Avances en la factorización entera

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Avances en la factorización entera"

Transcripción

1 Avances en la factorización entera Hugo D.Scolnik DISI 2007 con la colaboración de : Martín P.Degrati (tesista de doctorado) Julia Picabea (tesista de licenciatura en Matemática) Juan Pedro Hecht (investigador)

2 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina

3 Hoy en día todavía se ignora si el problema de descomponer a un entero en sus factores primos tiene complejidad subexponencial o polinomial (usando computadoras normales, dejaremos las cuánticas para otro momento) Aparte del interés teórico, existe uno muy práctico: si se pudiese factorizar enteros grandes entonces se quebrarían las firmas digitales hechas con el algoritmo más popular (RSA) Veamos la razón:

4 El algoritmo RSA: Seleccionar al azar dos números primos de gran longitud. Calcular n =pq Elegir un entero impar e primo relativo con (n) = (p 1)(q 1) Calcular d tal que e.d (mod (n)) = 1 (d existe y es único). Publicar el par P = (e,n) que es la clave pública del método RSA. Mantener en secreto el par S = (d,n) que es la clave privada del método RSA. Para encriptar un mensaje M con la clave privada se calcula S(M) = M d (mod n) y para desencriptarlo, P(S(M)) = (S(M)) c (mod n) = M (si se factoriza n se obtienen p,q, de ahí (n) = (p 1)(q 1), y al resolver e.d (mod (n)) = 1, se obtiene la clave privada a partir de la pública)

5 La empresa RSA Data Security publica diversos desafíos conocidos como RSAm (donde m indica la longitud en bits del número). El logro más reciente es el RSA640 = Cuyos factores son:

6 Uno fundamental pues ese tamaño es un estándar RSA1024 =

7 Recordemos algunas definiciones Los enteros módulo n se denotan por Z = 0,1,..., n 1 { } * El grupo multiplicativo de Zn es Zn = a Zn /MCD( a, n) = 1 Decimos que si existe x tal que x a( n) * n { } a Z, es un residuo cuadrático módulo n Al conjunto de todos los residuos cuadráticos módulo n se lo denota por Q. Notar que 0 Q pero como lo necesitaremos, definimos RoS n = Q n 0 n { } n n

8 Veamos el cálculo de residuos en forma eficiente

9 El clásico método de Fermat Sea n = p. q el número a factorizar. p q p + q x = = entonces 2 Si (( ), y (( ) son enteros n + x = y p = MCD n x y q = MCD n x + y representación n x y y esto sól (,( )), (, ) La idea del viejo método de Fermat es lograr una + = o funciona si los factores primos están próximos.

10 Ejemplo: N = 2581 que se puede escribir como 2581 = = (59+30)(59-30) = = Pero en general es casi imposible conseguir una representación así. Por ese motivo un matemático ruso, Maurice Kraitchik, planteó buscar congruencias 2 x y 2 ( n) i i

11 Los métodos modernos más eficientes (quadratic sieve, number field sieve) tienen su origen en estas ideas, pero conducen a resolver sistemas de ecuaciones módulo 2 de millones de incógnitas. Se considera que han llegado a su límite.

12 Pretendemos mirar al método de Fermat desde otro punto de vista. Mi idea surgió del problema de decidir cuando un entero k es un cuadrado perfecto SIN calcular su raíz cuadrada. El enfoque actual (ver por ejemplo GNU) es calcular k(m) para valores elegidos de m y ver si se obtiene un valor en RoS m Ejemplo: k = 52. Como k(7)=3 y RoS(7) = {0,1,2,4} entonces 52 no es un cuadrado perfecto. Tampoco k = 53 es un cuadrado pero 53(7) = 4 y entonces m=7 no filtra ese caso. Pero RoS(5) = {0,1,4} y 53(5) = 3

13 Veamos la idea central: Sea por ejemplo n = y tomemos m = 9 RoS 9 = 0,1,4,7 y como (9) = 8 resulta que { } ( )(9) (9) n + x = y 2 8 0,1,4,7 (9) + = { } y El único valor que da un elemento de RoS es 1 y por lo tanto resulta que x (9) = 1 x = 1+ 9t (realmente y entonces 1 9 con 7112) x = x = + t t = 9

14 Más formalmente la idea es: Para cualquier valor de m debe cumplirse que x ( m) ROS pero de n + x = y resulta que debe ser 2 m ( n + x )( m) ROSm para obtener un cuadrado perfecto ( y ). Esto conduce a la siguiente definición: Dado n diremos que a ROS es un target para c sí y sólo si ( n + a)( c) ROS Nota: si n es par pero n(4) 0 los targets no existen. Hemos demostrado que ciertos valores de m SIEMPRE dan targets ÚNICOS para n = pq m c

15 Otro ejemplo: n= 2851 RoS(4) = {0,1}, n(4)=1 (n + x 2 )(4) = (1 + {0,1})(4) o sea que x 2 (4) =0 es el único valor posible. De hecho era x 2 =900 o sea que x 2 (4) =0

16 Nota: si x a( c) x = a + c. t para un cierto valor de t y = + = + si b ( n x )( c) ROSc y b c. u para un cierto valor de u resulta que n + a b n + a + c. t = b + c. u = = u t c La idea clave es usar a este último número n como el nuevo número n a factorizar

17 Ejemplo: , , n = x = y = Algunos targets únicos: (1,0,4),(9,4,24),...,(9,36,80) El último nos dice que 2 x t t = = ( = ) = = ( = ) 2 y u u = + = + x t, y u n + a b and 1 = = = c Notar que =

18 Veamos el cálculo de targets únicos para algunos ejemplos

19 Un ejemplo más grande (RSA640): Algunos targets únicos: x = t y = + u x 2 = , pero

20 Es claro que todavía los targets no ayudan en forma sensible porque calcular t es un problema exponencial El próximo paso da algo mejor x 2 = t 1 Pero todavía no alcanza

21 RSA

22 Algunos targets únicos para RSA1024 ( 57, 4, 96) ( 81, 4, 120) ( 9, 100, 144) ( 121, 4, 160) ( 81, 64, 180) ( 201, 4, 240) ( 153, 100, 288) ( 81, 244, 360) ( 441, 4, 480) ( 441, 244, 720) ( 441, 964, 1440)

23 Una conclusión: rsa (24z + 3) = (36u + 10)

24 Volvamos al ejemplo: n = x = y = a b c Delta = (n+a-b)/c

25 Comenzando con (649,576,720) y delta =705, la siguiente iteración conduce a x = u que da x con u = 2 Entonces queda claro que hay que iterar

26 Sea ( a, b, c ) un target único Calculamos = 2 x = a1 + c1a 2 + c1c 2t2 2 y = b1 + c1b 2 + c1c 2u2 1 n + a b y, si es impar, un target único ( a, b, c ) 1 c Un poco de álgebra indica como fórmulas posibles: que a veces funcionan y a veces no (luego veremos como "filtrarlas" ó "corregirlas")

27 Tn( 649, 576, 720): D = 705 TD( 0, 1, 4): (aa, bb, cc) = ( 649, 1296, 2880) -> OK <-. TD( 0, 1, 8): (aa, bb, cc) = ( 649, 1296, 5760) -> OK <-. TD( 0, 1, 16): (aa, bb, cc) = ( 649, 1296, 11520). Las fórmulas anteriores dieron bien en los dos primeros casos pero no en el último. Lo correcto sería ( ,11520). Ahora, = 5760 = = 8.720=8.c 1 Esto no es casualidad, es un teorema

28 Filtros: Tn( 169, 96, 240): D = 2115 TD( 1, 0, 4): (aa, bb, cc) = ( 409, 96, 960) F2 F3b F6. TD( 1, 4, 8): (aa, bb, cc) = ( 409, 1056, 1920) F2 F3b F6. TD( 1, 4, 16): (aa, bb, cc) = ( 409, 1056, 3840) F2 F3b F6. TD( 1, 4, 32): (aa, bb, cc) = ( 409, 1056, 7680) F2 F3b F6. Los filtros eliminaron todos los casos, pero son corregibles. Por ejemplo, el último debería ser (2569, 3216,7680) Nuevamente si planteamos que x = δ + c c t δ = = 2160 = = λ c x x 1 Luego veremos que esto se deduce x 1 2

29 Caso simétrico: cuando tiene targets que también lo eran del nivel anterior (1) x = a + c a + δ + c c t = a + c t = a + c t x (TU del primer paso). Por lo tanto x a ( c ), x a ( c ) 1 1 (2) δ 0 ( c ) δ = λ c 2 x 1 x x 1 (3) δ ( a a c a )( c ) δ = a a c a + c µ 2 x x x

30 (4) x (5) δ 0 ( c ) δ = λ c x 2 x x 2 (6) δ ( a a c a )( c ) δ = a a c a + c µ (7) x x x y (8) δ 0 ( c ) δ = λ c (9) x = a + c a + δ + c c t = a + c t y = b + c b + δ + c c u = b + c u = b + c u 2 y 1 y y 1 δ = ( b b c b )( c ) δ = b b c b + c µ 2 y y y

31 (10) y = b + c b + δ + c c u = b + c u y (11) δ 0 ( c ) δ = λ c y 2 y y 2 (12) δ = ( b b c b )( c ) δ = b b c b + c µ y y y

32 A partir de n x y, usando (1),(3),(7) y (9) resulta n + x = n + a + c a + a a c a + c µ + c c t = x 1 b + c b + b b c b + c µ + c c u y 1 obteniendo n + a b (13) + µ x µ y = c1( u2 t2 ) c2 n + a b + µ x µ y c2 análogamente + = 0 ( c ) 1

33 n + a b µ µ (14) + x y = c2( u2 t2) c1 n + a b µ x µ y c1 0 ( c ) 2 De (2) y (3) λ c + a a + c a (15) µ (diofántica lineal) 2 2 x x = c2

34 Similarmente (16) µ 2 (17) µ y = (18) µ = 1 1 x x = c1 1 y λ c + a a + c a λ c + b b + c b 2 y 1 y c λ c + b b + c b c 1

35 También se obtiene: (19) a + c µ a + c µ ( c c ) x x 1 2 (20) b + c µ b + c µ ( c c ) y y 1 2

36 Ejemplo: (49,96,120), (1,0,9) 1 resolviendo la ecuación µ y = resulta µ = z, λ = z 1 1 y y 1 Con z 0 µ y 512 δ 1 y = = = ( 512) = λ c + b b + c b 1 y y = u cierto con u = c 1

37 Tareas futuras Todavía falta, tenemos filtros casi perfectos pero todavía no alcanzan pues si se siguen ramas equivocadas Hay varias ideas que están en desarrollo.

38 Finalizado el tiempo disponible

39 Aquí terminamos Muchas gracias!

40

Nuevos Algoritmos de Factorización de Enteros para atacar RSA. Ekoparty

Nuevos Algoritmos de Factorización de Enteros para atacar RSA. Ekoparty Nuevos Algoritmos de Factorización de Enteros para atacar RSA Ekoparty Buenos Aires, 3 de octubre de 2008 Hugo D.Scolnik Departamento de Computación Universidad de Buenos Aires Esquema de la conferencia:

Más detalles

ab mod n = ((a mod n)(b mod n)) mod n

ab mod n = ((a mod n)(b mod n)) mod n Teoría de Números a b(mod n) si a = b + kn para algún entero k. b se llama el resíduo de a, módulo n. a es congruente a b, módulo n. Los enteros 0... n 1 forman el conjunto completo de resíduos módulo

Más detalles

Algoritmo de Dixon Ataque de Wiener

Algoritmo de Dixon Ataque de Wiener Algoritmo de Dixon Ataque de Wiener México 2011 1 Criba cuadrática 2 Ataque de Wiener Algoritmo de Dixon Factorización Supongamos que nuestra base de primos B := {p 1,...,p b } consiste de los primeros

Más detalles

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso

ARITMÉTICA II. Adolfo Quirós. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso ARITMÉTICA II COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2012-2013 LO QUE TENÍAMOS PENDIENTE DEL OTRO DÍA Hay más números reales que números racionales? Números complejos? Números

Más detalles

Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia

Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia Módulo 3 - Diapositiva 19 Factorización de Facultad de Ciencias Exactas y Naturales Temas Teorema del Factor Teorema del Factor Teorema Fundamental del Álgebra Teorema del Factor Teorema Un polinomio f(x)

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3.

Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de Grupo 3. Introducción a la Matemática Discreta. Grado en Ingeniería Informática. Informática de Computadores. 22 de Diciembre de 2014. Grupo 3. Nombre: Ejercicio 1 (1.5 puntos) a) Hallar una fórmula explícita para

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Algoritmos Cuánticos

Algoritmos Cuánticos Algoritmos Cuánticos Alfonsa García, Francisco García 1 y Jesús García 1 1 Grupo de investigación en Información y Computación Cuántica (GIICC) Algoritmos cuánticos 1. Introducción 2. Primeros algoritmos

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

Criptografía Asimétrica. Previos

Criptografía Asimétrica. Previos Criptografía Asimétrica Previos Se define el operador aritmética mód así: a b(mód n) si a = b + kn para algún entero k. (Nota: la función de librería mod(), o el operador % en el lenguaje C, no siempre

Más detalles

TEORÍA DE NÚMEROS II

TEORÍA DE NÚMEROS II TEORÍA DE NÚMEROS II Cristian Arturo Chaparro Acosta Universidad Distrital Francisco José de Caldas Proyecto curricular de Matemáticas Bogotá D.C. 7 de octubre de 2014 1. Demuestre, refute o solucione:

Más detalles

2. Determine los números enteros n que satisfacen la relación planteada:

2. Determine los números enteros n que satisfacen la relación planteada: ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta

Más detalles

Análisis Numérico: Soluciones de ecuaciones en una variable

Análisis Numérico: Soluciones de ecuaciones en una variable Análisis Numérico: Soluciones de ecuaciones en una variable MA2008 Contexto Uno de los problemas básicos en el área de Ingeniería es el de la búsqueda de raíces: Dada una función o expresión matemática

Más detalles

Una Introducción Matemática a la Criptografía (para mis alumnos de Álgebra I)

Una Introducción Matemática a la Criptografía (para mis alumnos de Álgebra I) Una Introducción Matemática a la Criptografía (para mis alumnos de Álgebra I) Pablo De Nápoli pdenapo@dm.uba.ar Una Introducción Matemática a la Criptografía(para mis alumnos de Álgebra I) p. 1 Qué es

Más detalles

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias?

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Álgebra I Mayo de 2018 Marcelo Rubio Abstract En estas notas ofrecemos una guía para resolver ecuaciones y sistemas lineales de ecuaciones

Más detalles

Procesamiento Cuántico de Datos

Procesamiento Cuántico de Datos Procesamiento Cuántico de Datos Miguel Arizmendi, Gustavo Zabaleta 15 de diciembre de 2016 Sitio web: www3..mdp.edu.ar/fes/procq.html Miguel Arizmendi, Gustavo Zabaleta () Procesamiento Cuántico de Datos

Más detalles

Estadística III Repaso de Algebra Lineal

Estadística III Repaso de Algebra Lineal Repaso de Algebra Lineal Vectores Un vector columna de dimensión n 1 es una serie de números dispuestos como sigue: x 1 x 2 x =. x n Un vector fila de dimensión 1 p es una serie de números dispuestos como

Más detalles

Criptografía Susana Puddu

Criptografía Susana Puddu Susana Puddu Supongamos que Juan quiere enviar un mensaje a Pedro de forma tal que únicamente Pedro sea capaz de entender su contenido. Una manera ingenua de hacer esto es reemplazar cada letra, signo

Más detalles

Sistemas basados en la Teoría de Números

Sistemas basados en la Teoría de Números Criptografía de clave pública Sistemas basados en la Teoría de Números Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p.1/20 Criptografía de clave pública Sistemas

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

Redes de Ordenadores 3º Doble Tit. Informática y Telemática. Trabajo

Redes de Ordenadores 3º Doble Tit. Informática y Telemática. Trabajo Redes de Ordenadores 3º Doble Tit. Informática y Telemática Trabajo Avances en factorización entera: es completamente seguro el RSA? Victor Gonzalez Amarillo 0. Índice Introducción 3 Antecedentes: clasificación

Más detalles

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx

Más detalles

Escuela Secundaria Diurna No. 2 ANA MARÍA BERLANGA

Escuela Secundaria Diurna No. 2 ANA MARÍA BERLANGA Escuela Secundaria Diurna No. 2 ANA MARÍA BERLANGA Matemáticas III Tema: Álgebra. Contenido: Factor común y factorización de polinomios de segundo grado Actividad: Obtención de binomio al cuadrado, binomio

Más detalles

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO

FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE: CIENCIAS DE LA EDUCACIÓN PROGRAMA DE: LICENCIATURA EN MATEMÁTICAS 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : TEORÍA DE LOS NÚMEROS CÓDIGO : 22140 SEMESTRE : QUINTO

Más detalles

Matemáticas aplicadas a la criptografía

Matemáticas aplicadas a la criptografía Matemáticas aplicadas a la criptografía Unidad II - Teoría de Números Dr. Luis J. Dominguez Perez Universidad Don Bosco Abril 23, 2013 Contenido de la sección 1 Divisibilidad y Euclides Congruencias Factorización

Más detalles

Aritmética Modular MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática.

Aritmética Modular MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática. Aritmética Modular MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática. UPM 1 / 30 La relación de congruencia La relación de congruencia Definición Dado

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables.

Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática. Ecuación Expresiones Variables. Clase : Ecuaciones lineales, cuadráticas, racionales y con raíz Resolver ecuaciones lineales y cuadráticas. Resolver ecuaciones racionales y con raíz transformando la ecuación en una lineal o cuadrática..

Más detalles

Matemáticas Discretas 2 - Taller 2 Aritmética modular G. Padilla

Matemáticas Discretas 2 - Taller 2 Aritmética modular G. Padilla Matemáticas Discretas 2 - Taller 2 Aritmética modular G Padilla 1 EQUIVALENCIAS Y RELACIONES DE ORDEN (1) Decide cuáles de las siguientes relaciones son equivalencias En caso afirmativo, halla el conjunto

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

1. Ecuaciones lineales en cuerpos finitos

1. Ecuaciones lineales en cuerpos finitos 1. Ecuaciones lineales en cuerpos finitos Un cuerpo es un conjunto F dotado de dos operaciones suma y producto, usualmente denotadas por + y que satisfacen los axiomas de los números reales, exceptuando

Más detalles

Lección 3: Sistemas de Cifra con Clave Pública

Lección 3: Sistemas de Cifra con Clave Pública Lección 3: Sistemas de Cifra con Pública Gonzalo Álvarez Marañón gonzalo@iec.csic.es Consejo Superior de Investigaciones Científicas Científico Titular Los tipos de criptografía Criptografía Simétrica

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Modular Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 39 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8

GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8 Plan de Estudios: Semestre 1 Área: Matemática 1 Nº Créditos: Intensidad horaria semanal: 3 Hrs T Hrs P Total horas: 6 Tema: Desigualdades 1. OBJETIVO Apropiar los conceptos de desigualdades y establecer

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

Universidad Nacional de Ingeniería UNI FACULTAD DE ELECTROTECNIA Y COMPUTACION

Universidad Nacional de Ingeniería UNI FACULTAD DE ELECTROTECNIA Y COMPUTACION Universidad Nacional de Ingeniería UNI FACULTAD DE ELECTROTECNIA Y COMPUTACION Técnico Superior en Computación MATEMATICA Funciones: Rango, dominio y Graficas Tutor: Lic. Alberto Silva Elaborado Por: Bernardo

Más detalles

Lección 6 - Ecuaciones cuadráticas

Lección 6 - Ecuaciones cuadráticas Ecuaciones cuadráticas Objetivos: Al terminar esta lección podrás definir lo que es una ecuación cuadrática y podrás resolver ecuaciones cuadráticas. En la lección previa aprendimos lo que es una ecuación

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

Congruencias. Homero Gallegos CONACyT Unidad Académica de Matemáticas UAZ 11 de febrero de 2015

Congruencias. Homero Gallegos CONACyT Unidad Académica de Matemáticas UAZ 11 de febrero de 2015 Congruencias Homero Gallegos CONACyT Unidad Académica de Matemáticas UAZ h.r.gallegos.ruiz@gmail.com 11 de febrero de 2015 Cálculos en MAGMA: > time Max( SequenceToSet(Divisors(314159265358979323846264338))

Más detalles

Números enteros. Congruencias

Números enteros. Congruencias Capítulo 5 Números enteros. Congruencias módulo n 5.1. Principio del Buen Orden, Principio de Inducción, Algoritmo de la división Comenzamos por aceptar el Principio del buen orden. (No hay demostración)

Más detalles

Hallar las raíces enteras de los siguientes polinomios:

Hallar las raíces enteras de los siguientes polinomios: Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1

Más detalles

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en

Más detalles

Factorización - Álgebra

Factorización - Álgebra Factorización - Álgebra Ana María Beltrán Docente Matemáticas Febrero 4 de 2013 1 Qué es factorizar? Definición 1. Factorizar un polinomio es representarlo mediante el producto de otros polinomios de menor

Más detalles

05. Criptografía de clave pública

05. Criptografía de clave pública 05. Criptografía de clave pública Criptografía 5º Curso de Ingeniería Informática Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Contenido Cifrado con clave pública Ventajas

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Entre las funciones importantes de la Matemática está la familia de las funciones polinómicas. Una función polinómica puede definirse de manera que su dominio sea el conjunto

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

FUNDAMENTOS NUMÉRICOS

FUNDAMENTOS NUMÉRICOS SEMANA 3 ÍNDICE ECUACIONES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 PROPIEDADES DE LA IGUALDAD... 4 ECUACIONES... 4 ECUACIONES LINEALES... 4 ECUACIONES CUADRÁTICAS... 5 RESOLUCIÓN DE UNA ECUACIÓN

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Polinomios. Parte 1 de 2. Las Definiciones de los Monomios, Polinomios y Grados Trabajo de Clase Cuál es el grado del polinomio?

Polinomios. Parte 1 de 2. Las Definiciones de los Monomios, Polinomios y Grados Trabajo de Clase Cuál es el grado del polinomio? Polinomios Parte 1 de 2 Las Definiciones de los Monomios, Polinomios y Grados Cuál es el grado del polinomio? 1) y 3 2) f 7 3) a 4 b 3 4) m 3 n 5 5) x 3 y 4 z 5 6) x 2 + 4x + 3 7) x 2 y 3 + x 3 y x 3 y

Más detalles

Resolución de Ecuaciones No Lineales

Resolución de Ecuaciones No Lineales Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Contenido 1 Introducción Introducción 2 Localización de Raíces Localización de Raíces 3 Métodos Iterativos

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Ecuaciones de recurrencia. Abraham Sánchez López FCC/BUAP Grupo MOVIS

Ecuaciones de recurrencia. Abraham Sánchez López FCC/BUAP Grupo MOVIS Ecuaciones de recurrencia Abraham Sánchez López FCC/BUAP Grupo MOVIS Introducción, I Cuando se analiza la complejidad de un algoritmo recursivo, es frecuente que aparezcan funciones de costo también recursivas,

Más detalles

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,...

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,... CAPÍTULO 1 ALGEBRA MATRICIAL 11 Introducción Definición 111 (Matriz) Definimos una matriz como un arreglo rectangular de elementos, llamados escalares, sobre un álgebra F Más que hacer referencia especifica

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias Físico Matemáticas

Benemérita Universidad Autónoma de Puebla Vicerrectoría de Docencia Dirección General de Educación Superior Facultad de Ciencias Físico Matemáticas PLAN DE ESTUDIOS (PE): Licenciatura en Matemáticas ÁREA: Álgebra ASIGNATURA: CÓDIGO: CRÉDITOS: 6 FECHA: Junio 2017 1 1. DATOS GENERALES Correlación: Nivel Educativo: Licenciatura Nombre del Plan de Estudios:

Más detalles

Funciones y Ecuaciones Cuadráticas

Funciones y Ecuaciones Cuadráticas Funciones y Ecuaciones Cuadráticas Solución de ecuaciones de Segundo Grado completando el trinomio cuadrado perfecto Cuando no es posible factorizar a la ecuación, se procede a completar el trinomio cuadrado

Más detalles

Algoritmo de Euclides

Algoritmo de Euclides Algoritmo de Euclides No es necesario realizar ensayo y error para determinar el inverso multiplicativo de un entero módulo n. Si el módulo que está siendo usado es pequeño hay algunas pocas posibilidades

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Criptografía asimétrica o de clave pública

Criptografía asimétrica o de clave pública Criptografía asimétrica o de clave pública F. J. Martínez Zaldívar Departamento de Comunicaciones ETSI Telecomunicación Universidad Politécnica de Valencia Comunicación de Datos II Índice 1 Introducción

Más detalles

Universidad de Antioquia

Universidad de Antioquia Polinomios Facultad de Ciencias Eactas Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Matemáticas Operativas Taller 8 202 Los polinomios forman una clase mu importante

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011 Mínimos Cuadrados Departamento de Matemáticas, CCIR/ITESM 30 de junio de 011 Índice 4.1.Introducción............................................... 1 4..Error Cuadrático............................................

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE ARECIBO Departamento de Ciencias y Tecnología AÑO 2004-2005 EGMA 1200 - Fundamentos de Álgebra Documento de Trabajo para el TERCER EXAMEN PARCIAL ì

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Tarea 2 de Álgebra Superior II

Tarea 2 de Álgebra Superior II Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.

Más detalles

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}. Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Álgebra Básica. Departamento de Álgebra.

Álgebra Básica. Departamento de Álgebra. Ejercicios de Álgebra Básica. Curso 2010/11 Ejercicio 1. Construir las tablas de verdad de las siguientes proposiciones: (1). p q (2). [(p q) q] p (3). [(p q) r] p (q r) (4). [(p q) q] p (5). [(p q) p]

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

Tema 5. Factorización de Polinomios y fracciones algebraicas.

Tema 5. Factorización de Polinomios y fracciones algebraicas. Tema. Factorización de Polinomios y fracciones algebraicas.. Polinomio múltiplo y divisor. Factor de un polinomio. Ruffini. Valor numérico de un polinomio. Raíz del polinomio.. Factorización de un polinomio..

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Álgebra Lineal Curso 206/7 6 de junio de 207 Soluciones a los ejercicios del examen final Se considera la aplicación lineal L : R 3 R 3 definida por L(x, y, z) = (z x, x + y + z, x y 3z). a) Hallar la

Más detalles

Dígitos de control. Test de Primalidad Algoritmo para calcular a r mod n Criptografía. Aritmética Modular. personal.us.es/lcamacho. Luisa M.

Dígitos de control. Test de Primalidad Algoritmo para calcular a r mod n Criptografía. Aritmética Modular. personal.us.es/lcamacho. Luisa M. personal.us.es/lcamacho 1 NIF ISBN 2 3 4 Sistema RSA NIF NIF ISBN La letra del NIF se obtiene reduciendo el número del DNI módulo 23 y aplicando al resultado la siguiente tabla 0 T 6 Y 12 N 18 H 1 R 7

Más detalles

Clase 2: Criptografía

Clase 2: Criptografía Capítulo 5: Teoría de Números Clase 2: Criptografía Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 11 Qué es la criptología? La criptología

Más detalles

ARITMÉTICA MODULAR ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014

ARITMÉTICA MODULAR ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014 ARITMETICA MODULAR PARA PRINCIPIANTES EN EL VI CONGRESO DE MATEMATICAS Y GEOGEBRA IBAGUÉ OCTUBRE 7, 8 Y 9 DEL 2014 Si a, b, k Ɛ Z y m Ɛ N entonces a b (mod m) a b es múltiplo de m, es decir a b = km a

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Sistema criptográfico de llave publica RSA. Análisis y diseño de algoritmos Jose F. Torres M.

Sistema criptográfico de llave publica RSA. Análisis y diseño de algoritmos Jose F. Torres M. Sistema criptográfico de llave publica RSA Análisis y diseño de algoritmos Jose F. Torres M. Introducción Un mensaje puede cifrarse mediante la aplicación de una regla que transforme el texto en claro

Más detalles

Clase 4: Congruencias

Clase 4: Congruencias Clase 4: Congruencias Dr. Daniel A. Jaume * 20 de agosto de 2011 1. Congruencias módulo m En 1801 Gauss, en su libro Disquisitiones Arithmeticae introdujo una notación relacionada con la noción de divisibilidad

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

TI 89. Cómo sobrevivir en Precálculo

TI 89. Cómo sobrevivir en Precálculo TI 89 Cómo sobrevivir en Precálculo TI-89 Menús que más utilizaremos: Operaciones Numéricas Simplificar: 3 + 1 5 ( 4)2 9 3 4 Notar la diferencia entre el símbolo de resta y el signo negativo. Notar el

Más detalles

Si el producto de dos números es cero

Si el producto de dos números es cero Matemáticas I, 2012-I Si el producto de dos números es cero Empezamos con un acertijo: Silvia tiene dos números. Si los multiplica sale 0 y si los suma sale 256. Cuáles son estos dos números que tiene

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Deducción de las fórmulas del método del gradiente conjugado

Deducción de las fórmulas del método del gradiente conjugado Deducción de las fórmulas del método del gradiente conjugado Objetivos. Demostrar el teorema sobre los subespacios de Krylov en el método del gradiente conjugado. Requisitos. Subespacios generados por

Más detalles

Segundo caso. Tercer caso. Resolviendo cada una de las desigualdades: d. (x - 5) 2 0. Si: < 0; (a > 0), el polinomio: ax 2 + bx + c, se transforma

Segundo caso. Tercer caso. Resolviendo cada una de las desigualdades: d. (x - 5) 2 0. Si: < 0; (a > 0), el polinomio: ax 2 + bx + c, se transforma Inecuaciones Cuadráticas Inecuación cuadrática Forma general: Donde: {a; b; c} IR Del rectángulo se obtiene: P () = a 2 + b + c > < 0 ; a 0 a 2 + b + c > 0; a 2 + b + c < 0 a 2 + b + c 0; a 2 + b + c 0

Más detalles

Divisibilidad (en N = N {0})

Divisibilidad (en N = N {0}) Divisibilidad (en N = N {0}) Dados dos números naturales a y c, se dice que c es un divisor de a si existe q N tal que a = q c (es decir, si en la división a c el resto es 0). c a significa que c es divisor

Más detalles

Una de las cosas más útiles de la factorización es que podemos resolver ecuaciones polinómicas a través de ella. Ejemplo A

Una de las cosas más útiles de la factorización es que podemos resolver ecuaciones polinómicas a través de ella. Ejemplo A RAÍCES DE UN POLINOMIO Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección serás capaz de resolver ecuaciones polinómicas

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

Tema 2 Aritmética modular

Tema 2 Aritmética modular 1 Tema 2 Aritmética modular 2.1 Relaciones de equivalencia Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina relación de equivalencia. Dos elementos

Más detalles

Diseño y Análisis de Algoritmos

Diseño y Análisis de Algoritmos 1. Recursividad 2. "Dividir para Reinar" 3. Recursividad y Tabulación (Programación Dinámica) 4. Métodos Matemáticos Funciones discretas Notación O Ecuaciones de recurrencia 5. Casos de Estudio Breve descripción

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles