Tema 3.3. Aplicaciones afines. Cónicas y cuádricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3.3. Aplicaciones afines. Cónicas y cuádricas"

Transcripción

1 Tema 3.3. Aplicaciones afines. Cónicas y cuádricas Definición 1. Sean A = (P, V, f) y A = (P, V, f ) dos espacios afines tales que V y V son espacios vectoriales sobre un mismo cuerpo. Una función θ : P P se llamará aplicación afín si T : V V definida por T ( pq) = θ(p)θ(q) es una aplicación lineal. T se llama aplicación lineal asociada a la aplicación afín θ. Si T es un isomorfismo, diremos que θ es una transformación afín. Las transformaciones afines tales que Π = Π se llaman afinidadades. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.1

2 Representación matricial de una aplicación afín Sean A = (P, V, f) y A = (P, V, f ) espacios afines con sistemas de referencia (O, B), (O, B ), respectivamente. Dada una aplicación afín θ : P P definida por θ(q) = θ(p) + T ( pq), la representación matricial de θ es: y 1 y 2 y m = a 11 a a 1n a 21 a a 2n a m1 a m2... a mn x 1 x 2 x n + b 1 b 2 b m siendo A = (a ij ) la matriz de la aplicación lineal T respecto de las bases B y B y (b 1, b 2,..., b n ) las coordenadas del punto θ(o) respecto de (O, B ). Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.2

3 Ejemplo Dada la afinidad θ : R 3 R 3 definida por: θ(x 1, x 2, x 3 ) = (x 2, x 1 + x 2 + x 3 + 1, x 1 + x 2 2) Respecto de la referencia canónica, θ se representa: y 1 y 2 = x 1 x y x 3 2 o, equivalentemente: 1 y 1 y 2 = y x 1 x 2 x 3 Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.3

4 Movimientos Dado un espacio afín euclideo, una afinidad θ : P P se llama movimiento si conserva las distancias entre puntos, es decir: d(θ(p), θ(q)) = d(p, q), p, q P La aplicación lineal T asociada a θ es una isometría, es decir, un isomorfismo que conserva la longitud de los vectores: T ( pq) = θ(p)θ(q) = d(θ(p), θ(q)) = d(p, q) = pq Teorema 1. Una afinidad θ es un movimiento si, y sólo sí, la matriz A asociada a T respecto de una base ortonormal es ortogonal, es decir, A t = A 1 o, equivalentemente, AA t = I. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.4

5 Ejemplo La afinidad de ecuaciones ( y1 y 2 ) = ( ) ( x1 x 2 ) + ( 0 1 ) es un movimiento. Para ello comprobamos que A = ( ) es ortogonal, es decir, AA t = I 2 Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.5

6 Clasificación de los movimientos en R 2 según sus puntos fijos Dado un movimiento Y = C + AX, al calcular sus puntos fijos nos encontramos con el sistema no homogéneo X = C + AX, o equivalentemente (A I)X = C. Entonces pueden darse los siguientes casos: Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.6

7 Simetría deslizante Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.7

8 Ejemplo Consideremos el movimiento de R 2 1 x y = /5 4/5 1 4/5 3/5 1 x y Como rg(a I) = 1 y rg(a I) = 2, el movimiento no tiene puntos fijos y, al ser rg(a I) = 1, se trata de una simetría deslizante, es decir, la composición de una simetría y una traslación. Podemos calcular el eje de la simetría resolviendo el sistema (A I) 2 X = (A I)C. Podemos calcular el vector de la traslación? Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.8

9 Clasificación de los movimientos en R 3 según sus puntos fijos Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.9

10 Giro Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.10

11 Simetría respecto de un plano Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.11

12 Movimiento helicoidal Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.12

13 Ejemplo Consideremos el movimiento de R 3 y 1 y 2 y 3 = 1/2 3/2 0 3/2 1/ x 1 x 2 x Como rg(a I) = 2 y rg(a I) = 3, no tiene puntos fijos. Al ser rg(a I) = 2, se trata de un movimiento helicoidal, es decir, la composición de un giro con una traslación. Igual que en el ejemplo de la simetría deslizante, para calcular el eje del giro, resolvemos el sistema (A I) 2 X = (A I)C. Podemos calcular el ángulo del giro? Y el vector de la traslación? Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.13

14 Cónicas Definición 2. Una cónica es el lugar geométrico de los puntos que resultan de la intersección en R 3 de un cono generalizado y un plano. La ecuación de una cónica es del tipo: ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 en la que los coeficientes a, b, c, d, e y f son reales no todos nulos. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.14

15 Representación matricial de las cónicas La ecuación general de una cónica ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 se puede escribir de forma matricial como: ( ) ( x d (x, y) A + 2(x, y) y e ) + f = 0 o, equivalentemente (1, x, y) B A = ( a b b c ) 1 x y y B = = 0, siendo f d e d a b e b c Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.15

16 Una primera clasificación de las cónicas A partir de los signos de los autovalores de la matriz A, podemos dar una primera clasificación de las cónicas, teniendo en cuenta que algunos de los elementos obtenidos pueden ser degenerados (puntos, rectas) o vacíos. Se pueden dar los siguientes casos: 1. Si λµ > 0, tenemos una elipse. 2. Si λµ < 0, tenemos una hipérbola. 3. Si λµ = 0, tenemos una parábola. Para descartar los casos degenerados o vacíos y obtener más información, deberíamos completar cuadrados y operar hasta llegar a las ecuaciones reducidas. Otra alternativa es usar el siguiente resultado. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.16

17 Clasificación de las cónicas mediante invariantes Teorema 2. Los números I 1 = tr(a), I 2 = det(a) e I 3 = det(b) no varían si aplicamos a la cónica cualquier movimiento. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.17

18 Ecuaciones reducidas de las cónicas Elipse real: x2 a 2 + y2 b 2 1 = 0 Elipse imaginaria: x2 a 2 + y2 b = 0 Punto: x2 a 2 + y2 b 2 = 0 Hipérbola: x2 y2 1 = 0 a 2 b 2 Parábola: { x 2 2py = 0 y 2 2px = 0 Par de rectas paralelas: x 2 ± a 2 = 0 Par de rectas reales coincidentes: x 2 = 0 Par de rectas secantes: a 2 x 2 b 2 y 2 = 0 Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.18

19 Elipse x2 a 2 + y2 b 2 1 = 0 Llamamos elipse al lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos F y F es constante. a y b son los semiejes de la elipse, mientras que los puntos F (c, 0) y F ( c, 0) se llaman focos de la elipse, siendo c = a 2 b 2. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.19

20 Hipérbola x2 a 2 y2 b 2 1 = 0 Llamamos hipérbola al lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos F y F. Los valores a y b son los semiejes de la hipérbola, mientras que los puntos F (c, 0) y F ( c, 0) se llaman focos de la hipérbola, siendo c = a 2 + b 2. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.20

21 Parábola y 2 2px = 0 Llamamos parábola al lugar geométrico que equidistan de un punto fijo F llamado foco y de una recta fija d llamada directriz. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.21

22 Buscando la ecuación reducida La ecuación general de una cónica: ax 2 + 2bxy + cy 2 + 2dx + 2ey + f = 0 se puede escribir de forma matricial como: ( ) x (x, y) A + 2(x, y) y ( d e ) + f = 0 Diagonalizando ortogonalmente la matriz A, calculamos ( los ) autovalores ( ) λ y µ x u y la matriz de paso P. Haciendo el cambio de base = P : y v (u, v) ( λ 0 0 µ ) ( u v Por tanto, la expresión de la cónica queda: ) + 2(u, v) P t ( d e λu 2 + µv 2 + gu + hv + k = 0 ) + f = A partir de esta expresión, tendremos que completar cuadrados para encontrar la expresión reducida de la cónica, como puede verse en el siguiente ejemplo. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.22

23 Ejemplo Clasifique la siguiente cónica: x 2 + y 2 6xy + 4x + 4y = 0 Sus invariantes son I 3 0 e I 2 < 0, con lo que se trata de una hipérbola. Escrita en forma matricial sería de la forma: ( ) ( ) ( ) 1 3 x 2 (x, y) + 2(x, y) = y 2 Diagonalizando ortogonalmente la matriz A, obtenemos: ( ) ( ) ( 1 ) 2 0 u 2 1 ( 2 2 (u, v) + 2(u, v) 0 4 v ) = 0 Lo que nos da: 2u 2 +4v u = 0. Completando cuadrados, y llamando X = u 2 e Y = v, obtenemos la ecuación reducida de la hipérbola: X 2 ( 2) Y = 0 2 Por tanto, los semiejes de la hipérbola son a = 2 y b = 1 y sus focos son F = ( 3, 0) y F = ( 3, 0). Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.23

24 Cuádricas Se denomina cuádrica al lugar geométrico de los puntos del espacio afín eucĺıdeo cuyas coordenadas satisfacen: a 1 x 2 +a 2 y 2 +a 3 z 2 +2b 1 xy+2b 2 xz+2b 3 yz+2c 1 x+2c 2 y+2c 3 z+d = 0 Expresada de forma matricial queda como: siendo A = siendo (x, y, z)a x y z a 1 b 1 b 2 b 1 a 2 b 3 b 2 b 3 a 3 B = + 2(x, y, z) c 1 c 2 c 3 + d = 0, o bien (1, x, y, z) B d c 1 c 2 c 3 c 1 a 1 b 1 b 2 c 2 b 1 a 2 b 3 c 3 b 2 b 3 a 3 1 x y z = 0, Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.24

25 Cua dricas Emilio Mun oz Velasco. Dpto. Matema tica Aplicada. UMA Tema 3.3 pg.25

26 Cua dricas Emilio Mun oz Velasco. Dpto. Matema tica Aplicada. UMA Tema 3.3 pg.26

27 Cua dricas Emilio Mun oz Velasco. Dpto. Matema tica Aplicada. UMA Tema 3.3 pg.27

28 Clasificación de las cuádricas mediante invariantes Teorema 3. Los números I 1 = tr(a), I 2 = a 2 b 3 b 3 a 3 + a 1 b 2 b 2 a 3 + a 1 b 1 b 1 a 2, I 3 = det(a) e I 4 = det(b) no varían si la cuádrica es afectada por un movimiento. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.28

29 Buscando la ecuación reducida Haciendo un cambio de base y diagonalizando ortogonalmente la matriz A, obtenemos: (u, v, w) α β γ u v w + 2(u, v, w) P t c 1 c 2 c 3 + d = 0 siendo α, β y γ los autovalores de la matriz indicada y P la matriz de paso. Completando cuadrados si es necesario, podemos llegar a alguna de las ecuaciones reducidas siguientes. Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.29

30 Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.30

31 Emilio Mun oz Velasco. Dpto. Matema tica Aplicada. UMA Tema 3.3 pg.31

32 Ejemplo Clasifique y obtenga la ecuación reducida de la cuádrica 2x 2 7y 2 + 2z 2 10xy 8xz 10yz + 6x + 12y 6z + 5 = 0 En forma matricial sería: (x, y, z) x y z +2(x, y, z) = 0 Calculando sus invariantes, obtenemos I 4 = 0, I 3 < 0, I 2 < 0 e I 1 < 0, lo que implica que es un cono real. Para encontrar su ecuación reducida, primero diagonalizamos ortogonalmente la matriz A, obteniendo los autovalores λ = 12, β = 3 y γ = 6 y la matriz de paso P, siendo: P t = Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.32

33 Por tanto, la nueva ecuación de la cuádrica será: (u, v, w) u v +2(u, v, w)p t w 3 +5 = 0 Es decir: 12u u + 3v 2 4 3v + 6w w + 5 = 0 Completando cuadrados obtenemos: 12 ( 1 2 ( 2 2 ( u) v) w) = Si llamamos X = 2 3 +v, Y = 1 2 +w y Z = 1 6 +u, obtenemos la ecuación reducida del cono: 3X 2 + 6Y 2 12Z 2 = 0 Emilio Muñoz Velasco. Dpto. Matemática Aplicada. UMA Tema 3.3 pg.33

CLASIFICACIÓN AFÍN DE CÓNICAS

CLASIFICACIÓN AFÍN DE CÓNICAS Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS CLASIFICACIÓN AFÍN DE CÓNICAS Sea E un R-espacio vectorial de dimensión. Sean E = e 1, e un plano vectorial de E y e 0 un

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

G. SERRANO SOTELO. H = e 0 + E

G. SERRANO SOTELO. H = e 0 + E CLASIFICACIÓN AFÍN DE CÓNICAS Y CUÁDRICAS G. SERRANO SOTELO 1. Cuádricas en un hiperplano afín Sea E un R-espacio vectorial de dimensión n +1. Sean E = e 1,...,e n un hiperplano vectorial de E y e un vector

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Tema 5. Cónicas. Asi, para las identificaciones habituales, (punto proyectivo recta vectorial punto de un plano afín ampliado), RP 2 R3 {0}

Tema 5. Cónicas. Asi, para las identificaciones habituales, (punto proyectivo recta vectorial punto de un plano afín ampliado), RP 2 R3 {0} Tema 5. Cónicas. Introducción. Ejemplos.- El cono C = {(x, y, z) R 3 /x 2 + y 2 = z 2 } está formado por las rectas vectoriales 0 (x 1,x 2, 1) [x 1,x 2, 1] RP 2 con (x 1,x 2, 1) C Π 1 = C 1, circunferencia

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

EXAMEN JUNIO PP 1A SEMANA

EXAMEN JUNIO PP 1A SEMANA EXAMEN JUNIO PP A SEMANA XAVI AZNAR Ejercicio. Defina semejanza, razón de semejanza y movimento asociado a una semejanza. Ejercicio. En el espacio vectorial V 3 (R) sea q la forma cuadrática cuya expresión

Más detalles

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Figura 1: Pendiente de una recta no vertical a partir de dos puntos cualesquiera sobre la recta.

Figura 1: Pendiente de una recta no vertical a partir de dos puntos cualesquiera sobre la recta. Rectas en el Plano Pendiente de una recta La pendiente de una recta no vertical es la razón de cambio vertical con respecto a la cantidad de cambio horizontal entre dos puntos. Para los puntos (x 1, y

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática El mayor portal de recursos educativos a tu servicio! Capítulo 5 Cónicas 5.1 Definiciones y ecuaciones reducidas Nota En

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Docente Matemáticas. Marzo 11 de 2013

Docente Matemáticas. Marzo 11 de 2013 Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica

Más detalles

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0 Clasificación de cónicas.. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes si es posible:.a x xy + y + x y + 0.b x + xy y 6x + y 0.c x + xy + y x y 0.d x + y + x +

Más detalles

Examen Final Ejercicio 2 (1 hora y 30 min.) 27 de mayo de 2011

Examen Final Ejercicio 2 (1 hora y 30 min.) 27 de mayo de 2011 Álgebra Lineal II Eamen Final Ejercicio 2 ( hora 30 min 27 de mao de 20 En el espacio afín euclideo usual consideramos una pirámide triangular ABCD de la cual sabemos: - A (0, 0, 0, B (, 0, 0, C (0,, -

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

5º Prueba de Evaluación continua (CÓNICAS) 5 de junio de 2012

5º Prueba de Evaluación continua (CÓNICAS) 5 de junio de 2012 Grupo C ETSI de Topografía, Geodesia y Cartografía º Prueba de Evaluación continua (CÓNICAS) de junio de 0.- Clasificar la cónica x y xy x y = 0 A = ; A = 0 Cónica no degenerada. = = = < 0 A c la cónica

Más detalles

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Definición: Un espacio afín es una terna A = (P, V, f) en la que P es un conjunto no vacío, V un espacio vectorial de dimensión finita sobre un cuerpo

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27, Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 marcos.marva@uah.es Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja

Más detalles

Superficie cónica. Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica

Superficie cónica. Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica CÓNICAS Superficie cónica Cuando una recta g que corta a otra recta e, gira alrededor de ella, genera una superficie cónica V Las cónicas como secciones de un cono. Circunferencia Al cortar la superficie

Más detalles

Semana 13: Determinación de cónicas. Haces de cónicas proyectivas.

Semana 13: Determinación de cónicas. Haces de cónicas proyectivas. Semana 13: Determinación de cónicas. Haces de cónicas proyectivas. Sonia L. Rueda ETS Arquitectura. UPM Geometría afín y proyectiva, 2015 Geometría afín y proyectiva 1. Álgebra lineal 2. Geometría afín

Más detalles

CÓNICAS UNIVERSIDAD MARIANA

CÓNICAS UNIVERSIDAD MARIANA Cónicas CÓNICAS UNIVERSIDAD MARIANA FACULTAD DE INGENIERIA INGENIERIA DE PROCESOS 2015 CONTENIDO 1. INTRODUCCION 2. DEFINICON GENERAL 2.1 Ecuación canónica 3. PARABOLA 3.1 Ecuación canónica 4. ELIPSE 4.1

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33

1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33 CUÁDRICAS. CUÁDRICAS.. Cuádricas. Estudio particular. Una cuádrica se dene como el lugar geométrico de los puntos del espacio euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen

Más detalles

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006

Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 2006 ÁLGEBRA Examen extraordinario Ejercicio 4 (55 minutos) 4 de septiembre de 006 1. Calcular la ecuación de una hipérbola que tiene por asíntota a la recta x = y, por eje la recta x+y = 1 y que pasa por el

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

Solución de problemas III 1

Solución de problemas III 1 Solución de problemas III Álgebra II Curso 25-6. Espacio Afín.. Ejercicios Ejercicio.4.3 Encontrar la expresión analítica de las siguientes aplicaciones afines de R 2 : a Giro de centro (, ángulo π/2 b

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Algebra Lineal II. Teresa Arias Marco

Algebra Lineal II. Teresa Arias Marco Algebra Lineal II Cónicas Teresa Arias Marco En este tema estudiaremos las ecuaciones de las cónicas y algunas propiedades de los espejos de forma cónica. Finalmente, estudiaremos cómo reducir una cónica

Más detalles

Interpretación proyectiva de propiedades euclídeas. Elementos

Interpretación proyectiva de propiedades euclídeas. Elementos Tema 9.- Interpretación proyectiva de propiedades euclídeas. Elementos de las cónicas y cuádricas euclídeas 9.1 El espacio euclídeo como subespacio del proyectivo. Consideramos el espacio euclídeo R n

Más detalles

6.1 Definición de espació afín

6.1 Definición de espació afín 6 Espacio afín En este capítulo 61 Definición de espacio afín 62 Sistema de referencia y coordenadas 63 Aplicaciones afines 64 Movimientos 6 Cónicas 2 Álgebra lineal 61 Definición de espació afín Definición

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Tema 1 (Resultados).- Cónicas y Cuádricas.

Tema 1 (Resultados).- Cónicas y Cuádricas. Ingenierías: Aeroespacial, Civil y Química Matemáticas I 010-011 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 1 (Resultados)- Cónicas y Cuádricas Ejercicio

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 5. Geometría en el plano

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 5. Geometría en el plano CIRCUNFERENCIA CÓNICAS La circunferencia de centro C y radio r 0, es el conjunto de puntos del plano cuya distancia al punto C es igual a r. Para obtener su ecuación se tiene en cuenta que un punto X =

Más detalles

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS Objetivos Geometría analítica Introducción L cónica sección cónica Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 A B C D E F 4.1. Circunferencia Circunferencia es el conjunto

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición La elipse es el lugar geométrico de todos los puntos del plano cuya suma de las distancias a dos puntos fijos es constante. Más claramente: Dados (elementos bases de la elipse) Dos puntos

Más detalles

Ejercicios de cónicas.

Ejercicios de cónicas. Ejercicios de cónicas. 1. Demuéstrese que un rayo lanzado en cualquier dirección desde un foco de una elipse y que se refleje en la cónica pasa por el otro foco. 2. Demuéstrese que un rayo lanzado paralelamente

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Curso 03-04

TRANSFORMACIONES GEOMÉTRICAS Curso 03-04 .-En el plano vectorial V, con la base ortonormal { i,j } vectores u (, ) y v (, ) éstos determinan. Hallar en la base { i,j } transformaciones ortogonales tales que f( D ) se consideran los y las semirrectas

Más detalles

TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r.

TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r. TEMA 6 CÓNICAS Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen

Más detalles

MATEMÁTICAS I 13 de junio de 2007

MATEMÁTICAS I 13 de junio de 2007 MATEMÁTICAS I 13 de junio de 2007 2º EXAMEN PARCIAL Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Si

Más detalles

Ejercicios N 3 (MAT 021)

Ejercicios N 3 (MAT 021) Ejercicios N 3 (MAT 021) Universidad Técnica Federico Santa María Departamento de Matemática Septiembre 2009 1 Rectas 1. En cada caso determine la ecuación de la recta L (a) L pasa por el punto P ( 1,

Más detalles

3º B.D. opción Físico-Matemática Matemática II. Parábola.

3º B.D. opción Físico-Matemática Matemática II. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

Álgebra Lineal UCR. Sétimo tema, 2013

Álgebra Lineal UCR. Sétimo tema, 2013 Álgebra Lineal UCR Sétimo tema, 2013 Presentaciones basadas principalmente en Arce,C, Castillo,W y González, J. (2004) Álgebra lineal. Tercera edición. UCR. San Pedro. Otras fuentes serán mencionadas cuando

Más detalles

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1 TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(x,) a las

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 9 de junio de 2008

MATEMÁTICAS I 2º EXAMEN PARCIAL 9 de junio de 2008 MATEMÁTICAS I º EXAMEN PARCIAL 9 de junio de 008 Sólo una respuesta a cada cuestión es correcta Respuesta correcta: 0 puntos Respuesta incorrecta: -0 puntos Respuesta en blanco: 0 puntos - Sean F y G dos

Más detalles

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas 009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.

Más detalles

3º B.D. opción Social-Económico Matemática III. Parábola.

3º B.D. opción Social-Económico Matemática III. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

SECCIONES CÓNICAS. 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar?

SECCIONES CÓNICAS. 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar? SECCIONES CÓNICAS 1. Investiga: porqué el nombre de cónicas para las curvas que vamos a estudiar? 2. ECUACIÓN GENERAL DE SEGUNDO GRADO: es una ecuación de la siguiente forma Ax 2 + Bxy + Cy 2 + Dx + Ey

Más detalles

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro.

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Cónicas 1.- Circunferencia Definición 1 (Definición geométrica) Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Analíticamente la circunferencia

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( )

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( ) MATEMÁTICAS I ( o de GIE y GIERM (Curso - Departamento de Matemática Aplicada II. Universidad de Sevilla Solución de la Primera Prueba Alternativa (-- Ejercicio.. Calcule las raíces cúbicas del número

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 14

ÁLGEBRA Algunas soluciones a la Práctica 14 ÁLGEBRA Algunas soluciones a la Práctica 4 Espacios afines E y E (Curso 008 009) 9. En el espacio E dotado de un sistema de referencia rectangular, determinar la ecuación de todos los planos que contienen

Más detalles

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada: Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO

CAPÍTULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO CAPÍULO 4 OPERADORES LINEALES EN ESPACIOS CON PRODUCO INERNO Adjunto de un operador En un espacio vectorial V con producto interno, cada operador lineal tiene un operador llamado su adjunto que también

Más detalles

Tema 1.- Cónicas y Cuádricas.

Tema 1.- Cónicas y Cuádricas. Ingeniería Química. Matemáticas I. 013-014. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Tema 1.- Cónicas y Cuádricas. 1.1.- Las cónicas. Ecuaciones reducidas.

Más detalles

4) Dada la ecuación x + 4xy + 4y x + 6 y = 0, identifica el lugar geométrico que representa e indica sus elementos característicos (en el sistema original). Realiza un esbozo de su gráfica. La ecuación

Más detalles

1. L U G A R E S G E O M É T R I C O S E N E L P L A N O

1. L U G A R E S G E O M É T R I C O S E N E L P L A N O L U G A R E S G E O M É T R I C O S. C Ó N I C A S 1. L U G A R E S G E O M É T R I C O S E N E L P L A N O Se define un lugar geométrico como el conjunto de puntos del plano que cumplen una determinada

Más detalles

NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular.

NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. ÁLGEBRA Práctica 14 Cónicas (Curso 2007 2008) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Para las siguientes cónicas (1) 5x

Más detalles

Primer Examen Parcial

Primer Examen Parcial Primer Parcial. -. R- -. Departamento de Matemática Aplicada II. Escuela Superior de Ingenieros. Universidad de Sevilla. Primer Examen Parcial. --. Ejercicio. (a) Sea Q : R R la forma cuadrática definida

Más detalles

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Index Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Adjunto, 14 Aplicación, 2 bilineal, 47 biyectiva, 3 compuesta, 3 identidad, 3 inversa, 3 inyectiva,

Más detalles

Solución a los problemas adicionales Espacios afines E 2 y E 3 (Curso )

Solución a los problemas adicionales Espacios afines E 2 y E 3 (Curso ) ÁLGEBRA Solución a los problemas adicionales Espacios afines E 2 y E (Curso 2009 200) I. En el plano afín E 2 y con respecto a una referencia rectangular se tiene el triángulo ABC de vértices A (0, 0),

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

Apellidos: Nombre: NIF:

Apellidos: Nombre: NIF: Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algera Lineal 4//8 Segunda parte Apellidos: Nomre: NIF: Ejercicio puntos) Se considera la aplicación lineal f : R R [x] definida como

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas.

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. Capítulo 5 Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. 5.1 Isometrías y movimientos Partimos de un espacio euclídeo (X, V, +) y recordemos que una isometría de V es un elemento ϕ Gl(V ) que conserva

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Guía de ejercicios N 6 parte Complementos Espacios Vectoriales En los ejercicios que siguen utilizamos la siguientes notaciones: R n [x es el espacio vectorial sobre

Más detalles

Secciones Cónicas. 0.1 Parábolas

Secciones Cónicas. 0.1 Parábolas Secciones Cónicas 0.1 Parábolas Las secciones cónicas, también llamadas cónicas, se obtienen cortando un cono circular recto doble con un plano. Al cambiar la posición del plano se tiene un círculo, una

Más detalles

NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular.

NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. ÁLGEBRA Práctica 15 Cónicas (Curso 2008 2009) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Para las siguientes cónicas (1) 5x

Más detalles

ALGEBRA Y GEOMETRÍA ANALÍTICA

ALGEBRA Y GEOMETRÍA ANALÍTICA FACULTAD DE CIENCIAS EACTAS, INGENIERÍA AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA GEOMETRÍA ANALÍTICA Ecuación General de Segundo Grado Patricia Có Mariel Ugarte -08- ECUACIÓN

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

Semana04[1/25] Secciones Cónicas. 22 de marzo de Secciones Cónicas

Semana04[1/25] Secciones Cónicas. 22 de marzo de Secciones Cónicas Semana04[1/25] 22 de marzo de 2007 Definición de Cónicas Definición de cónicas Semana04[2/25] Cónica Sean D y F una recta y un punto del plano tales que F D. Sea e un número positivo. Una cónica es el

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 10:Ecuación General de Segundo Grado en dos Variables. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos Cónicas como secciones planas de un cono circular

Más detalles

ÁLGEBRA Práctica Clasificar según los valores de λ IR las cónicas de los siguientes haces: 2. Para las siguientes cónicas

ÁLGEBRA Práctica Clasificar según los valores de λ IR las cónicas de los siguientes haces: 2. Para las siguientes cónicas ÁLGEBRA Práctica 14 Cónicas (Curso 2006 2007) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Clasificar según los valores de λ

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles