cónicas. 1. Introducción. 9/ Las cónicas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "cónicas. 1. Introducción. 9/ Las cónicas."

Transcripción

1 9 Las cónicas.. Introducción. Siguiendo la tradición clásica griega y como su nombre da a entender, las secciones cónicas resultan de seccionar una superficie cónica de revolución mediante un plano. Las correspondientes curvas que genera la intersección se denominan circunferencia, elipse, parábola, hipérbola y recta (como caso especial, no contemplado en la siguiente figura). Circunferencia Elipse Parábola ipérbola Apolonio de Perga (6-90 a. de C.) Nació en Perga y estudió en Alejandría. Conoció las obras de Euclides y Arquímedes. No sólo enseñó en la Universidad de Alejandría, sino, también en la de Pérgamo. De ahí que sea conocido, así mismo, como Apolonio de Pérgamo. A pesar de su abundante producción científica, sólo han sobrevivido dos de sus tratados: Secciones en una razón dada y Cónicas. Su mayor contribución matemática está contenida en su obra Cónicas, que constaba de ocho libros de los cuales cuatro se conservan en el texto original, los tres siguientes se conocen por la traducción al árabe realizada por Thabit ibn Qurra, y el octavo ha sido reconstruido en parte. En 70, Edmund alley, astrónomo inglés, amigo de Newton, publicó una traducción al latín de los siete libros. Apolonio Aunque estas ingeniosas creaciones de Apolonio no tenían posibilidad de ser aplicadas a la ciencia de su época, han pasado, no obstante, a quedar justificadas por el hecho de que las secciones cónicas llegan a ser un instrumento teórico fundamental en campos, tales como la dinámica terrestre o mecánica terrestre, pues no debemos olvidar que dichas sec- 56

2 ciones son los caminos que siguen los satélites y los proyectiles por acción de la gravedad. Esta obra de Apolonio que quedó almacenada durante más de quince siglos. Es fácil imaginar el entusiasmo de Johannes Kepler (57-630) cuando descubrió que los planetas tenían por trayectorias «curvas» estudiadas y sistematizadas por el matemático griego Apolonio más de dieciocho siglos antes. Los cometas tienen órbitas elípticas e incluso algunos de ellos tienen órbitas hiperbólicas. En este último caso si alguna vez pasa por las proximidades del Sol, luego se aleja indefinidamente y nunca más vuelve hacia el Sol. Johannes Kepler Esas secciones cónicas o simplemente cónicas serán presentadas, sin embargo, como lugares geométricos planos.. La parábola. Definición: Dados en un plano una recta y, fuera de ella, un punto, se llama parábola de foco y directriz, al lugar geométrico de los puntos del plano que equidistan de la recta y del punto. Vocabulario y propiedades. Llamemos (e) a la recta que pasa (e) por y es perpendicular a. Esta recta es eje de simetría de la parábola, en efecto si pertenece a la parábola entonces su simétrico respecto de (e) también pertenece V ya que = y =. Si llamas K al punto de intersección de (e) con, el punto medio K V del segmento [K] pertenece a la parábola y se denomina vértice de la parábola. Construcción punto por punto de la parábola. A partir de un punto de, se construye el punto de la parábola como la intersección de la mediatriz de [] con la perpendicular a por. 57

3 Construcción de la parábola con escuadra, regla y cordel. Se toma una escuadra y un cordel de longitud igual a uno de sus catetos, por ejemplo el AC y una regla. Se fija uno de los extremos del cordel en y el otro en A. Luego se hace coincidir el borde de la regla con la directriz y mientras el lado CB de la escuadra se desliza sobre el borde de la regla, un lápiz que mantiene tenso el cordel permite dibujar puntos de la parábola. Determinar un lugar geométrico. Enunciado: Sea una recta del plano y un punto no perteneciente a. allar el lugar geométrico de los puntos que son centros de circunferencias que pasan por y son tangentes a. Sea el centro de una circunferencia que pasa por y es tangente a en, entonces = y por lo tanto el punto pertenece a la parábola de foco y directriz. Recíprocamente, si un punto pertenece a la parábola entonces equidista de y de y por lo tanto es centro de una circunferencia que pasa por y es tangente a. (e) V K 58

4 Otra construcción punto por punto de la parábola. Enunciado: Sea una recta del plano y un punto no perteneciente a. Sea (e) la recta perpendicular a por que corta a en K. Dado un punto de (e), se efectúan las construcciones siguientes: La recta (r) que pasa por y es perpendicular a (e). La circunferencia de centro y de radio K. Los puntos de intersección (si existen) y de esa circunferencia con la recta (r). ostrar que: a. y pertenecen a la parábola P de foco y de directriz. b. Todos los puntos de P se obtienen haciendo variar sobre (e). a. En efecto, por ejemplo el punto es tal que la distancia a la (e) recta es K igual al radio de la circunferencia de centro trazada, por lo tanto =. emos así probado que pertenece K a la parábola P de foco y directriz. b. Si es un punto de P y su proyección ortogonal sobre es = y por ello pertenece a una circunferencia de centro y radio K, siendo la proyección ortogonal de sobre el eje (e) de la parábola y a (r) paralela a por. 3. Eje y vértice de la parábola. Sea P la parábola de foco y directriz. se proyecta ortogonalmente en K sobre. Sea un punto de P (obtenido, por ejemplo, por la construcción de la actividad anterior. uestra que el simétrico de respecto de la recta (K) también es un punto de P. Se deduce que: La recta que pasa por el foco de una parábola y es perpendicular a su directriz es un eje de simetría de la parábola. (e) K 59

5 Verifica que el punto medio V del segmento [K]es un punto de la parábola P. Demuestra que V es el único punto de la parábola P, situado sobre el eje (K). Se llama vértice de la parábola P al punto V de la parábola situado sobre el eje de simetría. 4. Ecuación de la parábola. Dados y designemos por p a la distancia de a. Dicha distancia se denomina parámetro de la parábola. Elijamos un sistema de coordenadas ortonormado de la siguiente manera: el eje (Ox) de las abscisas es la perpendicular al eje de la parábola que pasa por el vértice; el eje (Oy) de las ordenadas es el eje de la parábola. y uestra que las coordenadas de pueden p ser (0; -- ) y que en ese caso la ecuación p de la directriz es y = --. Si (x; y) son las coordenadas de un punto j de la parábola se tiene que: = O i x y por lo tanto =. K Luego la condición necesaria y suficiente para que pertenezca a la parábola es que sus coordenadas verifiquen la siguiente ecuación o sus equivalentes: p y + -- x p = + y -- y p + py x y p = + py py x = y = -----x. p De otro modo los puntos de la parábola P son únicamente aquellos que verifican la ecuación: y = -----x, la cual recibe el nombre de ecuación de la parábola. p Veamos ahora que toda ecuación del tipo y = ax (con a 0) representa una parábola. En efecto si a > 0 alcanza hacer a = y por lo tanto se obtiene una parábola de p parámetro p = En este caso la concavidad de la curva es hacia las ordenadas a positivas. 60

6 Si a < 0, será entonces a > 0 y por lo tanto la representación gráfica de los puntos cuyas coordenadas verifican la ecuación y = ax será simétrica respecto del eje (Ox) de la curva y = ax y por lo tanto será una parábola de parámetro p = y concavidad a hacia las ordenadas negativas. Si el sistema de coordenadas se hubiera elegido de manera que el eje (Ox) de las abscisas coincide con el eje de la parábola y el origen de coordenadas con el vértice, la parábola tendría una ecuación del tipo: x= ay p y las coordenadas del foco serían( -- ; 0) y p la ecuación de la directriz: x = --. y j O i x Ejercicios: alla la ecuación de la parábola, cuyo vértice está en el origen de coordenadas, sabiendo que: a) la parábola está situada en el semiplano inferior, es simétrica con respecto al eje (Oy) y su parámetro p = 3. b) la parábola está situada en el semiplano superior es simétrica con respecto al eje (Oy) y su parámetro p = 0,5; c) la parábola está situada en el semiplano inferior, es simétrica con respecto al eje (Oy) y su parámetro p = -- ; 4 d) la parábola está situada en el semiplano derecho, es simétrica con respecto al eje (Ox) y su parámetro p = 3. Determina el valor del parámetro y la situación de las parábolas siguientes respecto a los ejes coordenados: ) y = 6x; ) x = 5y; 3) y = 4x; 4) x = y. 3 alla la ecuación de la parábola, cuyo vértice está en el origen de coordenadas, sabiendo que: a) la parábola está situada simétricamente con respecto al eje (Ox) y pasa por el punto A (9; 6); b) la parábola está situada simétricamente con respecto al eje (Ox) y pasa por el punto B ( ; 3); c) la parábola está situada simétricamente con respecto al eje (Oy) y pasa por el punto C (; l); d) la parábola está situada simétricamente con respecto al eje (Oy) y pasa por el punto D (4; 8). 6

7 4 Un cable de acero está colgado por los dos extremos; los puntos de sujeción están situados a una misma altura y a una distancia de 0 m. La magnitud de depresión, a la distancia de m de los puntos de sujeción, en sentido horizontal, es igual a 4,4 cm. Determina la magnitud de depresión de este cable en el punto medio de los puntos de sujeción, suponiendo que el cable tiene la forma de un arco de parábola. 5. Ecuación de la parábola cuyo eje es paralelo a un eje coordenado. Veremos que forma tiene la ecuación de una parábola cuando se trasladan los ejes paralelamente a si mismos. Las ecuaciones que nos permiten efectuar dicha traslación son: Es decir y c b = a x b. a x = x' + x 0 y = y' + y 0 siendo (x 0 ; y 0 ) las coordenadas del nuevo origen. Entonces sustituyendo en la ecuación y = ax se tiene: y + y 0 = a(x + x 0 ) = ax + ax 0 x + ax 0. O sea: y = ax + ax 0 x + ax 0 y 0. La ecuación resulta ser de la forma y = ax + bx + c. Veamos ahora si toda ecuación de esta forma representa una parábola referida a ejes paralelos a su eje y a su tangente en el vértice. Para ello efectuemos un cambio de ejes de modo de llevar una ecuación del tipo y = ax + bx + c a una del tipo y = ax que sabemos representa una parábola. y = ax + bx + c = a x + b = = ā -x + c a b x b + c a b x c b a a b x' = x a Entonces efectuando el cambio de ejes: se tiene y = ax. y' y c b =

8 Tenemos así la parábola referida a y los ejes (Ox ) y (Oy ) Las coordenadas del nuevo origen O y son las coordenadas del vértice de la parábola: V b c b ; a V Recordemos que el parámetro es en O x valor absoluto = p y para una a ecuación de la forma y = ax O x el foco es 0;-----, por lo tanto las coordenadas del foco se obtienen de las del vértice sumándole a la ordenada: b c b ; a Para la ecuación de la directriz basta restarle a la ordenada del vértice se tiene y = c b por lo que Resumen: Si a 0 la ecuación y = ax + bx + c es la de una parábola P cuyos elementos principales son: oco Vértice Directriz b c b ; a b V c b ; y a = c b Ejercicios: 5 Dada, en un sistema ortonormal, la ecuación de la parábola P y = x 4x + 3, halla las coordenadas del vértice, foco y la ecuación de la directriz. 6 Identifica las curvas dadas por las siguientes ecuaciones y da analíticamente sus elementos geométricos: focos, vértices y directrices. x + 3 y = y = x + 3 x y = 3x. 7 Conociendo el vértice de una parábola A( ; ) y la ecuación de su directriz x + y = 0, halla la ecuación de esta parábola aplicando la definición. 63

9 6. Intersección de recta y parábola. Sea la parábola P de ecuación y = ax + bx + c. Si la recta es paralela al eje (Oy), supongamos de ecuación x = k entonces hay un único punto de intersección y sus coordenadas corresponden a la solución del sistema siguiente: y = ax + bx + c x = k El punto de intersección tiene por coordenadas (k; ak + bk + c). Supongamos ahora que la recta (r) es secante al eje (oy), su ecuación será y =mx + p. Los eventuales puntos de intersección se hallan resolviendo el sistema siguiente: y = ax + bx + c y = mx + p Igualando ambas ecuaciones se tiene: mx + p = ax + bx + c Ecuación e segundo grado que se puede escribir también así: ax + (b m)x + c p = 0 Vamos a calcular el discriminante Δ de esta ecuación: Δ = (b m) (c p) y según que Δ sea mayor, igual o menor que cero, habrán dos, una o ninguna solución. Por lo tanto (r) será secante tangente o exterior a la parábola. Observa que en el caso en que la recta es paralela al eje (Oy) hay siempre una solución. Si Δ = 0 la recta (r) es tangente a la parábola y se obtienen las siguientes relaciones: ( b m) ( b m) = c p p = c Por lo que la ecuación de (r) se puede escribir así: y mx c ( b m) = que es la ecuación de la tangente a la parábola P en función del coeficiente angular m o también, la ecuación de la tangente paralela a una dirección dada. 7. Tangentes a una parábola. Vamos a utilizar la ecuación anterior para hallar las tangentes a una parábola P de ecuación y = ax + bx + c trazadas desde un punto cualquiera del plano de coordenadas (x 0 ; y 0 ). Para ello sustituimos en la ecuación: ( b m) y = mx + c x y y por x 0 y y 0 y nos queda la ecuación en m: 64

10 Ejercicios: y 0 mx 0 c ( b m) = Desarrollando y ordenando según m: m m(ax o +b) + y o + b c = 0 cuyas raíces, si son reales, son los coeficientes angulares de las tangentes a P que pasan por el punto P de coordenadas por (x 0 ; y 0 ). Por otro lado si calculamos el discriminante Δ de la ecuación anterior obtenemos: Δ = 6a(ax 0 + bx 0 + c y 0 ) Si Δ > 0 hay dos tangentes y el punto es exterior. Si Δ = 0 hay una tangente y el punto pertenece a la parábola. Si Δ < 0 no hay tangentes y el punto es interior. Por consiguiente: Δ > 0 es la ecuación de la región de los puntos exteriores; y Δ < 0 es la de la región de los puntos interiores. Vamos a encontrar ahora la ecuación de la tangente a P en función de las coordenadas (x 0 ; y 0 ) del punto de P contacto. Como en este caso es Δ = 0, en la ecuación: ax + (b m)x + c p = 0 la suma de las raíces será: x 0 = m b a en consecuencia m = ax 0 + b y la tangente tendrá por ecuación: y y 0 = (ax 0 + b)(x x 0 ) que se puede escribir: y y 0 = ax 0 x + bx ax 0 bx 0 y como el punto pertenece a la parábola se debe verificar que: y 0 = (ax 0 + bx 0 + c) sumando estas dos últimas igualdades se tiene finalmente la ecuación: y + y 0 = ax 0 x +bx +bx 0 + c de donde resulta la ecuación de la tangente a una parábola P en un punto P de ella de coordenadas (x 0 ; y 0 ): y + y 0 ( axx. 0 b x + x 0) = c 8 allar los puntos de intersección de: la recta x + 4y 3 = 0 y la parábola x = 4y. 9 allar los puntos de intersección de: la recta 3x + 4y = 0 y la parábola y = 9x. 65

11 0 allar los puntos de intersección de: la recta 3x y + 6 = 0 y la parábola y = 6x. Determinar en los casos siguientes la posición de la recta dada con relación a la parábola dada: si la corta, si es tangente o pasa por fuera de ella: ) x y + =0, y = 8x; ) 8x + 3y 5 = 0, x = 3y; 3) 5x y l5 = 0, y = 5x. 3 Determinar para qué valores del coeficiente angular k, la recta y = kx + : ) corta a la parábola y = 4x; ) es tangente a ella; 3) pasa por fuera de esta parábola. Deducir la condición, según la cual, la recta y = kx + b es tangente a la parábola y = px. 4 Demostrar, que se puede trazar una y solamente una tangente a la parábola y = px, cuyo coeficiente angular sea igual a k 0. 5 allar la ecuación de la tangente a la parábola y = px en su punto (x 0 ; y 0 ). 5 allar la ecuación de la recta que es tangente a la parábola y = 8x y paralela a la recta x + y 3 = 0. 6 allar la ecuación de la recta que es tangente a la parábola l6y = x y perpendicular a la recta x + 4y + 7 = 0. 7 Trazar una tangente a la parábola y = x que sea paralela a la recta de ecuación 3x y + 30 = 0 y calcular la distancia d entre esta tangente y la recta dada. 8 allar en la parábola x = 64y el punto, más próximo a la recta 3x + 4y 4 = 0 y calcular la distancia d del punto a esta recta. 9 allar las ecuaciones de las tangentes a la parábola x = 64y trazadas desde el punto A (9; ). 0 Se ha trazado una tangente a la parábola y = px. Demostrar, que el vértice de esta parábola está en medio del punto de intersección de la tangente con el eje (Ox) y de la proyección del punto de contacto sobre el eje (Ox). Desde el puntoa(9; 5) se han trazado tangentes a la parábola x = 5y. allar la ecuación de la cuerda que une los puntos de contacto. 66

C O N I C A S. Elipse

C O N I C A S. Elipse C O N I C A S Elipse El primer matemático que inició el estudio de las cónicas fue Apolonio de Perga (6 190 a.c), que enseñó matemáticas en las universidades de Alejandría y Pérgamo. Su estudio lo plamó

Más detalles

Elipse. Circunferencia. Hipérbola. Parábola C O N I C A S

Elipse. Circunferencia. Hipérbola. Parábola C O N I C A S Elipse Circunferencia V Hipérbola Parábola C O N I C A S El primer matemático que inició el estudio de las cónicas fue Apolonio de Perga (262 190 a.c), que enseñó matemáticas en las universidades de Alejandría

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en

A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en SECCIONES CÓNICAS Las secciones cónicas se pueden definir como lugares geométricos en el plano, sin embargo la definición clásica de las cónicas, que se debe a Apolonio de Perga, se hizo mediante un procedimiento

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante. ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS

Más detalles

Geometría Analítica Enero 2015

Geometría Analítica Enero 2015 Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. A( 2,, B( 8,, C( 5, 10) R( 6, 5) S( 2, - T(3,- U( -1, - V( 2, - W( 9, 4) II.- Demuestre

Más detalles

INTRO. ESTUDIO DE LAS CÓNICAS

INTRO. ESTUDIO DE LAS CÓNICAS INTRO. ESTUDIO DE LAS CÓNICAS Una vez que se han estudiado los sistemas de coordenadas y las ecuaciones de las figuras geométricas más elementales, las rectas, se pasará a hacer un estudio de algunas líneas

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición La parábola es el lugar geométrico de todos los puntos del plano que equidistan de un punto y una recta dada. Más claramente: Dados (elementos bases de la parábola) Una recta L, llamada directriz

Más detalles

Figura 1: Cono. d(p, Q) = (x 1 x 2 ) 2 + (y 1 y 2 ) 2.

Figura 1: Cono. d(p, Q) = (x 1 x 2 ) 2 + (y 1 y 2 ) 2. Cónicas Las cónicas son curvas planas llamadas elipse, parábola e hipérbola, que pueden ser definidas de diversas maneras. Como caso particular, también tenemos la circunferencia. El método más antiguo

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

CIRCUNFERENCIA. Ecuación de la circunferencia

CIRCUNFERENCIA. Ecuación de la circunferencia CIRCUNFERENCIA Definición Se llama circunferencia al conjunto de puntos del plano que equidistan de un punto fijo llamado centro. La distancia constante del centro a todos los puntos de la circunferencia

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

3º B.D. opción Físico-Matemática Matemática II. Parábola.

3º B.D. opción Físico-Matemática Matemática II. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y

Más detalles

Matemáticas. Grado 11º. Unidad 1. Secciones cónicas

Matemáticas. Grado 11º. Unidad 1. Secciones cónicas 1 Franklin Eduardo Pérez Quintero Matemáticas Grado 11º Unidad 1 Secciones cónicas 1 Franklin Eduardo Pérez Quintero LOGRO: Identificar las diferentes secciones cónicas con sus principales características

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

ALTURAS DE UN TRIÁNGULO

ALTURAS DE UN TRIÁNGULO TRIÁNGULO Polígono de tres lados. Según la longitud de sus lados, los triángulos se clasifican en equiláteros, si sus tres lados son iguales, isósceles, si tienen dos lados iguales, y escálenos, si los

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Docente Matemáticas. Marzo 11 de 2013

Docente Matemáticas. Marzo 11 de 2013 Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica

Más detalles

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS Objetivos Geometría analítica Introducción L cónica sección cónica Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 A B C D E F 4.1. Circunferencia Circunferencia es el conjunto

Más detalles

LUGARES GEOMÉTRICOS. CÓNICAS

LUGARES GEOMÉTRICOS. CÓNICAS 9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Elementos Elementos de Geometría Analítica Plana ELEME TOS DE GEOMETRÍA A ALÍTICA Distancia

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro.

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Cónicas 1.- Circunferencia Definición 1 (Definición geométrica) Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Analíticamente la circunferencia

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).

PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k). PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25 SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas 009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

B23 Curvas cónicas Curvas cónicas

B23 Curvas cónicas Curvas cónicas Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección

Más detalles

Secciones Cónicas. 0.1 Parábolas

Secciones Cónicas. 0.1 Parábolas Secciones Cónicas 0.1 Parábolas Las secciones cónicas, también llamadas cónicas, se obtienen cortando un cono circular recto doble con un plano. Al cambiar la posición del plano se tiene un círculo, una

Más detalles

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5 utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (

Más detalles

Unidad IV. La parábola

Unidad IV. La parábola Unidad IV. La parábola El estudiante, resolverá problemas teóricos o prácticos relativos a la parábola, a través del análisis descriptivo, aplicación y combinación de sus propiedades, gráficas y ecuaciones,

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola

Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene

Más detalles

1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ

1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ 1º BACH TANGENCIAS CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ TANGENCIAS Propiedades: Si dos circunferencias son tangentes, el punto de tangencia se encuentra en la recta que une los centros

Más detalles

MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones

MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 10º Cónicas y repaso de funciones 1 Franklin Eduardo Pérez Quintero LOGRO: Reconoce la formación y características básicas de las secciones

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S DE GEOMETRÍA ANALÍTICA CONCEPTOS BÁSICOS 1.- Hallar la distancia entre los pares de puntos cuyas coordenadas son: a) A (4, 1), B (3, 2)

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

UNIDAD 5: Curvas y superficies 5.A. Cónicas

UNIDAD 5: Curvas y superficies 5.A. Cónicas UNIDAD 5: Curvas y superficies 5.A. Cónicas En un principio se estudiaron las curvas que quedaban determinadas cuando se cortaba un cono recto con planos en distintas posiciones respecto de la base del

Más detalles

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es

Más detalles

Cálculo 10. Semestre A Rectas y Cónicas

Cálculo 10. Semestre A Rectas y Cónicas Cálculo 10. Semestre A-017 Prof. José Prieto Correo: prieto@ula.ve. Rectas Cónicas Problema.1 Hallar las distancia entre los siguientes pares de puntos P Q, además encontrar el punto medio que los une:

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Lugares geométricos. Cónicas

Lugares geométricos. Cónicas Lugares geométricos. Cónicas Lugares geométricos. Cónicas LITERATURA Y MATEMÁTICAS El rescoldo Después de Navidad [9], Jesús Vio tuvo una larga charla con [el profesor] Harold Lardy para orientar el trabajo

Más detalles

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27, Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 marcos.marva@uah.es Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja

Más detalles

3º B.D. opción Social-Económico Matemática III. Parábola.

3º B.D. opción Social-Económico Matemática III. Parábola. Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

Se quiere instalar un gran depósito de propano para abastecer a una factoría industrial y a dos urbanizaciones.

Se quiere instalar un gran depósito de propano para abastecer a una factoría industrial y a dos urbanizaciones. Resuelve Página Dónde se situará el depósito? Se quiere instalar un gran depósito de propano para abastecer a una factoría industrial y a dos urbanizaciones. Han de cumplirse las siguientes condiciones:

Más detalles

TEMA 3. LUGARES GEOMÉTRICOS

TEMA 3. LUGARES GEOMÉTRICOS TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto

Más detalles

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1. Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS 1 TEMA 9 LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(x,) a las

Más detalles

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22

1 CÓNICAS Cónicas. Estudio particular. 1 x y. 1 x y. a 00 a 01 a 02 a 10 a 11 a 12 a 20 a 21 a 22 CÓNICAS. CÓNICAS.. Cónicas. Estudio particular. Una cónica se dene como el lugar geométrico de los puntos del plano euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen una ecuación

Más detalles

22. CURVAS CÓNICAS-ELIPSE

22. CURVAS CÓNICAS-ELIPSE 22. CURVAS CÓNICAS-ELIPSE 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso:

Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: CIRCUNFERENCIA Una circunferencia es el lugar geométrico de los puntos del plano

Más detalles

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES CONTENIDO: 1. Conceptos básicos (Problemas 1-18). Línea recta (Problemas 19-6). Circunferencia (Problemas 7-4) 4. Parábola (Problemas 44-6)

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA HIPÉRBOLA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA HIPÉRBOLA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 10 TALLER Nº 8 SEMESTRE LA HIPÉRBOLA RESEÑA HISTÓRICA Apolonio de Perge (c. 6 190 a. C.), geómetra griego nacido en Perga (hoy Murtina

Más detalles

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)

Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro) (tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto

Más detalles

LECCIÓN Nº 04 LA PARABOLA

LECCIÓN Nº 04 LA PARABOLA LECCIÓN Nº 04 LA PARABOLA Parábola El conjunto de puntos del plano tales que están a la misma distancia de una recta dada y de un punto dado F que no este sobre recibe el nombre de parábola. El punto F

Más detalles

Semana04[1/25] Secciones Cónicas. 22 de marzo de Secciones Cónicas

Semana04[1/25] Secciones Cónicas. 22 de marzo de Secciones Cónicas Semana04[1/25] 22 de marzo de 2007 Definición de Cónicas Definición de cónicas Semana04[2/25] Cónica Sean D y F una recta y un punto del plano tales que F D. Sea e un número positivo. Una cónica es el

Más detalles

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: La Parábola Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA.

LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. LUGARES GEOMÉTRICOS: ELIPSE, HIPÉRBOLA, PARÁBOLA Y CIRCUNFERENCIA. APLICACIONES Y DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Y BACHILLERATO Resumen EN ÉSTE

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles