrcuartílico. b) S ralizan 5 obsrvacions indpndints d la variabl alatoria rsistncia d una alación d aluminio. Calcul la probabilidad d qu al mnos 4 d las obsrvacions s ncuntrn dntro dl intrvalo [Q ; Q 3 ]. 5) La duración n años d un fusibl s una variabl alatoria con distribución xponncial con λ=0,25. a) Calcul la probabilidad d qu un fusibl dur más d trs años. b) Calcul la probabilidad d qu un fusibl dur más d 4 años, si ya ha durado año. c) rub: Si s una variabl alatoria xponncial d parámtro λ ntoncs: > t + s / > s = ( > t ( ) ) 6) El timpo (n minutos) qu transcurr ntr las llgadas conscutivas d dos cochs a una stación d paj, s una variabl alatoria cuya función d dnsidad s: f(x)= 4 е -4x si x > 0 0 caso contrario a) Calcul l timpo mdio transcurrido ntr las llgadas conscutivas d dos cochs. b) Calcul la probabilidad d qu l timpo transcurrido ntr dos llgadas conscutivas sa infrior a un minuto, si s sab qu al cabo d 30 sgundos aún no ha llgado l sgundo coch. 7) La vlocidad (n Km/h) d los cochs qu pasan por dtrminado punto d una carrtra s una variabl alatoria con función d dnsidad: ágina d 9

2 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) f(x) = x x 0000 si 0< x < 00 si 00< x < caso contrario a) Calcul la probabilidad d qu un vhículo circul a más d 20 Km/h si s sab qu circula a más d 00 Km/h. b) En s punto d la carrtra s ncuntra ubicado un radar qu controla la vlocidad d los vhículos. Si la vlocidad s infrior a 00 Km/h l import d la multa s d $0 (no hay multa), n cambio si la vlocidad stá comprndida ntr 00 y 20 Km/h la multa s d $00 y si la vlocidad supra los 20 Km/h la multa s d $200. c) Calcul intrprt l valor d la spranza matmática d la variabl alatoria import d la multa qu tin qu pagar un vhículo lgido al azar. 8) La dmanda diaria d un dtrminado artículo s una variabl alatoria X con distribución uniform n l intrvalo [0 ; 6] dond X vin xprsada n mils d unidads. a) Dtrmin la cantidad d unidads qu hay qu tnr disponibls a la vnta, diariamnt, para podr satisfacr la dmanda con probabilidad b) Si s producn 5000 unidads diarias y cada día sólo s pudn consumir las unidads producidas s día, calcul la probabilidad d qu durant 20 días, n ninguno d llos haya una dmanda suprior a las unidads producidas n s día. 9) Un sistma consta d dos dispositivos (A y B) qu funcionan simultána indpndintmnt. La duración n horas dl dispositivo A s una variabl alatoria con distribución xponncial d parámtro α = 0.02 horas -, n cambio la duración n horas para l dispositivo B s una variabl alatoria con distribución normal d parámtros µ=0 horas y = hora. a) Calcul la probabilidad d qu fall al mnos un dispositivo ants d las 2 horas d funcionaminto. b) Si al mnos uno d los dispositivos ha fallado ants d las 2 horas d funcionaminto, calcul la probabilidad d qu sa l dispositivo B. c) Calcul la probabilidad d qu l dispositivo A funcion al cabo d 20 horas sabindo qu funciona al cabo d 8 horas. 0) El timpo n horas para fallar d cirtas componnts, s una variabl alatoria distribuida normalmnt con spranza matmática 50 horas y dsvío stándar 5 horas. En una agrupación n sri s conctan n d dichas componnts qu funcionan indpndintmnt. a) Si n=4, cuál s la probabilidad d qu l sistma funcion dspués d 52 horas d trabajo? b) Si n componnts s conctan n parallo, cuál dbrá sr l valor d n a fin d qu la probabilidad d fallar durant las primras 55 horas sa a lo sumo 0.0? ágina 2 d 9

3 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) ) sa X: rsistncia a la comprsión d una mustra d cmnto X modliza las infinitas obsrvacions d rsistncia a la comprsión d todas las posibls mustras d cmnto X ~ N ( µ x = Kg/cm 2 ; x = 00 Kg/cm 2 ) En conscuncia 6000 Z = X ~ N (0;) 00 X ( < 6250) = < = Z < = tabla normal stándar rducida). a) X ( 2,5) (valor qu s obtin d la En las gráficas qu sigun s rprsntan las curvas d dnsidad d las variabls alatorias X y Z rspctivamnt. El ára d la suprfici rayada, n ambos casos, rprsnta l valor d la probabilidad calculada X Z b) X ( 5800 < X < 5900) = < < = Z < Z < = ( Z < ) ( Z < 2) = = ( los valors s obtinn d la tabla normal stándar) c) 0.95 x X 6000 x 6000 x D la tabla normal stándar s obtin Z = x =. 64, d dond rsulta x=5836 Kg/cm ( X > x) = 0.95 ( X x) = 0.05 = 0.05 Z = El 95 % d todas las posibl mustras d cmnto tin una rsistncia a la comprsión suprior a 5836 Kg/cm 2. ágina 3 d 9

4 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) 2) D : diámtro d un corcho producido por la máquina D 2 : diámtro d un corcho producido por la máquina 2 D 3 D ~ N ( µ D = 3 cm; D = 0. cm) Z = ~ N (0;) 0. D D 2 ~ N ( µ D2 = 3.04 cm; D2 = 0.02 cm) Z = ~ N (0;) ( 2.9 < D < 3.) = < Z < = Z < Z < = = ( Z < ) ( Z < ) = = ( 2.9 < D2 < 3.) = < Z < = Z = ( Z < 3) ( Z < 7) = = < Z < = 0.02 Un corcho producido por la máquina 2 tin mayor probabilidad d sr acptado. 3) sa : duración n horas (o timpo transcurrido hasta la falla) d una lámpara ~ N ( µ = 200 hs; =?) ( 78.3 < < 22.7) = Z = ~ N (0;) < < = < Z < = ,7ê 0 2,7ê Z < Z < = 0.97 s quivalnt a = Z <. 2.7 D la tabla normal s obtin = Lugo =0 horas. a) ( > 25 ) = ( < 25) = Z < = ( Z <.5) = = b) sa : númro d lámparas qu duran más d 25 horas n una mustra d 0 ~ Binomial(0, p=0.0668) (Las diz lámparas constituyn una mustra alatoria d tamaño 0 xtraída sin rposición d una población infinita ). ágina 4 d 9

5 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) ( ) = ( = 0) + ( 0 = ) = = = c) notmos con A: una lámpara dura a lo sumo 200 hs ( A) = ( 200) = 0.5 S pid calcular la probabilidad d qu n 0 prubas rptidas ocurra la siguint scuncia d sucsos: A A A A A A A A A A Sindo los nsayos indpndints rsulta ( AAAAAAAAAA) = ( ( A)) ( ( A)) = (0.5) l sorprnd l bajo valor d la probabilidad? 4) a) sa R: rsistncia d una alación d aluminio R ~ N ( µ R = 0; R =.4) Notmos con F R a la función d distribución acumulada. ara dtrminar l rcorrido intrcuartílico hay qu calcular los cuartils Q y Q 3 dond F R (Q )=0.25 y F R (Q 3 )=0.75 F R Q 0.4 Q 0 = 0..4 ( Q ) = ( R < Q ) = 0.25 Z < = D la tabla normal stándar o rducida s obtin 67 D modo análogo: F R 3 ( Q ) = ( R < Q ) = 0.75 Z < Q 0.4 Q 3 3 = 3 0 D la tabla normal stándar o rducida s obtin = El rcorrido intrcuartílico s Q 3 - Q = =.876 d dond Q = d dond Q = Q Q 2 Q 3 b) sa A: una obsrvación s ncuntra dntro dl intrvalo [Q, Q 3 ] y (A)=0.5 sa : númro d obsrvacions sobr un total d 5 qu s ncuntran dntro dl intrvalo [Q, Q 3 ]. ~ Bi (5; 0.5) ( 4) = ( = 4) + ( 5 = 5) = = = ) λ = por año (nº promdio d fusibls rotos por año) E() = = = 4 años d duración promdio λ 0.25 ágina 5 d 9

6 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) a) sa : duración (n años) d un fusibl 0.25t ~ Exp (0.25) f ( t) = 0.25 para t t ( > 3) = 0.25 dt = = t 0.25 dt / t 0.25 dt b) ( > ) = = = = > ( > t + s) = ( > s) t+ s αt c) ( ) = = = = = ( > t) > t + s / > s s α α αt αx dx dx α ( t+ s) αs αt Comntario: los rsultados obtnidos n a) y b) mustran qu la probabilidad d qu un fusibl dur por lo mnos otros 3 años si ya ha durado un año, s igual a la probabilidad d qu dur por lo mnos 3 años dsd l instant n qu ha sido pusto n funcionaminto. En c) s gnraliza l rsultado obtnido n a) y b). La propidad dmostrada n c) s conoc por propidad d carncia d mmoria. En la misma s ha probado qu la probabilidad d qu un fusibl sobrviva l instant t + s cuando sobrviv l instant s s igual a la probabilidad d qu sobrviva l instant t dsd l momnto n qu ha sido pusto n funcionaminto. αs αs 6) sa X: timpo (n minutos) qu transcurr ntr la llgada d dos cochs conscutivos a una stación d paj. Sindo la función d dnsidad d X: f(x)= 4 е -4x si x > 0 0 caso contrario rsulta qu X tin distribución xponncial con parámtro α = 4. a) E(x) = = = 0.25min. α 4 El timpo mdio qu transcurr ntr la llgada d dos cochs conscutivos s 0.25 minutos, s dcir 5 sgundos. b) (0.50 < X < ) ( X > 0.50) ( ) ( ) ( ) 2 X < / X > 0.50 = = = = = Obsrvación: = ( X < 0.50) Sabindo qu l timpo transcurrido ntr la llgada d dos cochs conscutivos s mayor a 30 sgundos (mdio minuto), la probabilidad d qu l timpo transcurrido sa infrior a un minuto s igual a la probabilidad d qu l timpo sa infrior a mdio minuto ágina 6 d 9

7 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) 7) fhxl x a) sa X: vlocidad (n Km/h) d un coch ( X ( X < 20) > 00) ( X > 20 / X > 00) = = = x 0000 ( X > 20) = dx = x 0000 ( X > 00) = dx = Entr los cochs qu circulan a más d 00 Km /h l 64 % d los mismos circula a más d 20 Km/h. b) sa : import d una multa 0 si x< 00 = 00 si 00 x si x > x 0000 ( = 00) = ( 00 < X < 20) = dx = 0. 8 E ( = 200 ) = ( X > 20) = ( ) = = $ 82 Import promdio pagado n concpto d multa 8) sa X: dmanda diaria d un artículo X ~ U ( 0.6 ), lugo la gráfica d la función dnsidad d X s la qu sigu, ágina 7 d 9

8 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) 6 6 a) sa c: cantidad d unidads disponibls para la vnta n un día c ( X < c) = 0.95 = 0.95 c = ara satisfacr la dmanda l 95 % d los días, hay qu tnr 5700 unidads diarias disponibls para la vnta. b) sa : nº d días sobr un total d 20 n qu la dmanda diaria s d a lo sumo 5000 unidads. 5 ( < 5 ) = = Bi n = 20 ; p = 0.83 ~ ( ) ( = 20) = (0.83) 20 = ) san las variabls alatorias X: duración n horas d un dispositivo A : duración n horas d un dispositivo B S conoc qu: X ~ Exp (α = 0.02 hs - ) San los sucsos: A: un dispositivo tipo A dura mnos d 2 horas B: un dispositivo tipo B dura mnos d 2 horas ~ N ( µ = 0 hs; = h) ( A) = ( X < 2) = = a) Bajo l supusto d qu todos los dispositivos funcionan indpndintmnt ( B) = ( < 2) = < = ( Z < 2) = ( A B) = ( A) + ( B) ( A B) = ( A) + ( B) ( ( A) ( B) = = ( B) / = = b) ( B A B) ( A B) c) ( X > 20 / X > 8) = ( X > 2) = = (propidad d carncia d mmoria) ágina 8 d 9

9 ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) 0) a) Sa : timpo transcurrido hasta la falla d una componnt ~ N ( µ = 50 hs; = 5 hs) Sa A: una componnt funciona dspués d 52 horas (A) = ( > 52) = Sa S: l sistma funciona dspués d 52 horas d trabajo. El sistma (n sri) funciona al cabo d las 52 horas simpr y cuando funcionan los 4 componnts. Dado qu las componnts funcionan indpndintmnt: (S) = [(A)] 4 = 0.04 b) Sa B: una componnt falla ants d las 55 hs. (B) = ( < 55) = El sistma (n parallo) falla ants d las 55 horas simpr y cuando falln las n componnts ants d las 55 horas. Sa : nº d componnts sobr un total d n qu fallan ants d las 55 hs. ~ Bi (n ; 0.843) ( = n) 0. 0 ( n) n = 0.0 (0.843) 0.0 n log 0.0 log Conclusión: s ncsitan como mínimo 27 componnts conctadas n parallo. ágina 9 d 9

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS Aljandro Luis Hrnándz aljohr65@gmail.com Gracila Lsino lsino@gmail.com Univrsidad Nacional

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

núm. 173 viernes, 11 de septiembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MELGAR DE FERNAMENTAL

núm. 173 viernes, 11 de septiembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MELGAR DE FERNAMENTAL III. ADMINISTRACIÓN LOCAL C.V.E.: BOPBUR-2015-06336 AYUNTAMIENTO DE MELGAR DE FERNAMENTAL Aprobación dfinitiva d la modificación d la ordnanza rguladora d la tnncia d animals potncialmnt pligrosos En la

Más detalles

Análisis del caso promedio El plan:

Análisis del caso promedio El plan: Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

MONITOREO DE CONTROLADORES PREDICTIVOS.

MONITOREO DE CONTROLADORES PREDICTIVOS. MONITOREO DE CONTROLADORES PREDICTIVOS. Rachid A. Ghraizi, Ernsto Martínz, César d Prada Dpt. Ingniría d Sistmas y Automática Facultad d Cincias, Univrsidad d Valladolid c/ Ral d Burgos s/n, 47, Valladolid,

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

núm. 33 miércoles, 18 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA

núm. 33 miércoles, 18 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA 9 C.V.E.: BOPBUR-2015-00876 Mdiant acurdo d la Junta d Gobirno númro 9, d fcha 29 d dicimbr d 2014, s aprobó la «Convocatoria

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores Aspctos Técnicos para la Dtrminación d la Prima d Risgo n l guro d Gastos édicos ayors igul Angl Bltrán Prado Dicimbr 1992 ri Documntos d Trabajo Documnto d Trabajo No. 11 Índic Introducción 1 1. Objto

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES

ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES ENTRENADORES PERSONALES Y FISIOTERAPEUTAS FISIOTERAPIA PARA HOTELES www.loutrainrs.com/fisiotrapia 615 964 258 PRESENTACIÓN Lou Trainrs s una mprsa d Entrnaminto Prsonal, Fisiotrapia y Gstión Dportiva

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS.

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. Ana Ida Vilir ivilir@cug.co.cu Rafal Cardoza Gámz cardoza@fc.cug.co.cu Univrsidad d Guantánamo Rsumn:

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS Nunca hac mucho l qu rflxiona dmasiado. Johann Fridich Vonchillr 3.1 Orign d la nrgía dl vinto La nrgía dl vinto procd n sncia dl sol. La Tirra rcib 1.74x10 17 Watts

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado

Eliminación de compuestos organoclorados para potabilización de aguas mediante un proceso de adsorción - regeneración en carbón activado Eliminación d compustos organoclorados para potabilización d aguas mdiant un procso d adsorción - rgnración n carbón activado Sotlo, J.L., Ovjro, G., Dlgado, J.A. y Martínz, I. Dpto. d Ingniría Química,

Más detalles

A Microeconometric Approach to the Determinants of Travel Mode Choice

A Microeconometric Approach to the Determinants of Travel Mode Choice A Microconomtric Approach to th Dtrminants of Travl Mod Choic ablo Marclo Garcia* Cntro d Estudios para la roducción pmgarci@mcon.gov.ar Abstract Th transportation systm is a fundamntal componnt of th

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Cálculo de Obras de Drenaje Trasversal de Carreteras

Cálculo de Obras de Drenaje Trasversal de Carreteras Cálculo d Obras d Drnaj Trasvrsal d Carrtras Víctor Flórz Casillas Ingniro d Caminos, Canals y Purtos Dirctor dl Dpartamnto d Prsas y Obras Hidráulicas d FCC CONSTRUCCIÓN, S.A. VFlorz@fcc.s Batriz Iturriaga

Más detalles

Fernando Cervantes Leyva

Fernando Cervantes Leyva INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍA DIGITAL Mastría n Cincias con Espcialidad n Sistmas Digitals Adaptación d malla n l análisis d disprsión n guías d onda

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-01298 Código d Vrificación:1453130796 - Comprub su validz n http://www..s/comprobar-firmados Convocatoria

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Comisión Redactora de este documento

Comisión Redactora de este documento omisión Rdactora d st documnto Por Knauf GmbH España Klaus Kllr Dirctor Grnt Hugo Ávalos Dirctor Técnico Rosana Gallgo Rsponsabl d Markting Por Ysos Ibéricos/Pladur Enriqu Ramírz Dirctor omrcial Migul

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

MATERIALES Y METODOS RESULTADOS

MATERIALES Y METODOS RESULTADOS 1000 RVISTA D BILOA TROPICAL albinas normotnsas hiprtnsas, ants y dspués d la administración, ya qu st rfljo rgula (n corto plazo) la prsión artrial y la frcuncia cardíaca. La disminución d la prsión artrial,

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

núm. 62 lunes, 31 de marzo de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 62 lunes, 31 de marzo de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL núm. 62 luns, 31 d marzo d 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-02261 Bass d la convocatoria 2014 d ayudas y bcas al studio a favor d

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ

1 TEODORO AGUSTíN LÓPEZ y LÓPEZ -----------.------------ CALENDARIOS Y FESTIVIDADES 1 TEODORO AGUSTíN LÓPEZ y LÓPEZ Ants d qu l concpto «timpo» fus objto d studio n la historia dl pnsaminto grigo, surgn sistmas difrnts d mdir l timpo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

Es un gas, gas natural

Es un gas, gas natural lan d la lcción - ágina 1 ESTDIANTES DE RIMARIA Tma Gas natural Funt trólo y gas natural, páginas 20 a 23 Objtivo Los alumnos aprndrán qu l gas natural s una sustancia qu s forma a través d millons d años

Más detalles

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO C.V.E.: BOPBUR-2014-03110 Por rsolución d Alcaldía d fcha 16 d abril d 2014, s aprobó la contratación d dos plazas d monitor d gimnasio municipal

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

núm. 222 viernes, 20 de noviembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN

núm. 222 viernes, 20 de noviembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN núm. 222 virns, 20 d novimbr d 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN C.V.E.: BOPBUR-2015-07935 Por Dcrto d Alcaldía, d fcha d 16 d octubr d 2015, s aprobaron las bass y la convocatoria

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

Temas. Studios de Supervivencia. Análisis de Supervivencia con Stata 6.0. Presentado por Mario Alberto Cleves Saa Stata Corporation

Temas. Studios de Supervivencia. Análisis de Supervivencia con Stata 6.0. Presentado por Mario Alberto Cleves Saa Stata Corporation Tmas Análisis d Suprvivncia con Stata 6.0 (Análisis histórico d acontcimintos) Prsntado por Mario Albrto Clvs Saa Stata Corporation Concptos básicos Dfinicions importants n Stata Funcions d suprvivncia

Más detalles

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Una aria rctina y uniform, d masa m y ongitud ca ibrmnt n posición horizonta. En instant n qu su ocidad s, a aria gopa ásticamnt bord d una cuchia rgida

Más detalles

DECRETO NO 0619. El Acta Acuerdo, el Procedimiento Respecto de la Protección Contra Incendio según

DECRETO NO 0619. El Acta Acuerdo, el Procedimiento Respecto de la Protección Contra Incendio según DECRETO NO 0619 Rosario, "Cuna d la Bandrarr, lo d sbril d 2015 - VISTO El Acta Acurdo, l Procdiminto Rspcto d la Protcción Contra Incndio sgún Rglamnto d Edificación y l Acta Acurdo NO 1 suscriptos n

Más detalles

núm. 58 miércoles, 25 de marzo de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 58 miércoles, 25 de marzo de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2015-01937 Bass d la convocatoria 2015 d ayudas y bcas al studio a favor d mplados

Más detalles

PALAU. Donde nace el arco iris

PALAU. Donde nace el arco iris GRANDES VIAJES TÉCNICA ZOOM HISPANO PALAU Dond nac l arco iris LA CONTRA PECIOS MATERIAL AVENTURA Palau s uno d los lugars más intrsants para l buco n arrcif coralino, un dstino n dond podrmos disfrutar

Más detalles

Paso de los diagramas de grafos a los diagramas de bloques

Paso de los diagramas de grafos a los diagramas de bloques Capíítullo T Paso d los diagramas d graos a los diagramas d bloqus.. INTODUCCIÓN Uno d los lnguajs d simulación más antiguo y más utilizado s l d los diagramas d bloqus. D hcho, aún n la actualidad s l

Más detalles