Funciones de 2 variables.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones de 2 variables."

Transcripción

1 Funciones de variables. INTRODUCCIÓN En el curso anterior estudiamos las funciones reales de variable real, donde estaban involucradas únicamente dos variables (, ). Una de ellas era la variable independiente la otra la variable dependiente. Se definió una función de este tipo como una relación epresada por una regla de correspondencia que asocia a cada valor de un valor único de. En este tema abordaremos aquellas funciones que tienen más de una variable independiente, en especial las de dos variables. DEFINICIÓN Sea D un conjunto de parejas ordenadas de números reales. Una función f que asocia a cada pareja, en D un número real único representado como f (, ) se llama una función de dos variables. El conjunto D es el dominio el conjunto de imágenes Rconstitue el contradominio. D R, 1 1 f 1,, 3 3, n n 3 n El dominio de la función lo podemos representar como una región en el plano cartesiano, : D R Las siguientes epresiones constituen ejemplos de funciones de dos variables: cos sen 5. ln e 9

2 Ejemplo 1: Obtenga el dominio de 5 A(, 5) B( 1, ) C( 1, ) D, 1 E(, ). Determine la imagen de represéntelo en el plano cartesiano. Solución: Debemos observar si eisten funciones racionales, que el denominador no se anule. También como ha raíces de orden par, el radicando debe ser maor o igual a cero. En nuestro caso la epresión otras palabras: debe ser maor o igual a cero para que el radical eista. En 0 Y en el caso etremo. Traamos entonces la gráfica de que representa la frontera del dominio con una línea punteada debido a que también se debe cumplir la condición que no puede ser igual a para que no se anule el denominador: Todos los puntos que están dentro de la región sombreada pertenecen al dominio de la función, sin incluir a la frontera. Se nos pide también calcular la imagen de los puntos A, B, C, D E por lo que sustituimos los valores de proporcionados, en la regla de correspondencia. Para A : Para B : Para C : Para D : Para E :

3 Resulta que para el punto D E la función no está definida, lo que significa que estos puntos no pertenecen al dominio de la función como se aprecia en la gráfica: A E C B D Graph Limited School Edition - Ejemplo : Obtenga el dominio de 1 represéntelo en el plano cartesiano. Solución: Debemos observar si eisten funciones racionales, que el denominador no se anule. En nuestro caso la epresión 1 debe ser diferente de cero para que no se produca una indeterminación: Traamos entonces la gráfica de 1 que representa la frontera del dominio con una línea punteada: Graph Limited School Edition Todos los puntos del plano cartesiano pertenecen al dominio ecepto los que están sobre la recta 1.

4 Ejemplo 3: Obtenga el dominio de ln represéntelo en el plano cartesiano. Solución: Debemos observar para qué valores del argumento la función logarítmica no eiste. Sabemos entonces que para que eista se debe cumplir que 0. Esto se presenta para dos situaciones distintas: a) Los valores de deben ser positivos simultáneamente. b) Los valores de deben ser negativos simultáneamente. La gráfica que satisface estas condiciones se muestra enseguida: El dominio consiste en todos los puntos que pertenecen al primer tercer cuadrante sin tocar a los ejes coordenados. Ejemplo : Obtenga el dominio de ln represéntelo en el plano cartesiano. Solución: Debemos observar para qué valores del argumento la función logarítmica no eiste. Sabemos entonces que para que eista se debe cumplir que: 0 La frontera de esta desigualdad se da en, el dominio estará formado por el conjunto de puntos que se encuentran por encima de la frontera, como se muestra en la gráfica Graph Limited School Edition

5 Ejercicios Represente el dominio de las siguientes funciones en un plano cartesiano: a) Graph Limited School Edition -6 b) Graph Limited School Edition -10 c) e Superficies Como vimos anteriormente, una función de variables se epresa como f (, ) donde, son las variables independientes la variable dependiente. La función de variables geométricamente representa una superficie, a diferencia de las funciones de una variable que constituían curvas en el plano. La grafica de una superficie se genera utiliando un sistema cartesiano de tres ejes:,,, como se ilustra en el siguiente esquema:

6 Las superficies que estudiaremos en el presente curso se dividen en: I. Superficies de revolución II. Superficies cilíndricas III. Superficies cuadráticas Superficies de revolución Son aquellas superficies que aparecen cuando se hace girar una curva contenida en un plano respecto a algún eje, conocido como eje de revolución. la función f ( ) acotada entre a b se hace girar respecto al eje se obtiene el siguiente sólido: f ( ) a b sólido de revolución Ejemplo 5: Obtenga la superficie generada por la curva del eje al hacerla girar alrededor 5 9 Curva antes de hacerla girar (Alrededor de ) Curva después de hacerla girar (Sólido de revolución) Ejemplo 6: Obtenga la superficie generada por la curva girar alrededor del eje al hacerla Curva antes de hacerla girar (Alrededor de ) Curva después de hacerla girar (Sólido de revolución)

7 Superficies de cilíndricas C es una curva en un plano l es una recta que no está en el plano, entonces el conjunto de puntos que se encuentran sobre las rectas paralelas a l que intersecan a C se llama cilindro. La curva C se conoce como directri la recta l es la generatri. Los siguientes casos son ejemplos de superficies cilíndricas: Directri Directri Generatri Generatri Directri Directri Generatri Generatri En este curso consideraremos que la directri se encuentra contenida en un plano cartesiano la generatri es paralela a uno de los ejes coordenados (perpendicular a la directri). Ejemplo 7:Describa la superficie cilíndrica cua directri es la curva paralela al eje. 1 con generatri 16 Se debe empear por traar la curva en el plano. La ecuación representa una elipse con centro en el origen, semieje maor paralelo a ( a 16 ) semieje menor paralelo a ( b ).

8 Posteriormente se traa el eje los ejes ' ' que forman un plano paralelo al plano. A una distancia arbitraria, se vuelve a dibujar la directri (fig. 1). Finalmente se traan varias líneas paralelas al eje, que constitue la generatri, tocando todo el contorno de la directri (fig. ). ' ' ' ' Fig. 1 Fig. Ejemplo 8: Describa la superficie cilíndrica cua directri es la curva generatri paralela al eje. 1 3 con En primer lugar se tabula la función se dibuja la gráfica en el plano Después se traa el eje los ejes auiliares ', '. Posteriormente se dibuja la directri en el plano ' ' se traan las rectas paralelas a la generatri. La figura que resulta se muestra a continuación. ' '

9 Ejemplo 9: Describa la superficie cilíndrica cua directri es la curva con generatri paralela al eje. guiendo el procedimiento anterior llegamos a los siguientes resultados: ' - ' Superficies de cuadráticas Son aquellas superficies generadas a partir de una función de segundo grado. Las siguientes epresiones representan una superficie cuadrática: * 1 * 9 0 * 0 Para poder construir la gráfica de una superficie cuadrática ha que considerar las traas las curvas de nivel. Traa: Las traas de una superficie son las intersecciones de dicha superficie con los tres planos cartesianos. Ejemplo 10: Obtener las traas de la superficie generada por la función 9. Primero encontraremos la traa con el plano. Esto se logra haciendo 0 sustituendo en la ecuación original: Esta epresión representa una circunferencia con centro en el origen radio r 3. La gráfica se muestra enseguida: -3 3 traa Posteriormente se obtiene la traa en el plano, haciendo 0 sustituendo en la ecuación original:

10 Esta ecuación representa una parábola cuo eje coincide con el eje. Para hacer la gráfica tabulamos desde 3 hasta El sentido positivo del eje se dibuja hacia abajo, considerando la perspectiva que se muestra en el sistema cartesiano tridimensional. La gráfica quedaría de la siguiente forma: traa Finalmente se obtiene la traa con el plano haciendo 0 sustituendo en la ecuación original: Esta última epresión también representa una parábola como se muestra enseguida: traa Curvas de Nivel: Son las curvas de la función f (, ) en planos paralelos a un plano cartesiano. Suponga que tenemos una sandía. Las rebanadas que se obtienen de esta piea constituen las curvas de nivel. Ejemplo 11: Obtenga las curvas de nivel de la superficie generada por la función en planos paralelos a. 9, Se deben elegir varios planos paralelos a en distintos niveles de, por ejemplo para 0, 5,

11 Estas epresiones representan circunferencias de radio 3,, 1.La última ecuación representa un punto en el origen. La gráficas se muestran a continuación en el plano en tres dimensiones: Z=0 Z=5 =5 1 3 =8 =9 Z=8 sobreponemos una de las traas obtenidas en el ejemplo anterior estaríamos construendo finalmente la gráfica de la superficie cuadrática. Podemos establecer como conclusión que con las curvas de nivel las traas se puede identificar graficar a una superficie cuadrática. Ejemplo 1: Obtenga la gráfica de la superficie generada por la función. Traa : 0 0 Circunferencia con centro en el origen radio r. Traa : 0 0 Hipérbola equilátera con centro en el origen eje transverso paralelo a. Traa : 0 0 Hipérbola equilátera con centro en el origen eje transverso paralelo a.

12 A continuación se obtienen algunas curvas de nivel en planos paralelos a : ( 6) 0 6 () 6 0 Ubicamos directamente las curvas de nivel en el sistema tridimensional dibujamos también las traas. De esta forma obtenemos la grafica de la superficie. Ejemplo 1: Obtenga la gráfica de la superficie generada por la función. Traa : 0 0 Parábola con eje paralelo a que abre hacia abajo. Traa : origen eje transverso paralelo a. 0 Hipérbola equilátera con centro en el Traa : 0 Parábola con eje paralelo a que abre hacia arriba. - - A continuación se obtienen algunas curvas de nivel en planos paralelos a : ( 3) () Ubicamos directamente las curvas de nivel en el sistema tridimensional dibujamos también las traas. De esta forma obtenemos la grafica de la superficie.

13 Ejercicios Obtenga las superficies que se indican a continuación: Superficies Cilíndricas * ** cos 0 Superficies Cuadráticas * **

14 UNIVERSIDAD DEL MAR MATEMÁTICAS II ALUMNO: TAREA # Obtenga la gráfica de la superficie que se indica: Superficies de revolución: 1. sen3 0 Eje de revolución eje. sen 0 Eje de revolución eje Superficies Cilíndricas: 3. Generatri: sen3 0 Directri: eje.. Generatri: sen 0 Directri: eje Generatri: Directri: eje. 6. Generatri: sen Directri: eje. Superficies Cuadráticas

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II C u r s o : Matemática 3º Medio Material Nº MT-11 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA II INTERSECCIÓN CON EL EJE Y La parábola asociada a la función = a + b + c siempre intersecta al eje de

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES LA PARÁBOLA. FUNCIONES CUADRÁTICAS. FUNCIONES A TROZOS CON RECTA Y PARÁBOLAS. HIPÉRBOLAS. FUNCIONES RADICALES. FUNCIONES EXPONENCIALES. FUNCIONES LOGARITMICAS. La función =.- LA PARÁBOLA

Más detalles

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1

Análisis de Funciones Tema 1: Qué empiece la función! Apuntes: Parte 1 Tema : Qué empiece la función! Apuntes: Parte.- Idea de función Se define función real de variable real, a una relación que asocia a un número de un conjunto inicial, otro número de un conjunto final.

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4

Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4 Funciones I Par ordenado Es un conjunto formado por dos objetos matemáticos cualesquiera "a" "b" denotado por (a; b) que se consideran ordenados con el criterio de uno antecede al otro. Notación: (a; b)

Más detalles

FUNCIONES 1. FUNCIONES Y SUS GRAFICAS.

FUNCIONES 1. FUNCIONES Y SUS GRAFICAS. FUNCIONES 1. FUNCIONES Y SUS GRAFICAS. Una de las grandes inquietudes de los seres humanos a través de la historia ha sido la de describir los fenómenos naturales, sus cambios las relaciones entre unos

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Ejercicio 1. Resuelve por el método de sustitución el siguiente sistema de ecuaciones: x 2 + 3x 3 = 0

Ejercicio 1. Resuelve por el método de sustitución el siguiente sistema de ecuaciones: x 2 + 3x 3 = 0 Sistema de ecuaciones x, no lineales. La solución a cada uno de los ejercicios complementarios es la siguiente: Ejercicio 1. Resuelve por el método de sustitución el siguiente sistema de ecuaciones: Solución:

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad aplicarás las definiciones los elementos que caracterizan a la elipse a la hipérbola en las soluciones

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS HIPÉRBOLA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS HIPÉRBOLA HIPÉRBOLA DEFINICIÓN La hipérbola es el lugar geométrico de todos los puntos de un plano, tales que la diferencia de sus distancias a dos puntos fijos llamados focos, siempre es constante. A esta distancia

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

Grafique, clasifique determinando el dominio y el rango de las siguientes funciones x. 10. x x 3

Grafique, clasifique determinando el dominio y el rango de las siguientes funciones x. 10. x x 3 Grafique, clasifique determinando el dominio y el rango de las siguientes funciones... f ( ) f ( ) f ( ) 3. 3 f ( ) 4. 3 f ( ) 3 5. f ( ) 6. 4 f ( ) 7. 5 3 8. 3 f ( ) ( ) f ( ) 9. 6.. 3. f ( ) f ( ) f

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico N, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

FUNCIONES: DOMINIO, RANGO Y GRAFICA

FUNCIONES: DOMINIO, RANGO Y GRAFICA FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

1 er Problema. 2 Problema

1 er Problema. 2 Problema Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.

Más detalles

1.1 SISTEMAS Y COORDENADAS

1.1 SISTEMAS Y COORDENADAS . SISTEMAS Y COORDENADAS INTRODUCCIÓN GEOMETRÍA ANALÍTICA (DEFINICIÓN). Es un puente entre el álgebra la geometría que hace posible resolver algebraicamente (o analíticamente) problemas geométricos. También

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Ejercicios de Álgebra y Geometría Analítica

Ejercicios de Álgebra y Geometría Analítica Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y

Más detalles

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.

FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS. Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

GUÍA DE TRABAJO N 4 FUNCIÓN

GUÍA DE TRABAJO N 4 FUNCIÓN GUÍA DE TRABAJO N 4 FUNCIÓN ) Reconozca funciones entre las siguientes relaciones. Clasifíquelas y justifique sus respuestas. Realice la representación cartesiana de cada una. R : N N / y = 0 0 R : N N

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA Calcular (con sin calculadora) : 6 a) + + - 8 : 8 + d) ( - ) Simplifica: - 9 6 ( ) ( ) a) - 9 8 ( ) ( ) 6 ( ) ( ) Etraer factores fuera de los radicales siguientes: a) 9a 7 6b 8 Calcular

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta

Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta Funciones 1 Funciones Ecuaciones Curvas Una función es una correspondencia entre números Mediante la función f a cada número x se le hace corresponder un solo número que se representa por f(x) Puesto que

Más detalles

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F

Más detalles

Sesión 14. Unidad IX La Parábola. A. Ecuación de segundo grado. B. Identificación de sus elementos.

Sesión 14. Unidad IX La Parábola. A. Ecuación de segundo grado. B. Identificación de sus elementos. Sesión 14 Unidad IX La Parábola. A. Ecuación de segundo grado. + 4 3+ 5 1 = 1.- La ecuación general representa una: Hipérbola B) Eponencial C) Elipse Recta Parábola.- De las siguientes ecuaciones señala

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II SECCIONES CONICAS Se llaman secciones cónicas a un grupo de cuatro

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría. Geometría Analítica; C. H. Lehmann. Ejercicio, grupo, capítulo II, página 0.. Discute la ecuación + 0 = 0, estudiando las intersecciones, las simetrías la etensión. Después traza la grá ca correspondiente.

Más detalles

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f.

(B) Segundo parcial (1) Una función f se dice que es acotada si existe M 0 tal que f(x) M para toda x en dominio de f. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial 1) Completando el trinomio cuadrado perfecto, dibujar la gráfica de + 6 = y ) + 6 ) 1 6 4) Sea + si < 1 f) = 4 si < 1 si 1 4 a)

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - [email protected] 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Funciones polinómicas, racionales y exponenciales

Funciones polinómicas, racionales y exponenciales 008 _ 06-08.qd 9/7/08 9:07 Página 6 Funciones polinómicas, racionales eponenciales INTRODUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar.

1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5.Graficar. SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5.Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

En este curso nos centraremos en un nuevo concepto de curva la cual estará descrita por una o mas ecuaciones denominadas ecuaciones paramétricas.

En este curso nos centraremos en un nuevo concepto de curva la cual estará descrita por una o mas ecuaciones denominadas ecuaciones paramétricas. Unidad I - Curvas en R ecuaciones paramétricas.. Ecuaciones paramétricas En cursos anteriores se ha considerado a una curva como una sucesión de pares ordenados ubicados en un plano rectangular provenientes

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA FUNCIONES Y TRIGONOMETRÍA 1. Determine el dominio de las siguientes funciones: a) f() = + 7 b) g() = + 7, 0 6 c) f() = 5 d) f() = 5 + + 1 e) f() = 1 f ) f() = 1 g) f() = ( 1)( )( ) h) g() = i) g() = 1

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

Universidad Nacional Autónoma de México Facultad de Ingeniería Anexo de Ingeniería División de Ciencias Básicas Departamento de Cálculo

Universidad Nacional Autónoma de México Facultad de Ingeniería Anexo de Ingeniería División de Ciencias Básicas Departamento de Cálculo Universidad Nacional Autónoma de Méico Facultad de Ingeniería Aneo de Ingeniería División de Ciencias Básicas Departamento de Cálculo Curso de: Cálculo Geometría Analítica Primer semestre Presentación

Más detalles

En esta oportunidad trabajaremos con curvas a las que llamamos secciones cónicas o simplemente cónicas.

En esta oportunidad trabajaremos con curvas a las que llamamos secciones cónicas o simplemente cónicas. Cónicas 5º Año Cód. 1504-16 P r o f. B e t i n a C a t t a n e o P r o f. N o e m í B u s c h i a z z o P r o f. J o r g e l i n a O s e s R e s. d e P r o b l e m a s : P r o f. N a t a l i a F e r r

Más detalles

Instituto de Matemática y Física 1 Universidad de Talca

Instituto de Matemática y Física 1 Universidad de Talca Instituto de Matemática y Física 1 Universidad de Talca 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones y de inecuaciones EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES 1. Resolver el sistema de inecuaciones + 5 4 0 3 4 + 8 < 3( 1) Se

Más detalles

Funciones y Función lineal

Funciones y Función lineal Profesorado de Nivel Medio Superior en Biología Funciones Función lineal Analicemos los siguientes ejemplos: 1) El gráfico que figura más abajo muestra la evolución de la presión arterial de un paciente

Más detalles

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

1. El plano cartesiano

1. El plano cartesiano 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar

Más detalles

ANALISIS MATEMATICO I (2012)

ANALISIS MATEMATICO I (2012) ANALISIS MATEMATICO I (0) TRABAJO PRÁCTICO Funciones cuadráticas Ejercicio. Hacer una representación gráfica aproimada de las siguientes funciones cuadráticas:. f() =. f() = + 4 3. f() = +, Ejercicio.

Más detalles

Capítulo 1: Secciones Cónicas

Capítulo 1: Secciones Cónicas Capítulo : Secciones Cónicas Resumen En este apartado se trata sobre la definición, caractrización graficación de las Secciones Cónicas. Primero se definen las secciones cónicas como la curva de intersección

Más detalles

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5 utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

METODO DE FRACCIONES PARCIALES

METODO DE FRACCIONES PARCIALES METODO DE FRACCIONES PARCIALES Este método consiste en epresar una fracción propia como la suma de fracciones más simples que puedan integrarse en forma inmediata o casi inmediata. Para convertir una fracción

Más detalles

Clase. Función cuadrática y ecuación de segundo grado

Clase. Función cuadrática y ecuación de segundo grado Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INSTITUCION EDUCATIVA LA DESPENSA. Área de Matemáticas

INSTITUCION EDUCATIVA LA DESPENSA. Área de Matemáticas INSTITUCION EDUCATIVA LA DESPENSA MARCO FIDEL SUÁREZ CIUDAD VERDE Área de Matemáticas CALCULO Elaboró: Ing. Luis Ernesto Gómez Vargas Lic. en Matemáticas Computación 2.018 Nombre: Calculo 2 2018-1 UNIDAD

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada: Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado

Más detalles

UNIDAD 2 CALCULO DIFERENCIAL

UNIDAD 2 CALCULO DIFERENCIAL UNIDAD CALCULO DIFERENCIAL DEFINICION DE FUNCIÓN: una función es una epresión matemática en la que aparecen variables constantes relacionadas. Las variables en este curso serán dos: Una llamada variable

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN Sugerencias para quien imparte el curso Consideramos conveniente realizar todo el proceso de obtención de la ecuación ordinaria de la elipse

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles