GEOMETRÍA ANALÍTICA LA RECTA
|
|
|
- Javier Acosta Pinto
- hace 9 años
- Vistas:
Transcripción
1 GEOMETRÍA ANALÍTICA LA RECTA Ecuación de a recta que pasa por dos puntos Encontrar a ecuación a recta que une os puntos A(0, 0) y B(5,5). Cargando a bibioteca de geometría: with geometry : Definiendo os dos puntos dados con a función point: point A, 0,0, point B, 5,5 A, B Definiendo a ínea con os puntos dados con a función ine: ine, A, B Obteniendo a ecuación pedida con función Equation: Equation, x, y 5 x 5 y =0 Detaes de a ecuación cacuada: detai name of the object form of the object ine2d equation of the ine 5 x 5 y =0
2 Cácuo de a pendiente Cacuar a pendiente de a recta y = 3 x 5. Definimos a ecuación dada con a función ine: ine, y =3 x 5, x, y Cacuamos a pendiente de a recta encontrada con a función sope: sope 3 Cacuar a pendiente de a recta 3 x 6 y 4=0 Definimos a ecuación dada con a función ine: ine, 3 x 6 y 4=0, x, y La función sope proporciona e vaor de a pendiente buscada: sope 1 2
3 Ecuaciones de íneas paraeas Encontrar a ecuación de a ínea que pasa por e puntop 2, 2 y es paraea a a recta x y =0. Definiendo e punto P con a función point: point P, 2,2 P Definiendo a ínea con a función ine: ine, x y =0, x, y Encontrando a ecuación paraea a a ínea que pasa por e punto P con a función ParaeLine y amándoa p: ParaeLine p, P, p E detae de a ínea encontrada es e siguiente: detai p name of the object p form of the object ine2d equation of the ine 4 x y =0
4 Gráficas de ecuaciones impícitas Graficar a ecuación dada y su ínea paraea de probema anterior Cargar a bibioteca para a graficación de ecuaciones impícitas Utiizar a función impicitpot para graficar e par de ecuaciones: with pots : impicitpot x y =0,Equation p, x, y, x = , y = , coor = bue, red 10 y x 5 10 Curve 1 Curve 2
5 Ecuaciones de íneas perpendicuares Encontrar a ecuación de a ínea que pasa por e puntop 2, 2 y es perpendicuar a a recta x y = 0. Graficar a recta dada y su ínea perpendicuar encontrada. Definiendo e punto P con a función point: point P, 2,2 P Definiendo a ínea con a función ine: ine, x y =0, x, y Encontrando a ecuación paraea a a ínea con a función PerpendicuarLine y amándoa p2: PerpendicuarLine p2, P, p2 E detae de a ínea encontrada es e siguiente: detai p2 name of the object p2 form of the object ine2d equation of the ine x y =0 Comprobando si as dos íneas y p2 son paraeas con a función ArePerpendicuar: ArePerpendicuar, p2 true
6 Graficar a ecuación dada y su recta perpendicuar encontrada. Definiendo e punto P con a función point: impicitpot x y =0, Equation p2, x, y, x = , y = , coor = bue, red 10 y x 5 10 Curve 1 Curve 2
7 Distancia de un punto a una recta Encontrar a distancia de punto P 5, 5 a a recta x y = 0. Definiendo e punto dado: point P, 5,5 P Definiendo a ínea de a ecuación dada: ine, x y =0, x, y Encontrando a distancia de punto P a a recta con a función distance: distance P, 5 2 Ánguo entre dos rectas Encontar e ánguo entre as rectas x y = 0 y x y = 0. Definiendo as dos rectas con a función ine: ine 1, x y =0, x, y, ine 2, x y =0, x, y 1, 2 Encontrando e ánguo entre as dos rectas dada con a función FindAnge: FindAnge 1, 2 1 2
8 Intersección entre dos rectas Encontrar a intersección de as rectas 5 x 2 y 1=0 y x y 5 = 0. Definiendo as rectas dadas: ine 1, x 2 y 1 = 0, x, y, ine 2, x y 5=0, x, y 1, 2 Encontrando a intersección entre as dos rectas con a función intersection y guardando e resutado en a variabe Int intersection Int, 1, 2 Int Con a función coordinates encontramos as coordenadas de punto buscado: coordinates Int 3, 2
9 Posición reativa de rectas Sean as rectas: r : x y 4=0 s : 2 x y =0, t : x y = 3, u : x 2 y 2=0 Haar: a) Si as rectas r, s y t son concurrentes. b) Si son concurrentes as r, s y u. c) E punto de intersección. d) Si r y t son rectas perpendicuares. e) Si as rectas s y u son rectas paraeas. Definimos as cuatro íneas con a función ine: ine r, x - y -4=0, r x, y ine s, 2 x y =2, x, y s ine t, x y = 3, x, y t ine u, x 2 y 2=0, x, y u a) Determinamos a concurrencia de as rectas r, s, t con a función AreConcurrent: AreConcurrent r, s, t fase b Determinamos a concurrencia de as rectas r, s, u con a función AreConcurrent: AreConcurrent r, s, u true c) E punto de intersección de as rectas intersection Int, r, s, u, coordinates Int
10 concurrentes se encuentra con as funciones intersection y coordinates Int, 2, 2 d) La función ArePerpendicuar determina sin dos rectas son perpendicuares ArePerpendicuar r, t true e) Para determinar si as rectas son paraeas se utiiza a función AreParae:: AreParae s, u fase
CÁLCULO SIMBÓLICO Y GEOMETRÍA CON MAPLE. Recta. Ricardo Villafaña Figueroa
CÁLCULO SIMBÓLICO Y GEOMETRÍA CON MAPLE Recta 2 Contenido Definición de una línea recta a partir de su representación algebraica... 3 Ecuación de la recta dada dos puntos... 6 Intersección entre dos rectas...
Ficha 2. Rectas. a) Definición de recta. B existe solo una recta. Donde m se conoce como la pendiente de la
Ficha Rectas a) Definición de recta Dados dos puntos en e pano cartesiano A,, que os contiene de a forma m b recta, ta que si: ) m 0 (m es positiva) a recta crece B eiste soo una recta Donde m se conoce
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions
MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Función Coseno la derivada de la función Seno?
Profesor: Marco Barrales INTRODUCCIÓN Función Coseno la derivada de la función Seno? Una de las mayores dificultades que se tiene al comenzar a estudiar la derivada de una función es la comprensión de
La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.
Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
Trabajo Práctico 2 - ECUACIÓN DE LA RECTA
Trabajo Práctico - ECUACIÓN DE LA RECTA ) Un barril tiene una capacidad de 00 litros. El barril se encuentra sobre una balanza y al echarle distintas cantidades de un aceite, se puede tomar el peso que
Solución analítica de problemas de contorno. Ecuación de ondas
Práctica 2 Soución anaítica de probemas de contorno. Ecuación de ondas 2.1. Ecuación de ondas 1D: Vibraciones forzadas de una cuerda finita con extremos móvies La ecuación de ondas para una cuerda finita
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados
CAPÍTULO. Funciones. y D f.x/ f.x/ Œx; f.x/ x x
PÍTULO Funciones. Gráfica de una función real de variable real Definimos la gráfica G f de una función f real de una variable real como: G f def D {.; / R R D R Df & D f./ } : La epresión anterior se lee:
8 Inducción electromagnética
8 Inducción eectromagnética ACTIVIDADES Actividades DEL de DESARROLLO interior DE de LA a UNIDAD unidad 1. Cacua e fujo magnético a través de un cuadrado de 12 cm de ado que está coocado perpendicuarmente
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
DILATACIÓN TÉRMICA DE SÓLIDOS
DILATACIÓN TÉRMICA DE SÓLIDOS.- Objetivo: Cácuo de a diatación inea de varios sóidos; por ejempo: acero, auminio, etc..- Principio: Se determina a diatación inea de varios sóidos eevando su temperatura
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la
Club de Matemáticas CBTis 149. clubmate149.com
PROGRAMA DE MATEMATICAS III (Geometría Analítica) Con este curso se inicia el estudio de la geometría analítica, rama de las Matemáticas cuyos inicios se remontan a la segunda mitad del siglo XVII con
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Función lineal Ecuación de la recta
Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende
2.6 Prismas y paralelepípedos
UNIDAD Geometría.6 Prismas y paraeepípedos 5.6 Prismas y paraeepípedos OBJETIVOS Cacuar e área atera y e área tota de prismas rectos. Cacuar e voumen de prismas rectos. Resover probemas de voúmenes en
ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A
CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 3º ESO (Tercer Trimestre) (Para alumnos de 4º de ESO)
PLAN DE RECUPERACIÓN DE MATEMÁTICAS 3º ESO (Tercer Trimestre) (Para aumnos de 4º de ESO) NOMBRE: Para aprobar as matemáticas pendientes de cursos anteriores es obigatorio reaizar e pan de recuperación
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV
INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
21.3. Rectas tangentes exteriores a dos circunferencias.
21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
5.1. Soluciones de EDP s de coeficientes constantes
Práctica 5 Ecuaciones en derivadas parciaes En esta práctica veremos cómo es posibe utiizar e programa Mathematica para resover agunos tipos de ecuaciones en derivadas parciaes. Revisaremos también agunas
Héctor W. Pagán Profesor de Matemáticas Mate 4105 Geometría para maestros de escuela elemental
Héctor W. Pagán Profesor de Matemáticas Mate 405 Geometría para maestros de escuea eementa Lección # Líneas paraeas y perpendicuares Objetivos Definir Líneas paraeas y perpendicuares Líneas trasversaes
MATHEMATICA. Gráficas de funciones y objetos gráficos. Ricardo Villafaña Figueroa
MATHEMATICA Gráficas de funciones y objetos gráficos 2 Contenido Gráficas de funciones en dos dimensiones... 3 Combinando gráficas (función Show)... 5 Opciones para las gráficas de funciones... 7 Opción
ECUACIÓN GENERAL DE LA RECTA
ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
Geometría del Triángulo con la TI Voyage 200 Fermí Vilà
Fermí Vilà TI Voyage 200 1 Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Las tres medianas de un triángulo se cortan en un único punto, que se denomina BARICENTRO del
PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual
Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:
EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de
EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Preparando la selectividad
Preparando la selectividad PRUEBA nº 2. Ver enunciados Ver Soluciones Opción A Ver Soluciones Opción B Se elegirá el ejercicio A o el ejercicio B, del que se harán los TRES problemas propuestos. LOS TRES
GEOMETRIA DEL ESPACIO
GEOMETRI DEL ESCIO RELIMINRES: Los conceptos de espacio y de superficie son conceptos primitivos, es decir, no se definen pero podemos dar ideas para comprenderos. or ejempo, e espacio es e ugar donde
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)
I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán
UNIVERSIDAD DE CONCEPCIÓN. Definición: Se llama ángulo diedro a la figura formada por dos semiplanos que nacen de una misma recta.
UNIVERSIDD DE CONCECIÓN 5. ÁNGULOS DIEDROS 5.. Definiciones y Generaidades Definición: Se ama ánguo diedro a a figura formada por dos semipanos que nacen de una misma recta. Los semipanos son as caras
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
La economía de Robinson Crusoe (RC)
1 II. La economía de Robinson Crusoe (RC) A. E enfoque de modeos macroeconómicas de equiibrio 1. Los mercados vacían. 2. Usamos fundamentos de microeconomía 3. Nuestro objetivo es construir un modeo a)
B5 Lugares geométricos
Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.
Geometría Analítica; C. H. Lehmann. Ejercicio, grupo, capítulo II, página 0.. Discute la ecuación + 0 = 0, estudiando las intersecciones, las simetrías la etensión. Después traza la grá ca correspondiente.
a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.
6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se
Ejercicios: Rectas Paralelas
www.matebrunca.com Prof. Waldo Márquez González Función Lineal 1 Ejercicios: Rectas Paralelas 1. Encuentre la ecuación de la recta que pasa por el punto (-1,2) y es paralela a la recta 10x + 2y 6 = 0.
La recta en el plano.
1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
EL PROBLEMA DE APOLONIO 1
EL PROBLEMA DE APOLONIO 1 Benjamín R. Sarmiento Lugo 2 Universidad Pedagógica Nacional Profesor de Planta Bogotá Colombia [email protected] RESUMEN El objetivo de este cursillo es reconstruir
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
Definición matemática de Relación y de Función
Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2
CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o
Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS
XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,
GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA
UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S991D03 RIF: J-09009977-8 GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA Asignatura: Matemática Año Escolar: 013-014
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO
TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son
GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO
GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Noveno. PERIODO: Segundo UNIDAD: Sistemas de ecuaciones
En este curso nos centraremos en un nuevo concepto de curva la cual estará descrita por una o mas ecuaciones denominadas ecuaciones paramétricas.
Unidad I - Curvas en R ecuaciones paramétricas.. Ecuaciones paramétricas En cursos anteriores se ha considerado a una curva como una sucesión de pares ordenados ubicados en un plano rectangular provenientes
La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones
58 Sociedad de Matemática de Chile La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones Miguel Bustamantes 1 - Alejandro Necochea 2 El propósito
MATHEMATICA. Trigonometría. Ricardo Villafaña Figueroa
MATHEMATICA Trigonometría 2 Contenido Trigonometría... 3 Grados y radianes... 3 Gráficas de funciones trigonométricas... 6 Transformaciones de expresiones trigonométricas... 10 Simplificación... 10 Expansión...
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de
BLOQUE 2 : GEOMETRÍA
BLOQUE 2 : GEOMETRÍA EJERCICIO 1 Dado el plano Л : x + 2y z = 2, el punto P( 2,3,2) perteneciente al plano Л y la recta r de ecuación:, a) Determina la posición relativa de r y Л. b) Calcula la ecuación
1 Ecuaciones y propiedades de la recta
Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Ecuaciones de la tangente y la normal
Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
Dirección de Desarrollo Curricular Secretaría Académica
PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Geometría Analítica PERIODO III CLAVE BCMA.03.04-08 HORAS/SEMANA 4
DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.
RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN
( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011
Coordinación de Nivel Curso: º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre Nombre: Fecha: 0 ECUACIONES CON DENOMINADORES ALGEBRAICOS 3x x 9 EJEMPLO : x 3
Ejercicios de Rectas y planos.
Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general
APUNTES DE GEOMETRÍA ANALÍTICA
CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre
Analíticamente hablando, una recta se define como una ecuación de primer grado en dos variables de la forma:
Facultad de Contaduría dministración. UNM Recta utor Dr. José Manuel Becerra Espinosa MTEMÁTICS BÁSICS RECT DEFINICIÓN DE RECT nalíticamente hablando, una recta se define como una ecuación de primer grado
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
