SOLUCIONES A LOS PROBLEMAS PROPUESTOS
|
|
|
- María Reyes Redondo
- hace 8 años
- Vistas:
Transcripción
1 SOLUCIONES A LOS PROBLEMAS PROPUESTOS
2 SOLUCIONES 6. o DE PRIMARIA PROBLEMA 1 : I. 2 x 3 x 4 x 5 x 6 = 720 IV. (1 + 3) x 4 x = 80 II. (3 + 1) x 4 x 7 x 8 = 896 V. (1+1+1) x 3 x 7 = 63 III. 5 x 6 x 7 x = 1890 ( ) x (1 + 2) = 12 ( ) x (2 + 2) = 12 ( ) x 2 x 2 = 12 PROBLEMA 2 Algunas maneras de resolverlo: El segmento AB es un diámetro, por lo que el radio mide 6 cm, luego el lado del hexágono es 6 cm. El segmento CD coincide con la longitud de 2 apotemas; una apotema mide 5,2 cm. El área de la figura es: (36 x 5,2 /2) x 7 = cm 2 A) Se descompone cada hexágono en seis triángulos iguales, siendo la base 6 cm y su altura 5,2 cm. El área total de la figura = (6 x 5,2 / 2) x 6 x 7 = cm 2 B) Podemos descomponer la figura en un rectángulo y dos trapecios o lo que es igual en un romboide, tal como se ve en la figura. Según las medidas dadas: Área del rectángulo ( ) x (10.4 x 2) = 27 x 20,8 = 561,6 cm 2 Área del romboide (12 + 6) x (10,4 /2) = 93,6 cm 2
3 C) El área del rectángulo corresponde a 6 hexágonos. Una vez conocida ésta, hallamos el área de un hexágono, que sería 93,6 cm 2, equivalente al área de los dos medios hexágonos restantes. Área del rectángulo ( ) x (10.4 x 2) = 27 x 20,8 = 561,6 cm 2 Área del hexágono 561,6 : 6 = 93,6 cm 2 No, porque los lados no miden lo mismo. Anchura = 5,2 x 6 = 31,2 cm Altura = 12 x = 30 cm El camino más corto está formado por dos radios, un lado y una apotema. 3 x 6 + 5, 2 = 23, 2 cm PROBLEMA 3 Si recorre 6 km en una hora, emplea 10 minutos en recorrer cada km, por tanto, el ritmo es 10 min/km La distancia recorrida en 2 h y 10 minutos será de: (2 x 6) + 1 = 13 km Si para recorrer 1 km emplea 12 minutos, en una hora recorrerá 5 km. La velocidad media pues, es de 5 km/h Puesto que ha recorrido 13,5 km, ha tardado en hacerlo 13,5 / 5 = 2,7 horas. Expresado en el formato (h : m : s) que utiliza el aparato, sería 2 : 42 : 00 PROBLEMA 4 Giraríamos la puerta C para comprobar que no tiene un número par delante y la puerta D para comprobar que tiene la etiqueta PREMIO Tendríamos que girar la puerta B para comprobar que no tiene un número par delante y la puerta D para comprobar que tiene la etiqueta NO GANAS.
4 PROBLEMA 5 Fórmula (base x altura) / 2 Hay que considerar las diagonales como base de los triángulos, lo que reduce el número de mediciones, ya que una diagonal sirve de base a dos triángulos consecutivos. Número mínimo de mediciones en el octógono: 3 diagonales y 6 alturas. Total 9. Número mínimo de mediciones en el eneágono: 4 diagonales y 7 alturas. Total 11. Fórmula de Herón: Número mínimo de mediciones en el octógono: 8 lados y 5 diagonales. Total 13. Número mínimo de mediciones en el eneágono: 9 lados y 6 diagonales. Total 15. Número mínimo de mediciones del polígono de 100 lados: 100 lados y 97 diagonales. Total 197. SOLUCIONES 2.º DE ESO PROBLEMA 1 : I. 2 x 3 x 4 x 5 x 6 = 720 IV. (1 + 3) x 4 x = 80 II. (3 + 1) x 4 x 7 x 8 = 896 V. (1+1+1) x 3 x 7 = 63 III. 5 x 6 x 7 x = 1890 VI. (1 + 2) x (1 + 2) x 5 ( ) x 3 x 5 = 60 (1 + 1 ) x 2 x 3 x 5 = 60 (1 + 2) x (1 + 3) x 5 = 60 I. Si todos los números son distintos de 0 y 1, el número más alto es el producto. II. Se multiplican los números distintos de 0 y a este producto se le suma el o los ceros que haya. También podríamos sumar el 0 (o los ceros) a cualquiera de los otros números antes de hacer el producto. III. Si hay un único 1 se suma al número más pequeño y se multiplica el resultado por los demás. PROBLEMA 2 Si el segmento AB es un diámetro, el radio mide 6 cm y, por tanto, el lado del hexágono mide 6 cm. La apotema mide 5,2 cm, calculándola por Pitágoras. Una vez conocido este dato se podría resolver el problema, entre otras, de alguna de estas maneras:
5 Se descompone cada hexágono en seis triángulos iguales, siendo la base 6 cm y su altura 5,2 cm. El área total de la figura = (6 x 5,2 / 2) x 6 x 7 = cm 2 Utilizando la fórmula: p x a / 2 El área total = (36 x 5,2 / 2) x 7 = 655, 2 cm 2 Podemos descomponer la figura en un rectángulo y dos trapecios o lo que es igual en un romboide, tal como se ve en la figura. Según las medidas dadas: Área del rectángulo ( ) x (10.4 x 2) = 27 x 20,8 = 561,6 cm 2 Área del romboide (12 + 6) x (10,4 / 2) = 93,6 cm 2 El área del rectángulo corresponde a 6 hexágonos. Una vez conocida ésta, hallamos el área de un hexágono, que sería 93,6 cm 2, equivalente al área de los dos medios hexágonos restantes. Área del rectángulo ( ) x (10.4 x 2) = 27 x 20,8 = 561,6 cm 2 Área del hexágono 561,6 : 6 = 93,6 cm 2 No, porque los lados no miden lo mismo. Anchura = 5,2 x 6 = 31,2 cm Altura = 12 x = 30 cm El camino más corto está formado por 2 radios, 1 lado y una apotema. (3 x 6) + 5, 2 = 23, 2 cm
6 PROBLEMA 3 Si recorre 6 km en una hora, emplea 10 minutos en recorrer cada km, por tanto, el ritmo es 10 min/km. La distancia recorrida en 2 h y 10 minutos será de: (2 x 6) + 1 = 13 km Si para recorrer 1 km emplea 12 minutos, en una hora recorrerá 5 km. La velocidad media pues, es de 5 km/h Puesto que ha recorrido 13,5 km, ha tardado en hacerlo 13,5 / 5 = 2,7 horas. Expresado en el formato (h : m: s) que utiliza el aparato, sería 2 : 42 : 00 Igualando el ritmo (60/v) a la velocidad media (v) obtendríamos: 60 v v 2 ; v = 60 v = 60 = 7,7 km / h PROBLEMA 4 Giraríamos la puerta C para comprobar que no tiene un número par delante y la puerta D para comprobar que tiene la etiqueta PREMIO Tendríamos que girar la puerta B para comprobar que no tiene un número par delante y la puerta D para comprobar que tiene la etiqueta NO GANAS. Debemos usar sólo números impares y sólo la etiqueta PREMIO (tres etiquetas y dos números o tres números y dos etiquetas) PROBLEMA 5 Fórmula (base x altura) / 2 Hay que considerar las diagonales como base de los triángulos, lo que reduce el número de mediciones, ya que una diagonal sirve de base a dos triángulos consecutivos. Número mínimo de mediciones en el octógono: 3 diagonales y 6 alturas. Total, 9. Número mínimo de mediciones en el eneágono: 4 diagonales y 7 alturas. Total, 11. Fórmula de Herón: Número mínimo de mediciones en el octógono: 8 lados y 5 diagonales. Total 13. Número mínimo de mediciones en el eneágono: 9 lados y 6 diagonales. Total Número mínimo de mediciones en el polígono de 100 lados: 100 lados y 97 diagonales. Total Número mínimo de mediciones en el polígono de n lados: n lados y n 3 diagonales. Total 2n 3.
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS
Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS
88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
Cálculo de perímetros y áreas
Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.
ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Carrera: Diseño Industrial
POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique
FÓRMULAS - FIGURAS PLANAS
SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :
Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel Problema 1: Si se traza una recta m paralela a r que pase por el centro del rectángulo, éste quedará seccionado en dos trapecios iguales. En efecto, trazando
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
f(x) = sen x f(x) = cos x
www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que
Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.
GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica
INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS
GEOMETRIA POLÍGONOS (1) Si un polígono tiene un ángulo central de 45º Cuántos lados tiene? (2) Inscribir en distintas circunferencias los siguientes polígonos: a) Triángulo equilátero b) Pentágono regular
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:
UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees
1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:
1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS
AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS Figura geométrica Consiste de una línea o de un conjunto de líneas que representarán un objeto dado. Polígono Es una poligonal cerrada (el origen del primer
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
AREAS DE FIGURAS PLANAS. Si en la figura siguiente cada cuadrado tuviese un centímetro de lado
AREAS DE FIGURAS PLANAS 1 CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro de una figura plana a la longitud del orde de la figura. Se llama área de una figura plana a la medida de
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Básico
Cuaderno de Trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado 5 Básico Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
Preguntas Propuestas
reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de
CENAFE MATEMÁTICAS POLÍGONOS
POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:
Tema 15. Perímetros y áreas
Matemáticas Ejercicios 1º ESO BLOQUE V: GEOMETRÍA Tema 15. Perímetros y áreas 1. Expresa en metros: a) 2000 mm b) 2 hm c) 1 dm e) 0,1 km c) 50 dam 2 d) 0,02 km 2 2. Transforma las siguientes unidades:
open green road Guía Matemática tutora: Jacky Moreno .co
Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO
Pág. 1 ENUNCIADOS 1 Piensa, tantea y encuentra una solución para estas ecuaciones: a) 5 5 b) 5 1 c) 1 4 d) 1 e) 1 f ) 6 1 Despeja la incógnita y encuentra la solución: a) 6 b) 4 c) 7 d) 7 4 Resuelve las
Problemas geométricos
8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular
2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?
1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar
1 Ángulos en las figuras planas
Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3
TRABAJO PARA EXAMEN DE RECUPERACIÓN BIMESTRE 3 MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: 1. Qué es un número primo?. Qué es un número compuesto? 3. Escribe los primeros 0 números
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
13 LONGITUDES Y ÁREAS
1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas.
Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Identifica las clasificacione s de los polígonos regulares Power Point: clasificación y elementos de los
La circunferencia y el círculo
La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:
1.- LÍNEAS POLIGONALES Y POLÍGONOS.
1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región
Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...
XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................
Alumna(o): Grupo: N.L
MISCELANEA DE MATEMATICAS FEBRERO CICLO ESCOLAR 2012-2013 Alumna(o): Grupo: N.L Resuelve los siguientes problemas 1.-Mide las dimensiones del siguiente rectángulo. Cuál es el área de la siguiente figura?
Tema 10: Cuerpos geométricos y transformaciones geométricas
Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO
CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos
1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.
1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.
UNIDAD IV ÁREAS DE FIGURAS PLANAS
UNIDAD IV ÁREAS DE FIGURAS PLANAS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica las áreas de figuras planas, volumen y superficie. CONCEPTOS DE PERÍMETRO Y AREA DE UNA FIGURA PLANA Se llama perímetro
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema 7
EJERCICIOS DE RESOLUCIÓN DE TRIÁNGULOS (TEMA 7) 1.- La base de un triángulo isósceles mide 5 cm y el ángulo opuesto a dicha base es de 55º. Calcula el área del triángulo. 2.- Hallar el área de un octógono
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO
ÁREAS DE FIGURAS PLANAS
6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS
13 LONGITUDES Y ÁREAS
EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras., cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de 6 centímetros de lado. b) Un triángulo
CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O.
CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O. Tema 1: Números Naturales: Tema 2: Divisibilidad. Tema 3: Fracciones. Tema 4: Números decimales. Tema 5: Números enteros. Tema 6: Iniciación
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos
POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
Problema 1 En la Figura 2 de la gráfica hay 3 ángulos. Cuántos ángulos hay en la Figura 3? A) 3 D) 6 B) 4 E) 7 C) 5 F) n. d. l. a.
PRIMERA RONDA COLEGIAL NIVEL 1 Nombre y Apellido:............................................ Puntaje: Grado/Curso....... Sección:...... Los dibujos correspondientes a los problemas de Geometría, no están
Polígono. Superficie plana limitada por una línea poligonal cerrada.
POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la
1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.
1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica
GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés
GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO
UNIDAD II Polígonos y Circunferencia.
UNIDAD II Polígonos y Circunferencia. Objetivo de la unidad: El estudiante: Resolverá problemas relacionados con polígonos y circunferencia, de tipo teórico o prácticos en distintos ámbitos, mediante la
POLÍGONOS Y CIRCUNFERENCIA
5. POLÍGONOS Y CIRCUNFERENCIA EN ESTA UNIDAD VAS A APRENDER POLÍGONOS RECTA, SEMIRRECTA Y SEGMENTO LÍNEA POLIGONAL POLÍGONOS TRIÁNGULOS - Clasificación. - Puntos notables. - Recta de Euler. - Teorema de
TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I
TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz. Se debe incluir
8 GEOMETRÍA DEL PLANO
EJERIIOS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. a) 6 b) 145 15 105 160 130 a) En un triángulo, la suma de las medidas de sus ángulos es 180. p 180 90 6 8 El ángulo mide 8.
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...
PRIMERA FASE. PROBLEMA Nº 1 TRIÁNGULO. Calcula el área del triángulo. Los cuadrados tienen 5, 4 y 3 cm de lado.
PROBLEMAS DE LA PRIMERA FASE NIVEL 10 12 (5º y 6º de Primaria) PRIMERA FASE. PROBLEMA Nº 1 TRIÁNGULO Calcula el área del triángulo. Los cuadrados tienen 5, 4 y 3 cm de lado. PRIMERA FASE. PROBLEMA Nº 2
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º
PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática
Perímetros y áreas. La visión del ciego
11 Perímetros y áreas La visión del ciego El soldado miraba con lástima al anciano ciego que, apoyado en su bastón, tomaba el sol mientras sus ojos extintos intuían la posición del astro en el horizonte.
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
Unidad 11. Figuras planas
Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares
Área. Existen objetos con superficie curva como las bolas de billar, los globos terráqueos y otros.
Área Elaborado por: Licda. Lilliam Rojas Artavia. Asesora Nacional Matemáticas. GESPRO, DRTE. Fecha: 8 agosto de 016. SUPERFICIES Resumen La medida de superficies se conoce como área. En este documento
POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO
POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO POLÍGONOS Polígono es la figura plana cerrada formada por n segmentos P 1P,PP3,P3P4,...,PnP1 ( n 3 ) llamados lados, los puntos P,P,... se llaman vértices. 1 Pn El ángulo
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
Fecha: Grado y grupo: No. de Lista:
MATEMÁTICAS TERCER AÑO GUÍA PLANEA Nombre del(a) alumno(a): Fecha: Grado y grupo: No. de Lista: INSTRUCCIONES: Deberás bajar e imprimir el archivo de la guía.- Lee y contesta correctamente la guía, para
INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS
Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
