Reglas para el redondeo de Números: Cifras Significativas;

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Reglas para el redondeo de Números: Cifras Significativas;"

Transcripción

1 :: OBJETIVOS [.1] o Reconocer el concepto de cifras significativas o Aplicar los principios de cifras significativas en los datos experimentales o Aplicar la identificación correcta de la medida tomada. o Tomar conciencia de la variabilidad en la medida experimental. o Identificar los diferentes tipos de errores presentados al efectuar una medición o Cuantificar los errores vinculados en la medición o Usar las convenciones dadas por el S.I. o Valorar la eficacia del método experimental. MARCO TEÓRICO [.] Reglas para el redondeo de Números: 1. Si la primera cifra del grupo que se descarta es inferior a 5, las cifras que se conservan se dejan inalteradas: 36, ,4. Si la primera cifra del grupo que se descarta es mayor de 5, entonces se le adiciona 1 a la última cifra que se conserva: 56, ,4 3. Si la primera cifra del grupo que se descarta es 5 y las cifras que le siguen no son todas cero, entonces se le adiciona 1 a la última cifra que se conserva: 3,6504 3,7 4. Si la primera cifra del grupo que se descarta es 5 y las cifras que le siguen son todas cero, entonces la última cifra que se conserva se aumenta en 1 si esta es impar, ó se deja inalterada si esta es par: Ej: impar 36,35 36,4 ; par 3,65 3,6 Cifras Significativas; Para mayor claridad se enfatizará dos aspectos: las cifras significativas de un número y las cifras significativas de un mensurando. Cifras significativas de un número: para determinar las cifras significativas de un numero se recomienda representarlo en formato científico, es decir, representar el numero como un valor HFRG y CAEM

2 equivalente que solo tiene un entero como la primera cifra y el resto en decimales multiplicados por un exponente a la potencia equivalente sin tener en cuenta los ceros a la izquierda de la parte decimal. Las cifras significativas serán las que acompañan al exponente. 356, ,56507x10 tiene 6 cifras significativas ,58056x10 7 tiene 6 cifras significativas 0, Nm /kg 6,670x10-11 Nm /kg tiene 4 cifras significativas, aunque el original tiene 14 cifras decimales Cifras significativas de un valor experimental: si bien un valor experimental es un número y como tal cumple con los principios vistos en el ítem anterior, este implica un conjunto de principios adicionales que se deben tener en cuenta al citar el valor experimental (5,43±0,05mm ; 3,5±0,1m). Principios: En general, la sensatez en la presentación de resultados experimentales se pierde al realizar los cálculos de una medición indirecta, y es por ello que estos principios buscan mantener una coherencia entre las cifras del valor experimental y la incertidumbre que conlleva citar el resultado final. 1. No se debe dejar cifras después de la primera cifra incierta. Por ejemplo: si se tiene 4,05681±0,05mm debe citarse como 4,06±0,05mm ya que la primera cifra incierta es el 5 y como existen mas cifras, el valor debe ser redondeado según las reglas dadas. Sin embargo, cuando por efectos de una mayor precisión en la medida se obtiene una incertidumbre con dos cifras significativas, se puede justificar el retener una cifra más en la magnitud acorde con la incertidumbre. Este caso podría ser visualizado si para el ejemplo anterior la incertidumbre fuere de 0,035mm entonces el valor a presentar será 4,057±0,035mm.. Cuando la incertidumbre es dada como un valor porcentual (1%, 5%, 0,5%, etc.), el valor experimental ciado deberá respetar el numero de cifras significativas del equivalente absoluto del error porcentual. Por ejemplo: Si se mide 6,73voltios con un error del 1% de lo medido, entonces el error absoluto será 6,73x1/100=0,673. Pero aunque se hallo 0,673 de error el valor es citado como 1%, es decir, una cifra significativa; por lo tanto el valor a citar correctamente es 6,7±0,3v. Si para el mismo caso el error fuese indicado como 1,0% el valor obtenido deberá citarse como 6,73 ±0,7v. 3. Cuando la incertidumbre a citar es el cálculo de dos ó más magnitudes experimentales se debe respetar las cifras significativas de las incertidumbres básicas en la incertidumbre a

3 3 citar. Por ejemplo: En el laboratorio de física II se mide un voltaje de 15,4±0,1v y una corriente 1,7±0,1A. Se requiere obtener la resistencia. La ecuación que relaciona estas V variables es R =, lo que da una R=9, Y el cálculo de la incertidumbre absoluta I para esta resistencia es 0, (más adelante se revisará este calculo). Aplicando lo visto en este numeral la incertidumbre a presentar debe ser de una cifra significativa, es decir, 0,5. Por lo tanto el resultado a citar es R=9,1±0,5. 4. Cuando las incertidumbres básicas posean distintas cifras significativas, al citar la incertidumbre resultante se mantendrá la mayor de las cifras significativas dudosas. Por ejemplo: Asumamos que como el caso anterior se obtiene el voltaje de 15,4v y la corriente de 1,7 A ambos al 1% de error en la lectura. Calculando se obtiene el error absoluto para cada medida de 0,154v 0,v y 0,017 A 0,0 A (redondeando a la primera cifra significativa). El cálculo de esta incertidumbre será de Por tanto debe ser citada como R=9,1±0,. 5. Cuando se tenga un conjunto de datos experimentales de la misma magnitud medida, el valor convencionalmente verdadero a obtener mantendrá el mismo número de cifras seguras y solo una cifra insegura. Se entiende como cifras seguras, aquellas que no cambian del grupo de datos y cifras inseguras aquellas que cambian. Por ejemplo si se considera 5 medidas dadas a la misma masa de un cuerpo m 1 =5,4g; m =5,7g; m 3 =5,6g; m 4 =5,5g; m 5 =5,7g. se podrá distinguir de los valores experimentales, que las dos primeras cifras se repiten (por eso se les designa como seguras) y la tercera cifra cambia, por lo que se le llama insegura. 6. Cuando dos ó mas números con cifras decimales se relacionan con un operador matemático (suma, resta, multiplicación ó división) el resultado deberá presentarse con el menor número de cifras que presente los operadores. NOTA: cuando se tiene se tiene valores provenientes de medida no experimentales como ó, como para el perímetro de un circulo P = π r, el resultado limitará las cifras a presentar acorde a las cifras halladas en los valores experimentales usados en la relación ó proceso de cálculo. Ensanchamiento de la margen de Error: para mejorar el grado de confianza en el resultado obtenido en un proceso experimental, es común reducir la Margen de Error a una cifra insegura. Este procedimiento se aplica cuando el valor de incertidumbre tiene definido por lo menos dos cifras significativas.

4 4 El propósito de este procedimiento es el de reducir a una cifra insegura la margen de error, para lo cual se debe redondear a la cifra (entera ó decimal) deseada y posteriormente se le adiciona, a la cifra tratada, la unidad correspondiente Por ejemplo: en el laboratorio se obtuvo el siguiente valor con la correspondiente incertidumbre dada como 5,34500 ± 0,00500 unidades. Como se puede observar desde el 4 se considera cifras inseguras y la incertidumbre presenta dos cifras significativas. Por tanto lo primero es redondear a la primera cifra significativa, lo que dará 0,00; luego se le adicionara una unidad a esta última cifra quedando 0,003 unidades. La magnitud se redondea a la primera cifra dudosa quedando el resultado final como: 5,34± 0,003 Unidades. El Error en la Medición: 1. Error asociado a un valor esperado: El método experimental implica comparar los valores obtenidos con datos ya conocidos, a los que llamaremos valores verdaderos y a los obtenidos como valores experimentales ó medidos. El error se obtendrá de: Vlr _ medido Vlr _ verdadero Error% = x100 Vlr _ verdadero. Error asociado al valor estimado: Para el caso en que se tiene una medida repetida n veces, el error será el resultado de la raíz cuadrada de la suma cuadrática de sus errores, es decir, para una muestra dada se obtiene la desviación estándar muestral como n i= 1 σ x = ( x x ) i n 1 m xi i= 1 donde xm = n n es el valor estimado y el error muestral estará dado σ x como Error = N = n 1_ si _ n < 30datos también llamada s N 3. Error asociado al proceso de medición: En el caso en que solo se toma una medida, hay que tener en cuenta que como tal esta medida es afectada por varios elementos ó factores físicos, tales como: a. Error Inducido por el Instrumento: En este punto hay que tener presente que al usar el equipo de medida, por más preciso que sea el instrumento de medida se tendrá una inseguridad relativa a la mínima división discernible por el observador, que se

5 5 llamará error del instrumento I. Pero también se tiene un error relativo a la medida que es el dado cuando el instrumento ha sido calibrado que se llamará error Exac. b. Error inducido por acción humana: Esta incerteza esta cobijada por la interacción del método de medición con la magnitud a medir, el cual es determinada con el análisis cuidadoso del método usado en la medición. A este error le llamaremos M. hay que tener presente que otro tipo de incerteza se puede presentar al tomar la lectura sobre la escala de medida, al que se llamará L. c. Error inducido por la falta de definición de la magnitud en medición: Este caso se presenta sobre algunas medidas que por la variabilidad de la magnitud generan un error adicional que llamaremos F. Algunos casos pueden ser identificados cuando se intenta medir una variable eléctrica pero la fuente de alimentación esta fluctuando, ó cuando se intenta medir la longitud de un material que cambia debido a su elasticidad tácita, ó cuando se mide una magnitud formada por un elemento en movimiento como por ejemplo la amplitud de un péndulo, etc. d. El error nominal: Como se presenta diferentes fuentes de incertidumbre, y todos son debidos a diferentes factores, es apenas lógico considerar que cada uno de ellos aporta al error nominal (error real) en la misma proporción y que por ende hay que relacionarlos entre sí al determinar la incertidumbre nominal. Por lo tanto, la incertidumbre nominal de una medición estará dada como la suma cuadrática de cada uno de los factores de incerteza hallados: σ = σ + σ + σ + σ + σ nom I Exac M L F 4. Error asociado a la medición multimuestral: En la experimentación, generalmente se toman varias medidas de la misma magnitud para asegurar un valor cercano al valor verdadero. Este conjunto de valores refleja la incerteza debida a causas fortuitas (al azar), que podrían ser producidos al contar el numero de divisiones de la escala graduada del instrumento de medida, y/o por la mala ubicación frente a la aguja de medida, ó incluso cuando la magnitud medida tiene variaciones imprevistas en el proceso de medida. Estos errores inducidos, son minimizados con la lectura ó medición repetitiva de la misma magnitud, y es por ello que decimos que tal conjunto de medidas realmente reflejan estos mismos errores. A tales errores se les llamará error estadístico s y se calcula de la misma forma indicada en el numeral. Por lo tanto se podría deducir, que las inconsistencias básicas producidas (en la medida) por los errores inducidos con el método de medida M y/o las variaciones particulares de la

6 6 magnitud en estudio F estará contenido en el error estadístico. Pero esto no implica que las incertezas indicadas M y F no tengan que ser consideradas al analizar los errores inducidos, sino más bien, que para la mayoría de los casos se encontrará el error estadístico s como la mejor forma de cuantificar pequeñas variaciones en estos Errores inducidos. Pero cuando la magnitud de estos errores inducidos sea tal que es observado de manera obvia en el proceso de la medición, se recomienda tener este valor en cuenta al realizar el cálculo del error inducido nominal. Es por ello que se hace necesario relacionar tales errores inducidos ( M, F ) con los dados de una serie de medidas al azar ó error estadístico s y se concluye que cuando se tiene una serie de medidas de la misma magnitud se debe hallar una nueva incerteza nominal, cuyo valor estará dado por: σ = σ + σ + σ + σ + σ + σ nom S I Exac M L F 5. Propagación de errores en la medición indirecta: Es muy común que se busque medir en el laboratorio magnitudes de forma indirecta, como por ejemplo el área, la velocidad, la gravedad, e.t.c. El propósito de esta sección es la de determinar el error(incertidumbre) de la magnitud derivada, por tanto, se define: Como magnitud medida indirectamente: Z Incertidumbre ó error a determinar: Z Magnitudes medidas directamente, con su incertidumbre: X ± X, Y ± Y, W ± W,. Etc. Se tiene que para Z = f ( X, Y, W,...) Se puede demostrar que el error estará dado como: df df df Z = x + y + w + dx dy dw EQUIPOS Y MATERIALES [.3] Regla graduada en milímetros. Un calibrador ó Pie de Rey Tornillo micrométrico. Arandelas, balines, monedas, láminas

7 PROCEDIMIENTO [.4] Toma de Datos para diferentes muestras: Tabla 1 Datos 1 Magnitudes de la Arandela Magnitudes de la lamina Diam. Ext. Diam. Espesor Long. 1 Long. Espesor Int Valor medido Real o Calculen el valor de la minima división, tanto del calibrador, como del tornillo micrométrico. o Tome los valores solicitados en la Tabla 1, teniendo en cuenta el ajuste de cero, las cifras significativas, o Cuantifique las posibles causas de error discutidas con el profesor para cada magnitud. Para ello determine: Error Inducido por el Instrumento ( I y Exac.) Error inducido por acción humana ( M. y L ) Error inducido por la falta de definición de la magnitud en medición ( F ) Error ó incerteza debida a causas fortuitas. (error estadístico s ) o Use el calibrador para medir las longitudes y el micrómetro para determinar los espesores.

8 8 ANÁLISIS DE DATOS [.5] 1. Determinen los valores verdaderos para cada una de las magnitudes medidas, correspondientes a cada uno de los instrumentos de medida.. Determina la incerteza de cada medida, es decir, calcule la incertidumbre nominal σ = σ + σ + σ + σ + σ + σ nom S I Exac M L F 3. Tenga en cuenta presentar estos valores respetando las cifras decimales (significativas) que le entrega el calibrador y el tornillo micrométrico. 4. Calcule el área de la arandela y de la lámina, sin dejar de aplicar los conceptos de cifras significativas aprendidas. 5. Determine la incertidumbre resultante para cada área indicada. Para ello use el método de propagación de errores sin olvidar respetar las cifras significativas df df df Z = x + y + w + dx dy dw 6. Calcule el volumen de la arandela y volumen de la lámina. 7. Determine la incertidumbre resultante para cada volumen calculado. 8. Presente los valores experimentales (es decir, con la incertidumbre) en la fila final del cuadro de resultados. PREGUNTAS [.6] 1. Enumere los errores que influyeron sobre las medidas tomadas. Cuales fueron las magnitudes cuantificadas para cada una de los errores (incertidumbres) del numeral anterior? 3. Cuales errores (Incertidumbres) fueron cuantificados en cero y porque? 4. Cuales fueron los principios de cifras significativas aplicados en este laboratorio? 5. Que diferencia encuentra entre los principios de cifras significativas aplicados a los datos experimentales y los aplicados a los datos aritméticos? El Conocimiento tiene un costo, hasta cuanto estamos dispuestos a pagar por él.

Guía de trabajo No 1 Medidas

Guía de trabajo No 1 Medidas Guía de trabajo No 1 Medidas OBJETIVOS [1.1] Realizar la identificación correcta de la medida tomada. Tomar conciencia de la variabilidad en la medida experimental. Usar las convenciones dadas por el S.I.

Más detalles

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

Error en las mediciones

Error en las mediciones Error en las mediciones TEORIA DE ERROR-GRAFICOS Y APLICACIÓN Representar en un gráfico los datos obtenidos experimentalmente (encontrar relación funcional) Conocer, comprender y analizar algunos elementos

Más detalles

Práctica 1. Medidas y Teoría de Errores

Práctica 1. Medidas y Teoría de Errores Práctica 1. Medidas Teoría de Errores Versión 3 Programa de Física, Facultad de Ciencias, Instituto Tecnológico Metropolitano (Dated: 25 de julio de 2016) I. OBJETIVO Realizar medidas de algunas cantidades

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física De vocabulario, cifras significativas, redondeos, mediciones y otras cosas Elizabeth Hernández Marín Laboratorio de Física Cifras significativas El término cifras significativas se conoce también como

Más detalles

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz.

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz. 1. Preliminar Cuando se realizan mediciones siempre estamos sujetos a los errores, puesto que ninguna medida es perfecta. Es por ello, que nunca se podrá saber con certeza cual es la medida real de ningún

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Entender y familiarizarse

Más detalles

Estimar el error absoluto cometido al realizar cualquier medición directa. Expresar cualquier medida que se efectúe, bajo la forma V= Vo Ea (Vo).

Estimar el error absoluto cometido al realizar cualquier medición directa. Expresar cualquier medida que se efectúe, bajo la forma V= Vo Ea (Vo). UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA LABORATORIO DE FÍSICA I Practica No 1 Medidas Directas de Magnitudes Físicas Objetivos: Determinar las apreciaciones e interpretar

Más detalles

FÍSICA GENERAL. Guía de laboratorio 01: Mediciones y cálculo de incertidumbres

FÍSICA GENERAL. Guía de laboratorio 01: Mediciones y cálculo de incertidumbres I. LOGROS ESPERADOS FÍSICA GENERAL Guía de laboratorio 01: Mediciones y cálculo de incertidumbres Registra la resolución de los instrumentos de medición y las características del mensurando para obtener

Más detalles

Capítulo 1: MEDICIONES Y ERROR

Capítulo 1: MEDICIONES Y ERROR Capítulo 1: MEDICIONES Y ERROR Objetivos: El objetivo de este laboratorio es: a. Con una regla, medir las dimensiones de cuerpos geométricos y usar estas medidas para calcular el área de los mismos. Cada

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas

TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas OBJETIVOS Familiarizarse con el uso de instrumentos de medición. Adquirir conceptos

Más detalles

CALIBRADOR O PIE DE REY PIE DE REY DONDE SE APRECIAN LAS PARTES PARA MEDIR DIMENS. INTERNAS Y EL NONIO.

CALIBRADOR O PIE DE REY PIE DE REY DONDE SE APRECIAN LAS PARTES PARA MEDIR DIMENS. INTERNAS Y EL NONIO. RESUMEN En esta práctica hemos conocido y practicado con los principales instrumentos de medida de un laboratorio: el pie de rey mecánico con nonio y un micrómetro mecánico o palmer. A través de estos

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

Laboratorio Física I

Laboratorio Física I Laboratorio Física I Sistema de Unidades Utilizamos el sistema internacional (S.I.), antes conocido como mks (metro-kilogramo-segundo). Las unidades más comúnmente usadas en el laboratorio son: -Longitud:

Más detalles

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido.

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. Metrología Básica 1.1. Objetivos 1.1.1. General Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. 1.1.2. Específicos Aplicar los procesos

Más detalles

Medidas y cifras significativas

Medidas y cifras significativas Física Experimental 1 Medidas y cifras significativas 1. Mediciones En lo que sigue se definirán conceptos referentes a la realización y presentación de medidas conforme a los estándares internacionales

Más detalles

Prueba evaluable de programación con Maxima

Prueba evaluable de programación con Maxima Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará,

Más detalles

Errores en medidas experimentales

Errores en medidas experimentales Errores en medidas experimentales 1. Introducción Las magnitudes físicas son propiedades de la materia o de los procesos naturales que se pueden medir. Medir una cantidad de una magnitud es compararla

Más detalles

Incertidumbres y Métodos Gráficos *

Incertidumbres y Métodos Gráficos * UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio 02 Objetivos Incertidumbres y Métodos Gráficos * 1. Aprender a expresar y operar correctamente

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: geo2fran@gmail.com Sitio web: www.jfvc.wordpress.com Introducción Cualquier actividad técnica donde se requiera recopilar información espacial, requiere algún proceso de

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis EXPERIMENTOS Selección del/los modelos Obtención de leyes Validación de/los modelos EXPERIMENTACIÓN

Más detalles

Introducción a la Teoría de Errores

Introducción a la Teoría de Errores Introducción a la Teoría de Errores March 21, 2012 Al medir experimentalmente una magnitud física (masa, tiempo, velocidad...) en un sistema físico, el valor obtenido de la medida no es el valor exacto.

Más detalles

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12.

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12. ERRORES OBJETIVOS Identificar las causas de errores en las medidas.. lasificar los errores según sus causas. Expresar matemáticamente el error de una medida. Determinar el error del resultado de una operación

Más detalles

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1 No 1 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Realizar mediciones de magnitudes de diversos objetos

Más detalles

NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS

NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S

Más detalles

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial Pantoja Carhuavilca Métodos Computacionales Agenda al estudio de métodos computacionales 3 Aproximación y Errores Los cálculos númericos inevitablemente conducen a errores Estos son de dos clases principales:

Más detalles

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi Mediciones. Errores. Propagación de errores. Estadística Prof. Arturo S. Vallespi Incertidumbre estadística: Qué ocurre si cada magnitud de interés en el experimento se mide más de una vez, por ejemplo

Más detalles

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES 1 MEDICIÓN Es una operación o procedimiento mediante el cual se determina el valor de una variable o cantidad física especificando

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

Propagación de Incertidumbres

Propagación de Incertidumbres Practica 3 Propagación de Incertidumbres Medición indirecta. Incertidumbres en cantidades calculadas En la práctica anterior nos hemos ocupado solamente del concepto de incertidumbre de una magnitud que

Más detalles

TRABAJO PRACTICO DE LABORATORIO N 6 TEMA: Determinación de la aceleración de la gravedad

TRABAJO PRACTICO DE LABORATORIO N 6 TEMA: Determinación de la aceleración de la gravedad TRABAJO PRACTICO DE LABORATORIO N 6 TEMA: Determinación de la aceleración de la gravedad OBJETIVOS Calcular el valor de la aceleración de la gravedad con un péndulo simple. Calcular el valor de la aceleración

Más detalles

Errores en Las Mediciones

Errores en Las Mediciones 1 Objetivo: Estudiar los conceptos básicos sobre medidas y errores a través del cálculo de porcentajes al efectuar mediciones Teoría El conocimiento que cada uno de nosotros a adquiriendo y acumulando

Más detalles

PRACTICA DE LABORATORIO NO. 1

PRACTICA DE LABORATORIO NO. 1 UIVERSIDAD PEDAGÓGICA ACIOAL FRACISCO MORAZÁ CETRO UIVERSITARIO REGIOAL DE LA CEIBA DEPARTAMETO DE CIECIAS ATURALES PRACTICA DE LABORATORIO O. 1 I PERIODO 2014 ombre de la Practica: MEDICIOES E ICERTIDUMBRES.

Más detalles

0A. LA MEDIDA Índice

0A. LA MEDIDA Índice Índice 1. Magnitudes 2. Unidades 3. Instrumentos de medida 4. Errores en la medida 5. Cifras significativas y redondeo 6. Representaciones gráficas 2 1 Magnitudes La Física y la Química son ciencias experimentales.

Más detalles

UNIVERSO QUE QUEREMOS ESTUDIAR

UNIVERSO QUE QUEREMOS ESTUDIAR EXPERIMENTACION UNIVERSO QUE QUEREMOS ESTUDIAR QUEREMOS saber: Cómo funciona? Cómo evolucionará en el tiempo? EXPERIMENTACION SISTEMA Porción representativa del universo de estudio Obtenemos información

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 QUIM 3003-3004 MEDIDAS: TRATAMIENTO DE LOS DATOS EXPERIMENTALES I. INTRODUCCIÓN La mayor

Más detalles

Las medidas y su incertidumbre

Las medidas y su incertidumbre Las medidas y su incertidumbre Laboratorio de Física: 1210 Unidad 1 Temas de interés. 1. Mediciones directas e indirectas. 2. Estimación de la incertidumbre. 3. Registro de datos experimentales. Palabras

Más detalles

Instrumentos de medida. Estimación de errores en medidas directas.

Instrumentos de medida. Estimación de errores en medidas directas. Instrumentos de medida. Estimación de errores en medidas directas. Objetivos El objetivo de esta primera práctica es la familiarización con el uso de los instrumentos de medida y con el tratamiento de

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

Introducción al tratamiento de datos experimentales. Aplicación en fisicoquímica

Introducción al tratamiento de datos experimentales. Aplicación en fisicoquímica Introducción al tratamiento de datos experimentales Aplicación en fisicoquímica Medidas experimentales 1. 8.86 M H 2 O 2 100V 8.93M Titulación con KMnO 4 2. 8.78 M 3. 9.10 M Resultado promedio: 8.91 M

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

Práctica 2. Tratamiento de datos

Práctica 2. Tratamiento de datos Errores Todas las medidas que se realizan en el laboratorio están afectadas de errores experimentales, de manera que si se repiten dos experiencias en las mismas condiciones es probable que los resultados

Más detalles

UNIVERSIDAD LIBRE - SECCIONAL BARRANQUILLA DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: MICROBIOLOGÍA Y/O BACTERIOLOGÍA LABORATORIO DE BIOFISICA

UNIVERSIDAD LIBRE - SECCIONAL BARRANQUILLA DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: MICROBIOLOGÍA Y/O BACTERIOLOGÍA LABORATORIO DE BIOFISICA UNIVERSIDAD LIBRE - SECCIONAL BARRANQUILLA DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: MICROBIOLOGÍA Y/O BACTERIOLOGÍA LABORATORIO DE BIOFISICA ERRORES EN LAS MEDICIONES. EXPERIENCIA No. 1 Competencias

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003).

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003). Cálculos básicos en química Medidas experimentales: La incertidumbre de la medida. Errores e incertidumbre: exactitud y precisión. Expresión correcta de los datos: cifras significativas. Operaciones. Factores

Más detalles

PROGRAMACIÓN DE AULA WEB TALLER DE MATEMÁTICAS 1º ESO

PROGRAMACIÓN DE AULA WEB TALLER DE MATEMÁTICAS 1º ESO PROGRAMACIÓN DE AULA WEB TALLER DE MATEMÁTICAS 1º ESO Unidad 1: Operaciones con números naturales La suma de números naturales. La resta de números naturales. La multiplicación de números naturales. La

Más detalles

La Medida Científica

La Medida Científica > MAGNITUDES A) CONCEPTO DE MAGNITUD Una magnitud es cualquier propiedad de un cuerpo que puede ser medida, bien sea por métodos directos o indirectos, pudiéndose expresar mediante números. Ejemplos de

Más detalles

El concepto de Medición. Qué es Medir?

El concepto de Medición. Qué es Medir? l concepto de Medición n la vida diaria estamos acostumbrados a realizar un sinnúmero de operaciones y actividades que corresponden a procesos de medición, sin que, muchas veces, nos percatemos de ello.

Más detalles

Práctica: realización y presentación de resultados

Práctica: realización y presentación de resultados Práctica: realización y presentación de resultados Laboratorio Física I 1 Página web Prácticas Física I http://tesla.us.es/f1_practicas/herramientas/ herramientas.php 2 Índice Material Toma de datos Incertidumbre

Más detalles

Introducción al tratamiento de datos

Introducción al tratamiento de datos Introducción al tratamiento de datos MEDICIÓN? MEDICIÓN Conjunto de operaciones cuyo objetivo es determinar el valor de una magnitud o cantidad. Ej. Medir el tamaño de un objeto con una regla. MEDIR? MEDIR

Más detalles

Mediciones Indirectas

Mediciones Indirectas Mediciones Indirectas Diego Luna April 7, 2017 Laboratorio 1 Mediciones Indirectas April 7, 2017 1 / 23 Motivación Cuando se informa el resultado de una medición, se debe proporcionar alguna indicación

Más detalles

Aritmética del Computador

Aritmética del Computador Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales

Más detalles

INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO

INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO 1. Introducción 2. Error e incertidumbre 3. Exactitud y precisión de medida 4. Tipos de medidas 5. Incertidumbre típica o de medida 6. Incertidumbre

Más detalles

MEDIDA DE MAGNITUDES

MEDIDA DE MAGNITUDES Tema 7-1 Errores - 1 - Tema 7 Tema 7-2 MEDIDA DE MAGNITUDES La Física, ciencia experimental, es un compendio de leyes basadas en la observación de la Naturaleza Todas las leyes de la Física han de ser

Más detalles

Unidad 3: Incertidumbre de una medida

Unidad 3: Incertidumbre de una medida Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 3: Incertidumbre de una medida Universidad Politécnica de Madrid 12 de abril de 2010

Más detalles

PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA. Sistema Internacional de unidades (SI)

PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA. Sistema Internacional de unidades (SI) PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA Unidad patrón referencia utilizada para determinar el valor de una magnitud, se le asigna un valor unitario Magnitudes Fundamentales: del

Más detalles

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías CURSO PROPEDEÚTICO DE FÍSICAF Formación básica de Física Destinado a alumnos matriculados en estudios de ingenierías PRESENTACIÓN CURSO PROPEDEÚTICO DE FÍSICA Bloque 1: Magnitudes y vectores Bloque 2:

Más detalles

ECUACIONES EMPÍRICAS

ECUACIONES EMPÍRICAS 17 ECUACIONES EMPÍRICAS 1. OBJETIVOS 1.1 Determinar la ecuación empírica del periodo del péndulo simple 1. Desarrollar métodos gráficos analíticos para tener información del eperimento en estudio.. FUNDAMENTO

Más detalles

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS

PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números

Más detalles

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Errores e Incertidumbre Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Notación Científica 0 1 2 (1,45 ± 0,05) cm Objetivos: Después de completar este tema,

Más detalles

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. Instrumentos de medida 1. Hemos realizado una medida de longitud con una cinta métrica y nos ha dado 2,34 m. De

Más detalles

EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES

EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES 1 EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES 1. OBJETIVOS Identificar cada una de las partes que componen un calibrador y un tornillo micrométrico y sus funciones respectivas. Adquirir destreza en el

Más detalles

Serie de problemas de Laboratorio de Física: Nombre del estudiante: grupo:

Serie de problemas de Laboratorio de Física: Nombre del estudiante: grupo: Serie de problemas de Laboratorio de Física: Nombre del estudiante: grupo: Instrucciones: resuelva los siguientes problemas describiendo en caso necesario el procedimiento que ha seguido y subrayando el

Más detalles

Instrumentación Industrial

Instrumentación Industrial Instrumentación Industrial Tema 1 Magnitud es todo aquello que se puede medir, que se puede representar por un número y que puede ser estudiada en las ciencias experimentales (que observan, miden, representan...).

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

1.4.3 Errores de redondeo y la aritmética finita de las computadoras

1.4.3 Errores de redondeo y la aritmética finita de las computadoras 1.4.3 Errores de redondeo y la aritmética finita de las computadoras Como la computadora sólo puede almacenar un número fijo de cifras significativas, y cantidades como π, e, 3, 2 no pueden ser expresadas

Más detalles

EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO

EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO OBJETIVO 1. Estudiar los errores y su propagación a partir de datos tomados de un experimento simple. 2. Determinar

Más detalles

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO Contenidos Introducción a Errores Incertidumbre de los Resultados Incertidumbre en las Gráficas

Más detalles

CONTENIDOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA

CONTENIDOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA DEPARTAMENTO DE MATEMÁTICAS Área: TALLER DE MATEMÁTICAS Curso: 1º E.S.O. CONTENIDOS Y ESTÁNDARES DE APRENDIZAJE EVALUABLES IMPRESCINDIBLES PARA SUPERAR LA MATERIA Los contenidos mínimos y estándares de

Más detalles

Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento

Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento Nombre: Curso: Fecha: Objetivos Fomentar las habilidades de razonamiento así como las de exposición

Más detalles

Rige a partir de la convocatoria

Rige a partir de la convocatoria TABLA DE ESPECIFICACIONES DE HABILIDADES Y CONOCIMIENTOS QUE SE MEDIRÁN EN LAS PRUEBAS DE CERTIFICACIÓN DEL PROGRAMA: I y II Ciclo de la Educación General Básica Abierta Este documento está elaborado con

Más detalles

Universidad politécnica hispano mexicana

Universidad politécnica hispano mexicana Universidad politécnica hispano mexicana (UPHM) Taller de investigación en Ingeniería 6 SEMESTRE DE ING. INDUSTRIAL CESAR ANTONIO LUNA GALICIA TEMA: MANUAL DE UN VERNIER INDICE 1 VERNIER: USOS Y PARTES

Más detalles

Errores en las medidas

Errores en las medidas Reglas para expresar una medida y su error Medidas directas Medidas indirectas Errores en las medidas Reglas para expresar una medida y su error Toda medida debe de ir seguida por la unidad, obligatoriamente

Más detalles

Mediciones experimentales

Mediciones experimentales Mediciones experimentales Extraído de Análisis de Datos e Incertidumbres en Física Experimental ; S. Pérez, C. Schurrer y G. Stutz; Famaf - UNC La importancia del experimento en la ciencia: La física,

Más detalles

ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO

ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO OBJETIVOS 1. Estudiar los errores y su propagación a partir de datos tomados de un experimento simple. 2. Determinar el espesor de alambres y

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS (por jmd matetam.com)

ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS (por jmd matetam.com) ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS (por jmd matetam.com) ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS... 1 DEFINICIONES BÁSICAS... 1 Estadística... 1 Estadística descriptiva... 1 Estadística inferencial...

Más detalles

Matemáticas Currículum Universal

Matemáticas Currículum Universal Matemáticas Currículum Universal Índice de contenidos 08-11 años 2013-2014 Matemáticas 08-11 años USOS DE LOS NÚMEROS NATURALES Reconocer la utilidad de los números naturales para contar y ordenar elementos.

Más detalles

DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O.

DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. CRITERIOS DE EVALUACIÓN Los siguientes criterios de evaluación

Más detalles

Ing. Eduard del Corral Cesar Carpio

Ing. Eduard del Corral Cesar Carpio República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Romúlo Gallegos Ingeniería Informática Área de Sistemas Cátedra: Métodos Numéricos.

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

MEDIDAS. Error accidental. Error Sistemático. Cantidad de la magnitud A. Número, MEDIDA. Cantidad de la magnitud A tomada como referencia.

MEDIDAS. Error accidental. Error Sistemático. Cantidad de la magnitud A. Número, MEDIDA. Cantidad de la magnitud A tomada como referencia. MEDIDAS Cantidad de la magnitud A Número, MEDIDA Cantidad de la magnitud A tomada como referencia. UNIDAD Las mediciones no son perfectas. Llevan asociadas un determinado error, una incertidumbre. Los

Más detalles

X N USO DE LA ESTADÍSTICA

X N USO DE LA ESTADÍSTICA Química Analítica (93) USO DE LA ESTADÍSTICA ormalmente el experimentador hace uso de las herramientas estadísticas para establecer claramente el efecto del error indeterminado. En QUÍMICA AALÍTICA las

Más detalles

02) Mediciones. 0203) Cifras Significativas

02) Mediciones. 0203) Cifras Significativas Página 1 02) Mediciones 0203) Cifras Significativas Desarrollado por el Profesor Rodrigo Vergara Rojas Página 2 A) Cifras significativas y propagación de errores. Los números medidos representan magnitudes

Más detalles

1.- CONJUNTOS NUMÉRICOS

1.- CONJUNTOS NUMÉRICOS N 1º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA 1.- NÚMEROS-2 PROFESOR: RAFAEL NÚÑEZ NOGALES Números reales(r) 1.- CONJUNTOS NUMÉRICOS N úm e ros natu :Ejemplo:7 E l n úm e ro 0 rales Números enteros(z)

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

LABORATORIO I DE FÍSICA UDO NÚCLEO MONAGAS

LABORATORIO I DE FÍSICA UDO NÚCLEO MONAGAS EL VERNIER DEFINICIÓN Y DESCRIPCIÓN El Vernier o Calibrador, conocido también como Pie de Rey es un instrumento que permite medir longitudes con una alta precisión. El Vernier está formado por una regla

Más detalles

LABORATORIO 1: MEDICIONES BASICAS

LABORATORIO 1: MEDICIONES BASICAS UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO : MEDICIONES BASICAS Realizar mediciones de objetos utilizando diferentes

Más detalles

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE 1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS

Más detalles

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato - Magnitudes y unidades - El S.I. de unidades - Medida y error Física Física y química 1º 1º Bachillerato Magnitud Es todo aquello que puede ser medido Medición Medir Conjunto Es comparar de actos una

Más detalles