CPE (SEGUNDO CURSO) PRÁCTICA 8 SOLUCIONES (Curso )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CPE (SEGUNDO CURSO) PRÁCTICA 8 SOLUCIONES (Curso )"

Transcripción

1 1/8 CPE (SEGUNDO CURSO PRÁCTICA 8 SOLUCIONES (Curso En un cierto tramo de una carretera comarcal de dos sentidos pasan vehículos a razón de 3 vehículos por minuto en un sentido (sentido A y 5 vehículos por minuto en el otro (sentido B. Se considera que la llegada de vehículos son llegadas de Poisson. Se pide: a Calcular la probabilidad de que en 30 segundos pasen más de 5 vehículos en total. b Si en 20 segundos pasa un solo vehículo, cuál es la probabilidad que circule por el sentido A? c Debido a la falta de paso señalizado, un peatón decide cruzar la carretera en un lugar de muy difícil visibilidad. El tiempo que tarda en cruzar la carretera es de 12 segundos. Calcular la probabilidad de que el peatón no sea atropellado. Téngase en cuenta que la carretera consta de dos sentidos de circulación y supóngase que el tiempo usado por el peatón para cruzar cada sentido es el mismo. (a Sentido A l=3 veh/min Sentido B l=5 veh/min Sea X el número de vehículos que circulan por el sentido A e Y el que circula por el sentido B. Sabemos que X P (ν x = λ x T y que Y P (ν y = λ y T. Introduciendo los datos obtenemos que X P (1.5 e Y P (2.5. Suponiendo que las llegadas en ambos sentidos son independientes y ya que la distribución de Poisson es regenerativa respecto a la suma, podemos obtener la variable aleatoria Z, que representa el número total de vehículos que circulan por la carretera como Z = X + Y = P (ν x + ν y = P (4 Una vez que conocemos la distribución de Z podemos calcular la probabilidad solicitada como P [Z > 5] = 1 P [Z 5] = (b Dado que T = 20 segundos, las distribuciones de las variables aleatorias X, Y y Z son:

2 2/8 X P (1, Y P ( 5 3 y Z P ( 8 3. La probabilidad solicitada es donde P [X = 1 Z = 1] = P [Z = 1 X = 1]P [X = 1] P [Z = 1 X = 1]P [X = 1] + P [Z = 1 Y = 1]P [Y = 1], P [Z = 1 X = 1] = P [Y = 0] = P [Z = 1 Y = 1] = P [X = 0] = P [X = 1] = P [Y = 1] = P [Z = 1] = P [Z = 1 X = 1]P [X = 1] + P [Z = 1 Y = 1]P [Y = 1] = = P [Y = 0]P [X = 1] + P [X = 0]P [Y = 1] = Por tanto, la probabilidad solicitada es P [X = 1 Z = 1] = = Además, por el teorema de la probabilidad total se puede comprobar que la distribución de Poisson es regenerativa respecto a la suma. Dado que conocemos la distribución de la variable aleratoria Z, podemos calcular P [Z = 1] = e 8/3 (8/3 1 1! = Se ha obtenido la misma probabilidad, tal y como se esperaba. (c El peatón tarda el mismo tiempo en recorrer cada uno de los carriles, es decir, T = 6 segundos. Por tanto X P (0.3, Y P (0.5. T=6 segundos T=6 segundos Por tanto la probabilidad solicitada es p = P [X independientes, = 0 Y = 0], dado que se asumen p = P [X = 0]P [Y = 0] = e 0.3 (0.3 0 e 0.5 ( ! 0! = El peatón tiene una probabilidad de aproximadamente un 55 % de sufrir un atropello.

3 3/8 2. Un distribuidor vende repuestos en paquetes de 0, y garantiza que, a lo sumo, el % son defectuosos. Un cliente controla cada paquete extrayendo repuestos. Si esta muestra no contiene repuestos defectuosos, acepta el paquete. En caso contrario lo rechaza. Suponiendo que en los paquetes haya exactamente el % de repuestos defectuosos, calcular la probabilidad de que rechace el paquete si: a La muestra se extrae sin reemplazo. b La muestra se extrae con reemplazo. a Si la muestra se extrae sin reemplazo el número de repuestos defectuosos (éxitos en las extracciones se distribuye según una distribución hipergeométrica, es decir ( ( 90 x x P X (x = ( 0 Si llamamos C al suceso el cliente rechaza el paquete podemos escribir P [C] = 1 P [ C ] = 1 P X (0 = 1 = 1 ( ( 90 0 ( 0 = 1 ( 90 ( 0 = 1 90! 80!! 0! 90!! = = b Si la muestra se extrae con reemplazo, X B(, 0.1. Por tanto P [C] = 1 P [ C ] = 1 P X (0 = 1 = = = = 1 90!90! 80!0! = ( (1 p n 0 p 0 = 1 (1 p = 0

4 4/8 3. Deben sustituirse 8 elementos electrónicos de un sistema, de los cuales 5 son de tipo A y 3 son de tipo B. El técnico que debe realizar la operación ha recibido 20 elementos, 12 del tipo A y 8 del tipo B, pero debido a deficiencias del envío no puede identificar los tipos, por lo que decide tomar 12 de estos componentes nuevos y comprobar in situ su adecuación. Hallar la probabilidad de que con estos 12 elementos puedan realizarse correctamente todas las sustituciones. Al tomar 12 elementos de los 20 que tenemos, el número N de elementos que son de tipo A corresponde obviamente a una distribución hipergeométrica N HG(20, 12, 12/20 Luego P N (n = ( 12 ( 8 n ( n, n = 4, 5,..., 12 Las sustituciones necesarias se podrán realizar si en los elementos elegidos hay al menos 5 de tipo A y al menos 3 de tipo B. O lo que es lo mismo, si hay 5,6,7,8 o 9 elementos de tipo A. Como los sucesos son incompatibles, la probabilidad pedida, q, es q = P N (5 + P N (6 + P N (7 + P N (8 + P N (9. Y operando resulta q =

5 5/8 4. A un silo de almacenamiento llegan diariamente N cargas de cemento. N está distribuido según Poisson con parámetro λ = 2 cargas/día. La instalación de descarga del silo puede procesar hasta tres cargas por día; el exceso de carga es despachado a otros silos. Se pide: a Probabilidad de procesar todas las cargas que llegan en un día. b En cuánto debería ampliarse la instalación de descarga para que la probabilidad de tener que rechazar cargas en un día cualquiera sea de 0.1? c Cuál es el número más probable de cargas que se procesarán en un día? d Calcular la esperanza matemática del número de cargas procesadas y rechazadas cada día. (a En términos de la variable aleatoria N, el suceso cuya probabilidad nos preguntan es [N 3] ya que 3 es la capacidad máxima de la instalación. La distribución de una variable de Poisson de parámetro λ = 2 en un período de tiempo unidad es de forma que P [N = n] = e 2 2n, n = 0, 1, 2,... n! P [N 3] = P [N = 0] + P [N = 1] + P [N = 2] + P [N = 3] = e 2 ( ! ! = (b Sea n 0 la nueva capacidad diaria de la instalación de descarga. Siendo de nuevo N la variable aleatoria número de cargas que llegan al silo durante un día, n 0 ha de cumplir que P [N > n 0 ] 0.1, es decir, P [N n 0 ] 0.9. De la misma forma que en el apartado anterior, n 0 P [N n 0 ] = n=0 n 0 P [N = n] = e 2 n=0 2 n n! = e 2 ( ! ! n0 n 0! y para que este valor sobrepase 0.9 es suficiente tomar n 0 = 4. Por lo tanto basta aumentar la capacidad de la instalación en una carga. (c Sea X la variable aleatoria número de cargas que se procesan en un día. X es función de la variable N, pero no coincide con ella. Claramente R X = {0, 1, 2, 3}; el suceso [X = n] coincide con [N = n] para 0 n 2 (si llegan dos cargas o menos, se procesan todas, mientras que el suceso [X = 3] coincide con [N 3] (si llegan tres cargas o más, se procesan tres. Así P [X = 0] = P [N = 0] = e 2 = P [X = 1] = P [N = 1] = 2e 2 = P [X = 2] = P [N = 2] = e 2! = P [X = 3] = P [N 3] = 1 (P [N = 0] + P [N = 1] + P [N = 2] = El valor más probable para X es por lo tanto 3.

6 6/8 (d En el apartado anterior calculamos la distribución de la variable aleatoria X (número de cargas procesadas en un día. Su esperanza matemática es E(X = 0 P [X = 0] + 1 P [X = 1] + 2 P [X = 2] + 3 P [X = 3] = La variable aleatoria Y = número de cargas rechazadas en un día se puede obtener como Y = N X. Por lo tanto E(Y = E(N E(X; teniendo en cuenta que la esperanza de N es λt = 2 1 = 2 (ver momentos de una variable de Poisson, resulta E(Y =

7 7/8 5. Una ingeniería ha decidido presentarse a todos los concursos que salgan en su Comunidad Autónoma, para proyectos en temas de carreteras, hasta que consiga dos adjudicaciones. La probabilidad de que le adjudiquen un proyecto en un concurso es del 50 %, y se considera que el resultado de cada concurso es independiente del de los demás. Se desea saber: a La media de concursos a los que habrá de presentarse la empresa. b El número más probable de concursos a los que habrá de presentarse la empresa. c La media del número de concursos que no se le adjudicarán a esta empresa hasta que se le adjudiquen dos. Sea X el número total de concursos a los que ha de presentarse la empresa. Sea G el suceso ganar el concurso. Obviamente, P [G] = 0.5. La variable X tiene (si cada concurso es independiente de los demás una distribución de Pascal de parámetros k = 2 y p = 0.5, en la que denominamos éxito al hecho de ganar el concurso. Entonces a b La función de probabilidad de X es X BN(k, p = E[X] = k p = = 4 P X (x = Sustituyendo y operando Dando valores P X (2 = = 0.25 P X (3 = = 0.25 P X (4 = m = P X (5 = m = ( x 1 (1 p x k p k, x = k, k + 1,... k 1 ( x 1 P X (x = 0.5 x = (x 10.5 x, x = 2, 3, 4,... 1 P X (6 = m = y así sucesivamente, luego el número más probable de concursos a los que habrá de presentarse la empresa es 2 o 3 (con la misma probabilidad. c Sea Y el número de concursos que no se le adjudicarán a esta empresa hasta que se le adjudiquen dos. Obviamente Y = X 2 luego E[Y ] = E[X 2] = E[X] 2 = 4 2 = 2.

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones Prueba de Evaluación Continua Grupo B 8-X-5.- Un ladrón perseguido por la policía llega a un garaje que tiene dos puertas: una conduce al recinto A en la que hay coches de los que sólo tienen gasolina

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y

Más detalles

b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?

b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir? Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD Sean A y B dos sucesos con P(A0,, P(0, y P(A 0,. Calcular las probabilidades: a P(A/ b P(A/A c P(A B/A d P(A/A. Tenemos: ( ( ( ( P A

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Matemática 3 Curso 2013

Matemática 3 Curso 2013 Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #4 Tema: Actividad práctica (Esperanza matemática, Distribución Binomial y Poisson) Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre 2008 1. El problema de Galileo.

Más detalles

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA robabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA -XII- Grupo B.- Tres máquinas de una planta de montaje producen el %, 5% y 5% de productos, respectivamente. Se sabe que el %, %,

Más detalles

Selectividad Septiembre 2007 SEPTIEMBRE 2007

Selectividad Septiembre 2007 SEPTIEMBRE 2007 Bloque A SEPTIEMBRE 2007 1.- Cada instalación de una televisión analógica necesita 10 metros de cable y cada instalación de televisión digital necesita 20 metros. Cada televisión analógica necesita 20

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Preguntas más Frecuentes: Tema 6

Preguntas más Frecuentes: Tema 6 Preguntas más Frecuentes: Tema 6 Pulse sobre la pregunta para acceder directamente a la respuesta 1. En el ejemplo 6.2, no entiendo por qué dividimos entre 8. Si tiro 3 veces la moneda y las opciones son

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson

Algunas Distribuciones EstadísticasTeóricas. Aproximación de la Distribución Binomial por la Distribución de Poisson Algunas Distribuciones EstadísticasTeóricas Distribución de Bernoulli Distribución de Binomial Distribución de Poisson Aproximación de la Distribución Binomial por la Distribución de Poisson Distribución

Más detalles

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2 } EvAU 28 Opción A Comunidad de Madrid } Ejercicio. Dado el sistema de ecuaciones + my m + )y + z se pide: + 2m )y + m + 2)z 2 + 2m, a) Discutir el sistema en función del parámetro m. b) Resolver el sistema

Más detalles

DISTRIBUCIÓN BINOMIAL

DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN BINOMIAL 1.- El 10 % de los artículos producidos en un cierto proceso de fabricación resulta ser defectuoso. Calcular: (1) La probabilidad de que en una muestra de 10 artículos elegidos al

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Actividad Práctica #1 Tema: Actividad práctica (Variable Aleatoria, Esperanza matemática, Distribución Binomial y Poisson) Prof.: MSc. Julio

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Ejercicios Distribución Discretas

Ejercicios Distribución Discretas 1 Ejercicios Distribución Discretas Distribución Binomial 1. Sea X Bin(15; 0,3). Calcular las siguientes probabilidades. a) P (X = 8) b) P (X 10) c) P (X > 8) d) P (6 < X < 11) 2. Sea X Bin(8; 0,45). Calcular

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad

PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

Variables aleatorias 1. Problema 1

Variables aleatorias 1. Problema 1 Variables aleatorias 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Variables aleatorias Problema 1 La dimensión de ciertas piezas sigue una distribución normal

Más detalles

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.

TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

Notas de clase. Prof. Nora Arnesi

Notas de clase. Prof. Nora Arnesi Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables discretas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Modelos probabilísticos Un modelo es una

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Otoño 3 Duración: 3 horas FECHA: 9 de Enero de 4 Fecha publicación notas: 6--4 Fecha revisión

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2.

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. Ejercicios y Problemas. Capítulo III 1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. (a) Calcular P (X = 0), P (X = 1), P (X = 2), P (X = 3), utilizando la función

Más detalles

Matemática 3 Curso 2014

Matemática 3 Curso 2014 Matemática 3 Curso 204 Práctica 4: Variables aleatorias continuas. Funciones de distribución de probabilidad uniforme, exponencial, normal ) El tiempo total, medido en unidades de 00 horas, que un adolescente

Más detalles

Relación de Problemas. Tema 5

Relación de Problemas. Tema 5 Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2015 2016 MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. II Convocatoria: JULIO - Cada alumno debe elegir sólo una

Más detalles

EXAMEN DE ESTADÍSTICA Junio 2008

EXAMEN DE ESTADÍSTICA Junio 2008 EXAMEN DE ESTADÍSTICA Junio 2008 Apellidos: Nombre: DNI GRUPO: 1. a) Sean A y B sucesos incompatibles. Obtener una condición que asegure que también son independientes. Si X sigue una distribución normal

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200.

1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 1. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras sea mayor que 200. 2. Lanzamos una moneda 400 veces. Halla la probabilidad de que el número de caras esté entre 180 y 220.

Más detalles

Unidad 12 Probabilidad

Unidad 12 Probabilidad Unidad robabilidad ÁGIN 8 OLUCIONE. Ninguno de los dos resultados tiene mayor probabilidad de salir, ya que el azar no tiene memoria.. La probabilidad es: 8. El resultado más probable es caras y cruces

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 6 de febrero de 018 1 hora y 15 minutos. NOMBRE APELLIDOS CALIFICACIÓN 1. La longitud auricular de la oreja en varones jóvenes, medida en centímetros

Más detalles

0 si x<0. si 1 x<2 1 si x 2. si 4 x 6 1 si x>6. 1 e x si x 0

0 si x<0. si 1 x<2 1 si x 2. si 4 x 6 1 si x>6. 1 e x si x 0 Probabilidades y Estadística (M) Práctica 3 2 cuatrimestre 2004 Variables Aleatorias. Sea X una v.a. con función de distribución (a) F X (x) = 0 si x< 3 4 si 3 x< 3 4 si x

Más detalles

EXAMEN DE ESTADÍSTICA Septiembre 2011

EXAMEN DE ESTADÍSTICA Septiembre 2011 EXAMEN DE ESTADÍSTICA Septiembre 2011 Apellidos: Nombre: DNI: GRUPO: 1. De una clase de N alumnos se tiene la siguiente información sobre las calificaciones obtenidas del 1 al 8 en una cierta asignatura

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por

Generalidades 1. Sea X una variable aleatoria continua con función densidad dada por Generalidades 1. Sea X una variable aleatoria continua con función dendad dada por kt f ( t ) = 0 1 t en otro caso Determine a) el valor de la constante k b) E(X) y V(X) c) la función de distribución acumulada

Más detalles

Tema 6 Algunas distribuciones importantes Hugo S. Salinas

Tema 6 Algunas distribuciones importantes Hugo S. Salinas Algunas distribuciones importantes Hugo S. Salinas 1 Distribución binomial Se han estudiado numerosas distribuciones de probabilidad que modelan características asociadas a fenómenos que se presentan frecuentemente

Más detalles

R 4 R 3. Solución. Establecemos las siguientes 3 mallas aprovechando el hecho de que conocemos los valores de V e I.

R 4 R 3. Solución. Establecemos las siguientes 3 mallas aprovechando el hecho de que conocemos los valores de V e I. Problema º. Dado el siguiente circuito donde,,,, y 4, son datos conocidos, calcular e por: a) El método de corrientes de malla. b) El método de tensiones en los nudos. c) Obteniendo el circuito equivalente

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 5

PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 5 PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 5 t* 1. En una línea de producción los productos pasan por 4 procesos sucesivos (preparación, armado, control y embalaje) hasta quedar listos para la venta. Sean

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta B 1. a) Despeja la matriz X en la siguiente ecuación

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

MÓDULO I. TEORÍA DE LA PROBABILIDAD

MÓDULO I. TEORÍA DE LA PROBABILIDAD UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 67 70 Julio 08 espués de la administración por vía oral de un fármaco, la concentración de este en sangre sigue el modelo: C(t) at e bt ; donde t [0; + ) es el tiempo en horas transcurridas desde la administración

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL SOLUCIÓN

PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL SOLUCIÓN FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL SOLUCIÓN Usando las frecuencias relativas, se tiene: b) La

Más detalles

Tema 12: Distribuciones de probabilidad

Tema 12: Distribuciones de probabilidad Tema 12: Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E, de un experimento aleatorio, un número real: X:

Más detalles

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES VARIABLE ALEATORIA DISCRETA. Definición. Se dice que una v.a es discreta si el conjunto de todos los valores que puede tomar es un conjunto,

Más detalles

Definición 1 (Probabilidad Condicional) Observación 1 Se puede aplicar la definición también a variables discretas o continuas.

Definición 1 (Probabilidad Condicional) Observación 1 Se puede aplicar la definición también a variables discretas o continuas. CAPÍTULO 1: ALGUNAS REGLAS DE PROBABILIDAD Para leer Lee: Capítulo 1 Definición 1 (Probabilidad Condicional) Para dos sucesos A y B, P (A B) P (A B) P (B) Observación 1 Se puede aplicar la definición también

Más detalles

Distribuciones Discretas

Distribuciones Discretas Capítulo 4 Distribuciones Discretas 4.1. Distribución Bernoulli Un experimento Bernoulli es un experimento aleatorio, cuyos resultados pueden clasificarse de dos maneras mutuamente excluyentes y exhaustivas,

Más detalles

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300

Más detalles

PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014

PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014 PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014 1. Un nuevo restaurante de comida rápida tiene una sola caja. En media, los clientes llegan a la caja con una tasa de 20 a la hora. Las llegadas se suponen

Más detalles

Soluciones a los ejercicios propuestos del Tema 8

Soluciones a los ejercicios propuestos del Tema 8 Soluciones a los ejercicios propuestos del Tema 8 1 Soluciones a los ejercicios propuestos del Tema 8 8.1.(a) Se ha de dibujar la gráfica de la función (de p) P a (p), que es la probabilidad de aceptar

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 24 de Junio de 26 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 )

ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 ) ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 5. Variable aleatoria (en R y R ). Se considera un dado regular y se define la v.a. X: puntuación obtenida en un lanzamiento cualquiera de dicho dado.

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

PROBLEMAS DE ESTADISTICA

PROBLEMAS DE ESTADISTICA ESTADÍSTICA, CURSO 2008 2009 1 PROBLEMAS DE ESTADISTICA 2. DISTRIBUCIONES DE PROBABILIDAD 2 1. Una urna contiene 6 bolas blancas, 4 rojas y 2 azules. Si se extraen 3 bolas sucesivamente sin reemplazamiento,

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

1 CÁLCULO DE PROBABILIDADES

1 CÁLCULO DE PROBABILIDADES 1 CÁLCULO DE PROBABILIDADES 1.1 EXPERIENCIAS ALEATORIAS. SUCESOS 1.1.1 Definiciones Experiencia aleatoria: experiencia o experimento cuyo resultado depende del azar. Suceso aleatorio: acontecimiento que

Más detalles

DISTRIBUCIÓN NORMAL (Laplace-Gauss)

DISTRIBUCIÓN NORMAL (Laplace-Gauss) DISTRIBUCIÓN NORMAL (Laplace-Gauss) 1.- El nivel de colesterol en una persona adulta sana sigue una distribución normal N (192; ). Calcula la probabilidad de que una persona adulta sana tenga un nivel

Más detalles

Estadística Modelos probabilísticos discretos

Estadística Modelos probabilísticos discretos Estadística Modelos probabilísticos discretos MODELOS ALEATORIOS Al considerar variables aleatorias distintas caemos en la cuenta de que sus comportamientos respecto a la distribución de probabilidad,

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

Unidad 12 Probabilidad

Unidad 12 Probabilidad Unidad robabilidad ÁGIN 8 SOLUCIONES. Ninguno de los dos resultados tiene mayor probabilidad de salir, ya que el azar no tiene memoria.. La probabilidad es: 8. El resultado más probable es caras y cruces

Más detalles

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

Tema 13. Distribuciones de Probabilidad Problemas Resueltos Tema 3. Distribuciones de Probabilidad Problemas Resueltos Distribución de Probabilidad. Una variable aleatoria discreta, X, se distribuye como se indica en la siguiente tabla: ( ) a) Halla el valor de

Más detalles

PROCESO DE NACIMIENTO PURO Y MUERTE PURA

PROCESO DE NACIMIENTO PURO Y MUERTE PURA PROCESO DE NACIMIENTO PURO Y MUERTE PURA En esta sección consideraremos dos procesos especiales. En el primer proceso, los clientes llegan y nunca parten y en el segundo proceso los clientes se retiran

Más detalles

Para comprobar que el sistema es compatible determinado se calcula el determinante de la matriz de coeficientes. == = 75 == = 50

Para comprobar que el sistema es compatible determinado se calcula el determinante de la matriz de coeficientes. == = 75 == = 50 Septiembre 2. Ejercicio 4B. Calificación máxima: 2 puntos El cajero automático de una determinada entidad bancaria sólo admite billetes de 5, de 2 y de euros. Los viernes depositan el en cajero 225 billetes

Más detalles

Departamento de Matemática Aplicada a las T.I.C.

Departamento de Matemática Aplicada a las T.I.C. Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS PRIMERA PRUEBA (Otoño 2015 Duración: 1 hora y 45 min. FECHA: 26 de Octubre de 2015 APELLIDOS: NOMBRE: DNI:

Más detalles

Tema 4. Variables aleatorias discretas

Tema 4. Variables aleatorias discretas Tema 4. Variables aleatorias discretas 508 Estadística. ETDI. Curs 2002/03 Cuestiones de Verdadero/Falso 1. En un proceso de Bernoulli, hay exactamente dos posibles resultados en cada prueba. 2. La fórmula

Más detalles

Fundamentos de la investigación en psicología

Fundamentos de la investigación en psicología Fundamentos de la investigación en psicología TEMA 10 1º curso Grado Psicología Curso académico 2017-18 TEMA 10. MODELOS DE DISTRIBUCIÓN DE PROBABILIDAD: VARIABLES CONTINUAS 1. El modelo normal 2. Ejercicios

Más detalles

CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS

CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS Hugo Grisales Romero Profesor titular CONCEPTOS BÁSICOS Experimento: Variable aleatoria: Clasificación: Proceso por medio del cual una medición se obtiene. Aquella que

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 3 DE 2008 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE 9- TIPO DURACIÓN

Más detalles

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con sucesos. Leyes de De Morgan.

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 5 AÑOS Curso 17-18 Ex. Modelo MATERIA: MATEMÁTICAS II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN Después de leer atentamente

Más detalles

SESIÓN 3 SERIES, SUCESIONES Y LÍMITES

SESIÓN 3 SERIES, SUCESIONES Y LÍMITES SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:

Más detalles