Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002."

Transcripción

1 TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción Evolución temporal del estado de un circuito Circuitos de primer y segundo orden Circuitos RL y RC en régimen transitorio. Aplicaciones y ejemplos Circuitos sin fuentes de excitación y condiciones iniciales no nulas Circuitos con fuentes de excitación y condiciones iniciales nulas Circuitos con fuentes de excitación y condiciones iniciales no nulas. 11. Fenómenos transitorios. Introducción. En este tema se va abordar el estudio de la evolución de una magnitud eléctrica a lo largo del tiempo. Anteriormente se había estudiado el comportamiento de las magnitudes eléctricas en circuitos de corriente continua pero sin tener en cuenta el momento de la conexión de la fuente, o fuentes, al resto del circuito, es decir, partiendo del supuesto de que el circuito, que por ejemplo en su momento analizamos por mallas, está conectado a sus fuentes desde un tiempo suficiente como para que no se produzcan cambios en el tiempo de los valores de las magnitudes del circuito Evolución temporal del estado de un circuito. Un circuito eléctrico o electrónico debe conectarse en un momento dado a las fuentes para que le suministren la energía necesaria para su funcionamiento. Si el circuito posee elementos almacenadores de energía (condensadores e inductancias) es probable que durante un cierto espacio de tiempo la magnitudes eléctricas de dicho circuito varíen de una forma muy acusada hasta estabilizarse en unos valores que luego se mantendrán durante el resto del tiempo. Ese intervalo de tiempo antes de alcanzar la estabilización se denomina régimen transitorio. El tiempo restante caracterizado por una cierta estabilidad se denomina régimen permanente o estacionario. Ejemplo Aunque se estudiará con mayor detalle posteriormente, considérese el circuito de la figura 11.1 formado por una fuente ideal de tensión de 12V, un interruptor INT, dos resistencias iguales (R1, R2) de 1kΩ cada una y un condensador de 1µF, y donde todos los elementos se encuentran en serie a excepción del condensador que está en paralelo con R2. En el instante t=0s se cierra el interruptor y suponiendo que el condensador está inicialmente descargado, la tensión entre los extremos del mismo es nula. Al cabo de cierto tiempo la tensión entre los Figura 11.1 terminales de R2 es la misma que habría si no existiese el condensador y permanecerá así mientras Pag.11.1

2 no se abra el interruptor. En el instante t en el que las tensiones en los diferentes puntos del circuito se puede considerar que dejan de variar se dice que se ha alcanzado el régimen estacionario o permanente, hasta ese instante se dice que el circuito se encuentra en régimen transitorio. Ejemplo Supóngase el circuito del ejemplo anterior pero sin condensador. En este caso el régimen permanente se alcanzará en el mismo instante de cerrar el interruptor, es decir, en este circuito no existe régimen transitorio pues carece de elementos almacenadores de energía. Algunos circuitos trabajan fundamentalmente como una sucesión de transiciones entre dos situaciones o régimenes permanentes. Ese es el caso, por ejemplo, de muchos circuitos digitales que funcionan conmutando la tensión de su salida entre 0V y 5V, y en lo cuales interesa que dichas conmutaciones sean lo más rápidas posibles. Para lograrlo parece lógico diseñarlos sin elementos almacenadores de energía, sin embargo ocurre que esto es totalmente imposible y lo más que se puede hacer es intentar minimizar su tamaño al máximo. Así un circuito realizado físicamente sobre un circuito impreso (soporte físico sobre el que se disponen los componentes eléctricos y electrónicos así como las conexiones de cobre o pistas ) siempre presenta capacidades e inductancias originadas por la propia disposición espacial de los conductores o pistas. A estas capacidades e inductancias se les añade el calificativo de parásitas pues no son deseadas en el diseño y que, a lo sumo, se pueden reducir mediante un elaboradísimo diseño del trazado de las pistas. Estos elementos almacenadores de energía producirán retrasos en las conmutaciones que, junto a otros problemas, limitan la velocidad de funcionamiento de dicho circuito. El análisis cuantitativo de los fenómenos transitorios es complejo y comienza por la obtención de una representación matemática de dicho fenómeno. Dicha representación conduce a ecuaciones o sistemas de ecuaciones que contienen, además de variables de corriente y tensión, integrales y derivadas con respecto al tiempo de estas mismas variables. Por lo tanto, para estudiar cuantitativamente cualquiera de estos circuitos sería preciso que el alumno conociera la teoría matemática de las ecuaciones diferenciales. Por esta razón, en este curso, solamente se abordarán cierto tipo de circuitos que pueden ser estudiados sin un conocimiento profundo de dicha teoría. La resolución de la representación matemática de la evolución del circuito conduce a la obtención de funciones temporales que representan a las corrientes y tensiones en los diferentes puntos del mismo Circuitos de primer y segundo orden. Como se ha comentado anteriormente, el estudio de los fenómenos transitorios se inicia obteniendo una representación matemática de dicho circuito. Si el circuito contiene elementos almacenadores de energía entonces el valor de cada magnitud eléctrica en un instante cualquiera, t, dependerá de lo que ocurre en los otros puntos de ese circuito en ese instante t así como de lo que ha sucedido anteriormente en los elementos almacenadores de energía. Ese comportamiento que dota de cierta memoria al circuito se debe a las siguientes relaciones existentes entre tensión y corriente en cada elemento almacenador. Figura 11.2 En un condensador de capacidad C se sabe que su carga y la tensión entre sus extremos se relacionan por Q C = C u C, (11.1.) pero si se tiene en cuenta que estas magnitudes pueden variar con el tiempo es más apropiado escribir Pag.11.2

3 y teniendo en cuenta la conocida ecuación Q C ( = C u C (, (11.2.) se llega a d(qc() ic ( = (11.3.) dt 1 uc ( = ic( dt (11.4.) C siendo la carga almacenada en el condensador igual al término integral de la ecuación y la responsable de que la tensión instantánea dependa de lo que haya sucedido anteriormente con la corriente que recorre dicho condensador. Figura 11.3 obteniéndose En una inductancia con coeficiente de autoinducción no variable y de valor L, la relación existente entre tensión y corriente se deduce de tener en cuenta la definición de inductancia F m( L = N, (11.5.) il( donde Φ m ( es el flujo magnético a través de cada espira de la bobina o inductancia, y de la aplicación de la ley de Faraday, ul df ( ( = N (11.6.) d( dlil( LdiL( ul ( = = (11.7.) d( d( Si se construye ahora un circuito con cualquiera de estos componentes y una resistencia, se dice que el circuito es un circuito lineal de primer orden. En las figuras 11.4 se representan dos circuitos que responden a estas características. El primero es un circuito RC paralelo pero alimentado por una fuente de intensidad o corriente en paralelo lo que es equivalente a (equivalente Thevenin de la fuente de intensidad o corriente en paralelo con la resistencia) a un circuito RC serie. El segundo circuito es un circuito RL serie alimentado por una fuente de tensión en serie. Figura 11.4 Considérese, por ejemplo, el circuito de la figura 11.4.a. Pag.11.3

4 Aplicando la primera ley de Kirchhoff al nudo A se tiene: y sustituyendo en función de u C y dividiendo por C: i C ( + i R ( = i( (11.8.) du dt C uc= i( (11.9.) RC C Si en lugar de tomar como variable la tensión en el condensador se hubiese elegido la intensidad en el mismo o en la resistencia, también se llegaría a una ecuación diferencial similar a la ecuación Por ejemplo, expresando que la tensión en C y en R es la misma y siendo u C (0) la tensión en el condensador para t=0s, resulta la ec y derivando con respecto a t y ordenando se obtiene finalmente la ec t uc(0) + ic( z) dz = R[ i( ic( ] C (11.10.) 0 dic di + 1 ic= (11.11.) dt RC dt Estas representaciones matemáticas de un circuito se denominan ecuaciones diferenciales pues contienen en la misma ecuación una variable, u C por ejemplo, y su derivada. Como la derivada contenida es de primer orden la ecuación se denomina de primer orden. Cuando el circuito es del tipo RC o RL la ecuación diferencial resultante es de primer orden. Si el circuito fuese del tipo RLC o sea, con esos elementos en serie, entonces la representación matemática resultante contendría una variable, su derivada primera y su derivada segunda. A este último tipo de ecuaciones y a los circuitos que las originan se les denomina de segundo orden. Nuestro estudio se va a restringir al estudio de los circuitos de primer orden. Análogamente al desarrollo obtenido para un circuito RC se puede proceder para el circuito RL de la fig b se puede escribir: y sustituyendo en función de i L y dividiendo por L: u L ( + u R ( = e ( (11.12.) dil R 1 + il= e(. (11.13.) dt L L En general, puede afirmarse que todo circuito compuesto por un número cualquiera de resistencias y fuentes independientes, pero que contenga un solo elemento almacenador de energía, bobina o condensador, es un circuito de primer orden. Para estudiar el comportamiento de un circuito a partir de un instante t=0s deberán considerarse, además de su configuración, las condiciones iniciales del mismo, es decir, la carga inicial del elemento almacenador de energía que interviene en el circuito. Si el elemento almacenador de energía es un condensador, recuérdese que la tensión en bornes de un condensador no puede variar bruscamente. Pag.11.4

5 En efecto, en un sistema físico ninguna variable puede ser infinita, y esto es lo que sucedería con la intensidad de un condensador si su tensión variase bruscamente, al ser du( ic ( = C (11.14.) dt Para el caso de que el elemento almacenador de energía sea una bobina debe tenerse en cuenta que la intensidad por una bobina no puede variar bruscamente. En efecto, si la intensidad en la bobina variase bruscamente, la tensión debería hacerse infinita, al ser di( ul ( = L (11.15.) dt Circuitos sin fuentes de excitación y condiciones iniciales no nulas. En circuitos sin fuentes de excitación pueden existir corrientes y tensiones debido a la energía almacenada en las inductancias o en los condensadores. Se llamará respuesta a entrada cero a la obtenida en un circuito sobre el que no actúa ninguna fuente independiente, estando únicamente sometido a la excitación debida a la carga inicial de sus elementos almacenadores de energía. Figura 11.5 Considérese el circuito de la figura 11.5.a. El interruptor S2 está abierto y mientras que S1 está cerrado, existiendo una tensión E en bornes del condensador. Si en el instante t = 0 se abre S 1 y se cierra S 2, el condensador se descargará a través de la resistencia R, de acuerdo con el circuito de la figura 11.5.b. A partir de t=0s el comportamiento del circuito de la figura 11.5.b viene definido por: u( = R i( para t 0 y u(0)=e (11.16.) Como para el condensador se cumple: du( ic ( = C (11.17.) dt las expresiones anteriores pueden escribirse Pag.11.5

6 du 1 + u= 0 para t 0 y u(0) = E dt RC (11.18.) Si se hubiese tomado como variable la intensidad, al ser: 1 t u( = u(0) i( z) dz C 0 las dos expresiones de (11.16) quedarían en la forma: 1 t Ri( + i( z) dz = u(0) para t 0 C 0 u(0) = E donde se pone de manifiesto, con claridad, la importancia de considerar el valor inicial de la tensión, u(0). Si se deriva con respecto al tiempo queda: di 1 + i= 0 para t 0 dt RC Para describir completamente el circuito es preciso especificar el valor inicial de i(. A partir de (11.16) se obtiene: u(0) i (0) = = R Nótese que las ecuaciones diferenciales en función de la tensión o de la intensidad son idénticas, variando únicamente el valor inicial de la variable considerada. Ambas ecuaciones son diferenciales, lineales, de primer orden y homogéneas. La solución general de la ecuación diferencial (11.18) es: RC E R u( = K1 e (11.19.) El valor de la constante K 1 se determina a partir de la condición inicial u(0) = E. Haciendo t=0s en (11.19) resulta: E = K 1 con lo que la expresión de u( en el circuito estudiado es: RC u( = E e para t 0 (11.20.) análogamente se obtiene para la intensidad: E RC i( = e para t 0 R En la figura 11.6 se representan las gráficas de ambas variables. (11.21.) Pag.11.6

7 Figura 11.6 El producto RC que caracteriza la respuesta exponencial de ambas variables tiene dimensión de tiempo y recibe el nombre de constante de tiempo del circuito. τ = RC Si R viene dada en ohmios y C en faradios, τ viene expresado en segundos. La inversa de dicho término tiene la dimensión de una frecuencia y se denomina frecuencia natural del circuito. El hecho de que se le llame frecuencia no debe inducir a confusión pensando que da lugar a oscilaciones de tipo senoidal en la respuesta. Este nombre proviene de la dimensión del término. En cuanto al calificativo de natural se debe al hecho de que caracteriza la respuesta del sistema cuando no existen fuentes de excitación externas. Es decir, caracteriza la que podemos llamar respuesta propia, libre o natural del circuito. En este caso particular, la no existencia de fuentes de excitación implica el que, transcurrido un tiempo infinito, todas las tensiones e intensidades son nulas. Esto es lógico, ya que la energía almacenada inicialmente en el condensador acaba por disiparse totalmente en la resistencia. El tiempo necesario para cualquier variable pase de su valor inicial a cero es infinito. Sin embargo, transcurrido un tiempo τ se ha producido un 63,2 por 100 de esta variación, pasado un tiempo 2τ el 86,5 por 100 y pasado un tiempo 3τ el 95 por 100. Es decir, cuanto menor es la constante de tiempo, mayor es la rapidez con que el circuito tiende a su estado final, pudiendo considerarse que se ha alcanzado dicho estado final al cabo de un tiempo igual a tres o cuatro veces el valor de τ. Muchos autores prefieren valores más conservadores y consideran que el estado final se alcanza después de un tiempo igual o superior a cinco veces la constante de tiempo, pero lo verdaderamente importante es que esta constante es un buen referente de la rapidez de respuesta de un circuito. Para fijar ideas, considérese de nuevo el circuito de la figura 11.5, pero asignando los siguientes valores a los diferentes componentes: E = 100 V; R = 10 Ω; C = 20µF De acuerdo con (11.20), la tensión en el condensador es:, 0002 u( = 100 e 0 para t 0 Pag.11.7

8 la constante de tiempo del circuito es: τ = RC = s = s = 0,2 ms mientras que la frecuencia natural del circuito resulta: s o = 1/RC = 5000 s -1 La tensión en el condensador al cabo de un tiempo τ es: u(τ) = 100 e ,0002 = 36,788V es decir, ha sufrido una variación del 63,2 %. Del mismo modo, al cabo de un tiempo 3τ la tensión en el condensador es: u(3τ) = 100 e -3 = 4,98V y al cabo de un tiempo 4τ: u(4τ) = 100 / e 4 = 1,83 V. Es decir, al cabo de 4 0,2ms = 0,8 ms ya se ha producido un 98,17 por 100 de la variación total de la tensión en el condensador. Derivando la expresión (11.20) con respecto a t, y haciendo t = 0, se tiene la pendiente en el origen de la tensión: du( E E = = dt t=0 RC τ es decir, la pendiente en el origen corta al eje de tiempos en el punto t = τ. Esto confirma la idea de que cuanto menor es τ (mayor pendiente en el origen) mayor es la rapidez con la que el circuito tiende a su estado final. Por último, se hará notar que la respuesta del circuito a entrada cero es proporcional a la carga inicial del elemento almacenador de energía. A partir de las expresiones (11.20) y (11.21) se aprecia fácilmente que la tensión u y la intensidad i son proporcionales a la tensión inicial en el condensador, E. Los resultados obtenidos para el circuito RC de la figura 11.5 son aplicables a cualquier circuito que contenga cualquier número de resistencias y un solo elemento almacenador de energía, inicialmente cargado. Nótese que, si existe un solo elemento almacenador de energía, la ecuación diferencial que caracteriza el circuito es de primer orden, ya que ese elemento define una sola condición, su carga inicial. Pag.11.8

9 Se resumen a continuación las propiedades más importantes de estos circuitos de primer orden sin fuentes de excitación. 1) La respuesta a entrada cero viene definida por una ecuación diferencial lineal y homogénea del tipo: df 1 + f =0 (11.22.) dt τ en donde f representa la tensión o intensidad en cualquier elemento del circuito, carga en el condensador o flujo en la bobina, es decir, cualquier de las variables del circuito considerado. 2) La solución de la ecuación (11.22) es: f( = f(0) e - t/τ para t > 0 (11.23.) en donde f(0) es el valor de la variable f para t = 0, que se determina a partir de las condiciones iniciales. 3) De acuerdo con lo anterior, todas las variables del circuito vienen caracterizadas por la misma variación de tipo exponencial, difiriendo unas de otras en su valor inicial. 4) El coeficiente 1/τ en la expresión exponencial es la llamada frecuencia natural del circuito, que se expresa en s -1. 5) τ es la constante de tiempo del circuito que se expresa en segundos. Para un circuito formado por una resistencia y un condensador se ha visto que dicha constante es: τ = RC. Del mismo modo para un circuito formado por una resistencia y una bobina se verá que dicha constante es L/R, siendo L la inductancia de la bobina. 6) Cuanto menor es la constante de tiempo del circuito, mayor es la velocidad con la que las variables se aproximan a su estado final. 7) La respuesta del circuito es proporcional a la carga inicial del elemento almacenador de energía. Ejemplo En el circuito de la figura 11.7 el interruptor S 1 pasa a la posición b para t=0s, y simultáneamente se cierra el interruptor S 2. Calcular las expresiones de la tensión en la bobina y la intensidad en la resistencia para t 0, así como la energía disipada en R desde t = 0 hasta t =. Figura 11.7 Pag.11.9

10 La intensidad por la bobina, justo antes de efectuarse el cambio de posición de los interruptores, es: i L (t<0) = I Dicha intensidad no variará bruscamente al cambiar los interruptores; luego: i L (t<0) = i L (0) = I. El circuito a estudiar se representa en la figura Figura 11.8 Las ecuaciones que definen este circuito son: di L = Ri para t 0 dt e i(0) = I o bien di R + i = 0 para t 0 e i(0) = I dt L Comparando con la expresión (11.22) se tiene que la constante de tiempo para este circuito es τ=l/r, pudiéndose escribir inmediatamente, para t 0: Rt L i( = I e y u( = IR e Rt L La energía disipada en la resistencia desde t = 0 hasta t = es: 2 1 W u i dt R I e dt LI 2 = = = que coincide, como es lógico, con la energía almacenada en la bobina en el instante inicial. La expresión (11.23) indica que, para calcular la respuesta de un circuito que contiene un solo elemento almacenador de energía, y en el que no existen fuentes de excitación, basta conocer el estado inicial de ese elemento y la constante de tiempo del circuito. 2Rt L Pag.11.10

11 La sustitución de dos o más elementos por su equivalente no variará la respuesta del circuito y, por consiguiente, no influirá sobre su constante de tiempo. Por tanto, para calcular la constante de tiempo de un circuito que contenga varias resistencias procederemos de la siguiente manera: 1) Se calcula la resistencia equivalente, Req, respecto de los bornes del elemento almacenador de energía. 2) Si dicho elemento es un condensador de C faradios, la constante de tiempo del circuito es: τ = Req C 3) Si dicho elemento es una bobina de L henrios, la constante de tiempo del circuito es: τ = L/Req Ejemplo El condensador de la figura 11.9 tiene una carga inicial de 3 culombios. El interruptor S se cierra para t = 0. Calcular la expresión de la intensidad por la resistencia de 3Ω para t 0. Figura 11.9 La tensión inicial en el condensador es: u(t<0) = u(0) = q(0)/c = 3/0,005 = 600V de donde: u1 (0) = 600 = 200V La resistencia equivalente, vista desde el condensador, es: 3 6 Req = 4 = 6Ω 3+ 6 luego la constante de tiempo del circuito es: Pag.11.11

12 y de acuerdo con (11.23) se tiene: τ = Req C = 6 5 l0-3 = s 200 i1( = e 3 0,03s Nótese que la tensión en el condensador no cambia al cerrar el interruptor, por lo que el cálculo de las condiciones iniciales en la resistencia de 3Ω se ha hecho partiendo de que la tensión inicial entre A y B es de 600 V, es decir, considerando al condensador como una fuente de tensión ideal de valor igual a su tensión inicial. Si se hubiese tratado de una bobina, ésta se comportaría inicialmente, con respecto al resto del circuito, como una fuente de intensidad ideal de valor igual a la intensidad que recorre la bobina en el instante inicial. Es decir: 1) Para el cálculo de valores iniciales en un circuito, un condensador cargado se sustituye por una fuente ideal de tensión, de valor igual a su tensión inicial. Si el condensador está descargado, U=0V, se comporta inicialmente como un cortocircuito. 2) Para el cálculo de valores iniciales en un circuito, una bobina cargada se sustituye por una fuente ideal de intensidad, de valor igual a la intensidad que inicialmente la recorre. Si la bobina está descargada, I=0A, se comporta inicialmente como un circuito abierto Circuitos con fuentes de excitación y condiciones iniciales nulas. Considérese a continuación el caso de un circuito en el que no hay ningún elemento cargado y en el que actúan fuentes de excitación independientes a partir de un instante inicial t = 0. Antes de dicho instante, todas las variables del circuito son nulas, por lo que llamaremos a la respuesta obtenida respuesta a estado inicial cero. Sea el circuito representado en la figura El condensador C está descargado y el interruptor S, que está cerrado inicialmente, se abre en el instante t = 0. Figura Tomada como incógnita la tensión u en el condensador, se cumple que Pag.11.12

13 es decir: u du + C = i( para t 0 y u(0) = 0 R dt du u = i( para t 0 y u(0) = 0 dt CR C (11.24.) Para resolver la ecuación diferencial se calculará primero la solución general de la parte homogénea y le añadiremos una solución particular. La parte homogénea coincide con la ecuación diferencial de (11.18) y su solución está expresada en (11.19), en donde interviene una constante K 1 a determinar. La solución particular dependerá del tipo de excitación i(. Es importante notar que la solución de (11.24) consta de dos partes: Una es la solución de la ecuación homogénea, independiente, por tanto, de la fuente de excitación, que constituye la respuesta natural del circuito y que es de igual forma que la debida a cargas iniciales. Esta respuesta, en el caso de circuitos formados por elementos pasivos, viene definida por una exponencial decreciente y es despreciable al cabo de cierto tiempo, por lo que constituye la parte transitoria de la solución. Otra es la solución particular de la ecuación completa, dependiente, por tanto, de la fuente de excitación, que constituye la respuesta forzada y que permanece en tanto subsista la fuente, por lo que se denomina respuesta permanente. Ahora se llevará a cabo el estudio de la solución de (11.24) para una fuente de excitación i( continua. Si se supone que para t 0 es: i( = I, para obtener una solución particular de (11.24) sec toma u(=k. Sustituyendo en (11.24) se tiene: de donde: K = RI y la solución de (11.24) es: 1 1 K = I CR C RC u( = K1 e resp. natural + RI resp. permanente con u(0)=0, de donde 0 = K 1 + R I; K 1 = - RI, luego: o bien: RC u( = RI (1 e ) para t 0 τ u( = RI (1 e ) para t 0 en función de la constante de tiempo del circuito. En el caso de fuentes de excitación continua es muy fácil escribir directamente la respuesta de los circuitos de primer orden. En efecto, la ecuación diferencial a la que responden estos circuitos es: Pag.11.13

14 df dt 1 + f = g ( (11.25.) τ Al ser g( = K (fuentes de excitación continua), la solución general de (11.25) es: f ( = K 1 e τ +τk Haciendo t = y t = 0, se obtiene: f( ) = τk y f(0) = K 1 + τk, es decir, K 1 = f(0) f( ) con lo que se puede escribir f ( = f ( ) τ ( f ( ) f (0)) e (11.26.) permanente natural o transitoria La expresión (11.26) indica que para escribir la respuesta basta conocer: - La constante de tiempo del circuito,τ. - El valor inicial de la variable, f(0). - El valor final de la variable, f( ). En lo que se refiere a la constante de tiempo y al valor inicial, en el apartado anterior se indicó como calcularlos. Respecto al valor final, al ser las fuentes de excitación constantes, también lo serán las respuestas. Para el cálculo de la respuesta permanente de un circuito alimentado con fuentes de corriente continua recuérdese que: 1) En régimen permanente, en corriente continua, un condensador se comporta como un circuito abierto ya que u C = cte. duc C = ic ( = 0 dt 2) En régimen permanente, en corriente continua, una bobina se comporta como un cortocircuito al ser i L = cte. dil L = ul =0 dt Volviendo sobre el circuito de la figura 11.10, se va a calcular la expresión de la tensión en el condensador, u(, a partir de las consideraciones anteriores, supuesto que i( = I. Tensión inicial en el condensador: u(0) = 0. Tensión final en el condensador: Para t = el condensador se comporta como un circuito abierto y la intensidad I de la fuente pasará totalmente por la resistencia. Por estar, el condensador en paralelo con R, la tensión en bornes del mismo es la tensión en la resistencia, es decir: u( ) = RI Constante de tiempo del circuito: La respuesta natural y, por tanto, la constante de tiempo, es independiente de las fuentes de excitación. Para el cálculo de τ se eliminan las fuentes de excitación (circuito abierto para fuentes de intensidad y cortocircuito para fuentes de tensión) y se procede según se indicó anteriormente. Para el circuito que nos ocupa τ = RC. Pag.11.14

15 Sustituyendo los valores de u(0), u( ) y τ en la expresión (11.26) resulta: τ. τ u( = RI ( RI 0) e = RI (1 e ) t 0 Ejemplo En el circuito de la figura el interruptor S se cierra para t = 0. Calcular la expresión de la intensidad y la tensión en la bobina para t 0. Figura Valores iniciales: antes de cerrar S era i (t<0) = 0, luego i(0)=0, de donde: u(0) = E. Valores finales: la bobina es un cortocircuito para t =, luego: i( ) = E/R, u( )=0. Constante de tiempo: al sustituir la fuente de tensión E por un cortocircuito, la resistencia equivalente respecto a bornes de la bobina es R; luego: τ = L/R. Se puede, pues, escribir directamente, teniendo en cuenta la expresión Rt Rt E E L L i( = e y u( = E e, ambas para t 0 R R En la figura se representan las gráficas correspondientes. Figura Pag.11.15

16 Ejemplo En el circuito de la figura el interruptor S pasa de la posición a a la b para t = 0. Calcular la expresión de la intensidad por la resistencia de 3Ω para t 0 y dibujar la gráfica correspondiente. Figura Antes de cambiar el interruptor de posición por la resistencia de 3Ω circulan: 6 i( t < 0) = 15 = 9A pero al pasar el interruptor a la posición b, dicha resistencia queda en serie con la bobina, y, por tanto, ha de ser: i(0) = 0 A En régimen permanente, la bobina se comporta como un cortocircuito y, por tanto, 6 i( ) = 15 = 10A Al sustituir la fuente de intensidad por un circuito abierto la resistencia vista desde la bobina es: Req =3 + 6 =9Ω, luego: L 0,3 1 τ = = = s Req 9 30 de donde: 30t i( = e cuya representación gráfica se da en la figura Figura Pag.11.16

17 11.5. Circuitos con fuentes de excitación y condiciones iniciales no nulas. En el caso de un condensador su ecuación de definición, considerando condiciones iniciales no nulas, es: 1 t u( = u(0) + i( z) dz C 0 mientras que en el caso de una bobina resulta ser: 1 t i( = i(0) + u( z) dz L 0 Ejemplo El interruptor S del circuito de la figura lleva en la posición a un tiempo que puede considerarse infinito. Para t = 0 se pasa a la posición b. Calcularemos las expresiones de la tensión en el condensador y la intensidad en cada resistencia a partir de dicho instante. Figura Como el interruptor lleva colocado en la posición a un tiempo infinito, se habrá establecido el régimen permanente en el circuito. Al ser la fuente de 12V de tensión continua, el condensador se comporta en régimen permanente como un circuito abierto y para calcular la tensión a que está cargado se utiliza el circuito de la figura Resultando U = 6V. Figura Pag.11.17

18 Al cambiar el interruptor a la posición b, el condensador mantendrá la tensión de 6 V. En la figura se ha representado el circuito después del cambio del interruptor. Figura La tensión inicial en el condensador del circuito de la figura es de 6V. La tensión inicial entre A y B es, por tanto, 6 V. Inicialmente, se puede escribir el sistema de ecuaciones: resultando: (2 + 3) i 1 (0) - 3 i 3 (0) = 16 6 y - 3 i 1 (0) + (2 + 3) i 3 (0) = 6, i 1 (0) = 17/4 A, i 3 (0) = 15/4 A, e i 2 (0) = i 1 (0) i 3 (0) = 0,5A. En cuanto al cálculo de los valores finales, al ser continuas las fuentes de excitación, el condensador se comporta como un circuito abierto para t =, pudiendo escribir: i 1 ( ) = i 3 ( ) = 16/(2+2) = 4A, i 2 ( ) = 0 y u AB = 2i 3 ( ) = 8V resultando: i 1 (0) = 17/4 A, i 3 (0) = 15/4 A, e i 2 (0) = i 1 (0) i 3 (0) = 0,5A. La resistencia vista desde bornes del condensador es: 2 2 Req = 3 + = 4Ω luego: τ = Req C = s, y teniendo en cuenta la expresión (11.16), se escribirá: 1 i1( = i2( = 2 1 i3( = 4 4 uc( = 8 2 e e e 25t 25t e 25t 25t Pag.11.18

19 La representación gráfica se da en la figura Ejemplo En el circuito de la figura el interruptor S 1 lleva cerrado sobre la posición a un tiempo que puede considerarse infinito. Para t = 0 se pasa S 1 a la posición b y simultáneamente se cierra S 2. Calcular las expresiones de i l, i 2 e i L para t > 0. 1 Figura Antes de cerrar S 2, como S 1 lleva cerrado tiempo suficiente para que se halle establecido el régimen permanente, la bobina se está comportando como un cortocircuito, luego: 2 il( 0) = 6 = 4A Pag.11.19

20 Al cambiar de posición S 1 y cerrar S 2, la intensidad por la bobina ha de seguir teniendo este valor. El circuito a estudiar se representa en la figura Figura Valores iniciales: Inicialmente la bobina mantiene su corriente, luego: il( 0) = 4A i1(0) = 4A 10 i2 (0) = = 10A 1 Valores finales: En régimen permanente, la bobina se comporta como un cortocircuito, luego: 10 il( ) = = 5A 2 i1 ( ) = 5A i2 ( ) = 10A Constante de tiempo La resistencia equivalente vista desde los terminales de la bobina es: Req = 2Ω, de donde: τ L q = Re 0,2 = = 0,1s 2 A partir de estos valores se puede escribir: il( = e 10t t 0 10t i1 ( = 5 9 e t > 0 i2 ( = 10A t > 0 Obsérvese que al estar en paralelo la resistencia de 1Ω con la fuente de tensión su valor no influye en el resto del circuito, no interviniendo en la constante de tiempo del mismo. La intensidad en esta resistencia se mantiene constante. Pag.11.20

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Práctica 2. Circuitos con bobinas y condensadores en CC y CA

Práctica 2. Circuitos con bobinas y condensadores en CC y CA Electrotecnia y Electrónica (34519) Grado de Ingeniería Química Práctica 2. Circuitos con bobinas y condensadores en CC y CA Francisco Andrés Candelas Herías Con la colaboración de Alberto Seva Follana

Más detalles

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

Índice. prólogo a la tercera edición...13

Índice. prólogo a la tercera edición...13 Índice prólogo a la tercera edición...13 Capítulo 1. CONCEPTOS BÁSICOS Y LEYES FUNDAMENTALES DE LOS CIRCUITOS...17 1.1 CORRIENTE ELÉCTRICA...18 1.1.1 Densidad de corriente...23 1.2 LEY DE OHM...23 1.3

Más detalles

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos

Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo en convertidores CC-CC clásicos ESCUELA POLITÉCNICA SUPERIOR Grupo de Sistemas Electrónicos de Potencia PROYECTO FIN DE CARRERA INGENIERÍA INDUSTRIAL Estudio y simulación de la influencia de la estructura Transformador-Bobina Paralelo

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL.

TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. TEMA 1.- SISTEMAS AUTOMÁTICOS Y DE CONTROL. INDICE 1.-INTRODUCCIÓN/DEFINICIONES 2.-CONCEPTOS/DIAGRAMA DE BLOQUES 3.-TIPOS DE SISTEMAS DE CONTROL 4.-TRANSFORMADA DE LAPLACE 1.- INTRODUCCIÓN/DEFINICIONES:

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS

TEMA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS CUSO: º DSOLLO D PODUCTOS LCTÓNICOS. MÓDULO: LCTÓNIC NLÓGIC TM: NÁLISIS D CICUITOS LÉCTICOS NÁLISIS D CICUITOS LÉCTICOS. INTODUCCIÓN.. LYS D KICHOFF.. NÁLISIS D CICUITOS N COINT CONTÍNU. 4. OTOS MÉTODOS

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Bloque 5 Análisis de circuitos en régimen transitorio. Teoría de Circuitos

Bloque 5 Análisis de circuitos en régimen transitorio. Teoría de Circuitos Bloque 5 Análisis de circuitos en régimen transitorio Teoría de Circuitos 5.1 Análisis de circuitos de primer orden en régimen transitorio Régimen transitorio de los circuitos eléctricos En los capítulos

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES

PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES PROYECTO DISEÑO Y CONSTRUCCIÓN DE UNA PLATAFORMA DE TELEMEDICINA PARA EL MONITOREO DE BIOSEÑALES PRODUCTO P06 UNIDAD MODULAR FUENTE DE ALIMENTACIÓN Actividades: A06 1: Diseño y estructuración de las diferentes

Más detalles

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente UIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos TEMA 6: Análisis de circuitos acoplados magnéticamente TEMA 6 6. Inductancia mutua. Criterio del punto. Autoinducción Hasta ahora hemos

Más detalles

Inductancia y Circuítos LRC

Inductancia y Circuítos LRC Inductancia Mutua Inductancia y Circuítos LRC un campo magnético en la bobina 2, creando un flujo magnético en 2 Φ B2 = M 21 i 1. De la ley de Faraday se tiene la fem inducida en 2 debido al cambio temporal

Más detalles

Relación de Problemas: CORRIENTE ELECTRICA

Relación de Problemas: CORRIENTE ELECTRICA Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento

Más detalles

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente FEM y Circuitos DC Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción Las baterías proporcionan un

Más detalles

Propiedades de la corriente alterna

Propiedades de la corriente alterna Propiedades de la corriente alterna Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente.

Más detalles

COMPONENTES Y CIRCUITOS (CC)

COMPONENTES Y CIRCUITOS (CC) COMPONENTES Y CIRCUITOS (CC) La asignatura Componentes y Circuitos (CC) tiene carácter troncal dentro de las titulaciones de Ingeniería Técnica de Telecomunicación, especialidad en Sistemas de Telecomunicación

Más detalles

Fundamentos de medición de temperatura

Fundamentos de medición de temperatura Fundamentos de medición de temperatura Termistores Termopares David Márquez Jesús Calderón Termistores Resistencia variable con la temperatura Construidos con semiconductores NTC: Coeficiente de temperatura

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

Cuando un condensador se comporta como una bobina

Cuando un condensador se comporta como una bobina Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009-2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2 2 A li i d l A lifi d O i l 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

TEMA 8 Reguladores e interruptores estáticos de alterna

TEMA 8 Reguladores e interruptores estáticos de alterna TEMA 8 : Reguladores e interruptores estáticos de alterna. TEMA 8 Reguladores e interruptores estáticos de alterna Índice 8.1.- Introducción.... 1 8.2.- Interruptores estáticos de corriente alterna...

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

TEMA 3: Control secuencial

TEMA 3: Control secuencial TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

Fig 4-7 Curva característica de un inversor real

Fig 4-7 Curva característica de un inversor real Clase 15: Criterios de Comparación de Familias Lógicas. Características del Inversor Real Cuando comenzamos a trabajar con un inversor real comienzan a aparecer algunos inconvenientes que no teníamos en

Más detalles

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR PRATIA - 15 ARGA Y DESARGA DE UN ONDENSADOR I - Finalidades 1.- Estudiar las características de carga y descarga de un circuito R y la temporización implicada en el fenómeno. 2.- Estudiar la constante

Más detalles

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2010 ELECTROTECNIA. CÓDIGO 148

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2010 ELECTROTECNIA. CÓDIGO 148 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2010 ELECTROTECNIA. CÓDIGO 148 Elige una de las dos opciones de examen siguientes (opción A u opción B). No pueden contestarse

Más detalles

Clasificación y Análisis de los Convertidores Conmutados PWM

Clasificación y Análisis de los Convertidores Conmutados PWM Apéndice A Clasificación y Análisis de los Convertidores Conmutados PWM Objetivos del Apéndice Para introducir las topologías clásicas, se clasifican someramente las topologías básicas y sus propiedades

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace.

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. 2.4.-Análisis de Circuitos en el dominio de Laplace.

Más detalles

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1.

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1. Dos pilas de f.e.m. y resistencias internas diferentes se conectan en paralelo para formar un único generador. Determinar la f.e.m. y resistencia interna equivalentes. Denominamos E i a las f.e.m. de las

Más detalles

CAPITULO II RESISTENCIAS Y FUENTES

CAPITULO II RESISTENCIAS Y FUENTES CAPITULO II RESISTENCIAS Y FUENTES 2.1.-INTRODUCCION. Para determinar las propiedades de cualquier tipo de sistema es necesario conocer las características de los componentes básicos de dicho sistema.

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

Circuitos a diodos. Tema 1.5 TEST DE AUTOEVALUACIÓN

Circuitos a diodos. Tema 1.5 TEST DE AUTOEVALUACIÓN TEST DE AUTOEVALUACIÓN En este tema se plantean cuestiones sobre circuitos donde intervienen preferentemente los diodos vistos con anterioridad (de unión, zener...). Se trata de circuitos básicos de uso

Más detalles

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores CRCUTO EQUALENTE DE UN TRANSFORMADOR La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES Prof. Gerardo Maestre González Circuitos con realimentación negativa. Realimentar un amplificador consiste en llevar parte de la señal de salida

Más detalles

Resistencias en serie I =I 1 +I 2 = V R 1

Resistencias en serie I =I 1 +I 2 = V R 1 Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple.

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Comparador simple El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Vo +Vcc Vi-Vref El comparador analógico se denomina también ADC de un bit.

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Aplicación de la Transformada de Laplace y las ecuaciones

Más detalles

Fundamentos de Electricidad de C.C.

Fundamentos de Electricidad de C.C. LEY DE OHM El flujo de los electrones a través de un circuito se parece en muchas cosas al flujo del agua en las tuberías. Por tanto, se puede comprender la acción de una corriente eléctrica comparando

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

INTRODUCCIÓN A LA CONVECCIÓN

INTRODUCCIÓN A LA CONVECCIÓN Diapositiva 1 INTRODUCCIÓN A LA CONVECCIÓN JM Corberán, R Royo 1 Diapositiva 1. CLASIFICACIÓN SEGÚN: ÍNDICE 1.1. CAUSA MOVIMIENTO FLUIDO - Forzada - Libre 1.. CONFIGURACIÓN DE FLUJO: - Flujo externo -

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PUEBAS DE ACCESO A A UNESDAD.O.G.S.E. CUSO 00-00 - CONOCATOA: EECTOTECNA E AUMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA TEMA 5. MCOEECTÓCA AAÓGCA TEGADA 5.. esistencias activas En el capítulo tercero se puso de manifiesto la dificultad que conlleva la realización de resistencias pasivas de elevado valor con tecnología CMOS,

Más detalles

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO 1.- INTRODUCCION Los tres componentes pasivos que, en general, forman parte de los circuitos eléctricos son los resistores, los inductores y los capacitores.

Más detalles

XIII. CIRCUITO RL. En un circuito RL conectado en serie con un generador de onda cuadrada,

XIII. CIRCUITO RL. En un circuito RL conectado en serie con un generador de onda cuadrada, XIII. CIRCUITO RL Objetivos En un circuito RL conectado en serie con un generador de onda cuadrada, a. Obtener con ayuda del osciloscopio curvas características de voltaje V L de la bobina en función del

Más detalles

Orientación para el diseño de fuentes de alimentación

Orientación para el diseño de fuentes de alimentación Orientación para el diseño de fuentes de alimentación Por Carlos Díaz http://www.electron.es.vg/? 0.- Introducción? 1.- Transformador de entrada? 2.- Rectificadores a diodos o Rectificador a un diodo o

Más detalles

Elementos almacenadotes de energía

Elementos almacenadotes de energía V Elementos almacenadotes de energía Objetivos: o Describir uno de los elementos importantes almacenadores de energía muy comúnmente utilizado en los circuitos eléctricos como es el Capacitor o Calcular

Más detalles

q = CV Donde c es una constante de proporcionalidad conocida como capacitancia y su unidad es el Faradio (F) =.

q = CV Donde c es una constante de proporcionalidad conocida como capacitancia y su unidad es el Faradio (F) =. 9 CAPACITORES. Un capacitor es un dispositivo de dos terminales, consiste en cuerpos conductores separados por un material no conductor que se conoce con el nombre de aislante o dieléctrico. El símbolo

Más detalles

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad 1 PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA 5.1. Capacidad Es la propiedad que poseen los circuitos eléctricos que tiende a evitar los cambios de tensión. Cuando se aplica

Más detalles

Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR

Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR Tema 7: Introducción Qué es un amplificador operacional? Un amplificador operacional ideal es un amplificador diferencial con ganancia infinita e impedancia

Más detalles

Unidad 2 - Corriente Alterna Conceptos:

Unidad 2 - Corriente Alterna Conceptos: Unidad 2 - Corriente Alterna Conceptos: 1. Campo Magnético 2. Ley de inducción de Faraday 3. Inductor Campo Magnético (B) carga eléctrica E carga eléctrica Cargas eléctricas generan un campo eléctrico

Más detalles

TEMA 4 CONDENSADORES

TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES CONDENSADORES Un condensador es un componente que tiene la capacidad de almacenar cargas eléctricas y suministrarlas en un momento apropiado durante un espacio de tiempo muy corto.

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores C.C.)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores C.C.) PROLEMAS E ELECTRÓNCA ANALÓGCA (Transistores C.C.) Escuela Politécnica Superior Profesor. arío García Rodríguez ..- En el circuito de la figura si α. 98 y E.7 oltios, calcular el valor de la resistencia

Más detalles

Contenido del módulo 3 (Parte 66)

Contenido del módulo 3 (Parte 66) 3.1 Teoría de los electrones Contenido del módulo 3 (Parte 66) Localización en libro "Sistemas Eléctricos y Electrónicos de las Aeronaves" de Paraninfo Estructura y distribución de las cargas eléctricas

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles