Prueba de Práctica de Álgebra
|
|
|
- Gloria Acosta Quintero
- hace 7 años
- Vistas:
Transcripción
1 Prueba de Práctica de Álgebra Instrucciones: Seleccione la mejor alternativa circulando la letr Todo cómputo necesario para obtener la respuesta debe aparecer en el papel de forma clara y organizada, de lo contrario, NO se contará el problema correcto. Si no aparece su contestación, escríbala como alternativa e. 1. El conjunto {, -, -, -1, 0, 1,,, } representa del conjunto de los números naturales cardinales enteros racionales. Sea Q el conjunto de los números racionales. Cuál es falsa de los siguientes alternativas? 0 Q Q Q 4 Q. Si a, b y c son números reales, indique la propiedad de los números reales justifica que a b c = a b c Conmutativa de la suma Distributiva Asociativa de la Multiplicación Conmutativa de la Multiplicación [11 (15 18) ] es igual a: es igual a: 1/ no está definido (0.4) + (1.4.4) es igual a: es igual a: 8-14/ 46/1 4/ Copyright CARIMOBITS 1
2 8. Al resolver la ecuación igual a : = 5 se obtiene que es 14/ 46/1 4/ es igual a: 5/4 7/9 40/ / ab 4 ab 1 ab 1 es igual a: 4ab ab 1 ab abab 1 ab 1 ab 1 abab 11. Si a = - / y b = 1/, entonces al evaluar la epresión a 5ab, se obtiene: /9 11/1 / (6 + ) + ( + ) ( 7) es igual a: Si = + 7 5, entonces es igual a: - 7/0 ¾ ½ Copyright CARIMOBITS
3 14. Si 5(4 ) ( - ) = - 4( 1), entonces es igual a: 5 1/ 6/7 15. Si n representa un número, entonces la suma de tres y el doble del número n está representada por: + n + n + n ( + n) e. ninguna de las anteriores 16. Si = 8 1 entonces es igual a: - 4 4/ / 17. Si 5 1 = 4 entonces es igual a: -4/ -1/ -/11 7/ 18. El máimo común factor o máimo común divisor de los términos 9a b c, 1a c, 15a b es: 18a b c 18a b c a b c a Copyright CARIMOBITS
4 Si factorizamos completamente el polinomio +, uno de sus factores es: Si factorizamos completamente el polinomio 7 y 5 9 y z 18 y z, uno de sus factores es: y y z z y y z z y yz z y y z z 1. Si factorizamos completamente el polinomio 15a 10a a +, la suma de sus factores es: 5a + a 5a + a 1 8a 8a 1. Si factorizamos completamente el polinomio 4 49, uno de sus factores es: Copyright CARIMOBITS 4
5 . Si factorizamos completamente el polinomio 75, se obtiene: (5 )(5 + ) (5 )(5 ) (5 1)(5 + 1) (5 ) 4. Si factorizamos completamente el polinomio 5 10y + y, uno de los factores es: y 5 y 5 + y 10 + y 5. Si factorizamos completamente el polinomio , la suma de sus factores es: Si factorizamos completamente el polinomio 11 0, la suma de sus factores es: Copyright CARIMOBITS 5
6 7. Si factorizamos completamente el polinomio , uno de los factores es: Si factorizamos completamente el polinomio , uno de sus factores es: Al resolver para la ecuación b b = 4 +, se obtiene que el valor de es igual a: b b 4 b. b 4 b + b 4 Copyright CARIMOBITS 6
7 0. Al resolver para Q 1 la ecuación Q P 1 = Q Q 1, se obtiene que el valor de Q 1 es igual a: PQ + 1 P PQ 1 P PQ P 1 d PQ 1 + P 1. Al simplificar la epresión 18 y 45y, se obtiene: 7y 7y 5y y 5. Al simplificar la epresión 9 4, se obtiene: ( + ) Copyright CARIMOBITS 7
8 5 y 6z. Al realizar las operaciones indicadas y simplificar la epresión 4 4z 15y obtiene: se z 4z z 4 z 4. Al realizar las operaciones indicadas y simplificar la epresión + y y 8y 15y 9y 5y se obtiene: + y y + y y 5. Al realizar las operaciones indicadas y simplificar la epresión obtiene: se Copyright CARIMOBITS 8
9 6. Un posible denominador común para es: 10( + y) 1( y)( y) + ( y) 60( + y) ( y) 60( + y) ( y) 10( + y) ( y) 10( + y)( y) 8 7. Al realizar la operación indicada y simplificar la epresión 4 + se obtiene: Al realizar las operaciones indicadas y simplificar la epresión se obtiene: r 4r 6r 5 1r 7 1r 1 1r 5 1r Copyright CARIMOBITS 9
10 1 9. Al realizar las operaciones indicadas y simplificar 9 se obtiene: Al resolver la ecuación = se obtiene que el valor de es igual a: Al resolver la ecuación 1 1 =, se obtiene que el valor de disminuido en 1 es: Copyright CARIMOBITS 10
11 4. Al resolver la ecuación = +, se obtiene que el valor de es: Al resolver la ecuación + =, se obtiene que el valor de es: Manuel puede hacer un trabajo en 6 horas y su hermana lo hace en horas. Si ellos trabajan juntos, en cuánto tiempo completarán el trabajo? 9 hora horas horas 1 horas Copyright CARIMOBITS 11
12 45. El agua se bombea y se guarda en un gran depósito. Para ello se utilizan dos bombas identificadas con A y B. La bomba A puede llenar el depósito en 6 horas. Utilizando las dos bombas se llena el depósito en horas. En cuánto tiempo, utilizando sólo la bomba B, se llena el depósito? 1 horas horas 4 horas 5 horas 46. El denominador de una fracción ecede en 9 al numerador. Si se suma al numerador y se resta al denominador, el valor de la fracción que resulta es ½. El denominador de la fracción original es: Si la suma de tres enteros consecutivos es 79, entonces el doble del entero menor es: El largo de un rectángulo mide 7 pies más que el ancho. Si su perímetro es 14 pies, entonces el área del rectángulo, en pies cuadrados, es: Copyright CARIMOBITS 1
13 49. Dos automóviles parten del mismo lugar y al mismo tiempo en direcciones opuestas. Uno de los automóviles va a 60 MPH y el otro a 40 MPH. A las cuántas horas estarán a una distancia de 400 millas, suponiendo que los automóviles se mantienen en línea recta? 6 horas 5 horas 4 horas horas Copyright CARIMOBITS 1
Segundo Examen Parcial Matemática Pre-Universitaria (MATE 0005) (11:30 am) Nombre: Fecha: 1 de julio de 2011 Número de Estudiante: Profesor
Segundo Examen Parcial Matemática Pre-Universitaria (MATE 0005) (11:30 am) Nombre: Fecha: 1 de julio de 011 Número de Estudiante: Sección: Profesor Instrucciones Generales: Trabaje con mucho cuidado cada
Conjuntos y Conjuntos Numéricos
Conjuntos y Conjuntos Numéricos Alguna Nociones Básica Sobre Conjuntos Definición: Un conjunto es una colección de objetos o cosas, llamados los elementos o miembros del conjunto. Formas de expresar un
CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES
UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos
La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)
TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de
Operaciones con números racionales. SUMA/RESTA.
http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN #2. Polinomios cuadráticos:
UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN # Polinomios cuadráticos: Factorización y solución de ecuaciones Aplicaciones (solución de problemas verbales)
Práctica Examen 1 Precálculo 1
Práctica Eamen 1 Precálculo 1 A. Comprobación de conceptos: 1. Defina cada concepto en sus propias palabras. Compruebe la respuesta refiriéndose a la definición del teto. a. número entero b. número racional
4 Polinomios. 1. Polinomios. Piensa y calcula. Aplica la teoría. 1. Cuáles de las siguientes expresiones son monomios? Indica
4 Polinomios 1. Polinomios Piensa y calcula Calcula mentalmente el área y el volumen del cubo del dibujo. A() = 6 2 V() = 3 Aplica la teoría 1. Cuáles de las siguientes epresiones son monomios? Indica
Distrito escolar de Carson City: Vocabulario matemático CCSS fundamental
Vocabulario matemático fundamental del primer trimestre conmutativa a + b = b + a a x b = b x a En la suma y la multiplicación cambiar el orden no altera la respuesta.( La suma y la resta no son conmutativa)
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica I EXAMEN PARCIAL 2014 PRECÁLCULO. -Décimo Año- Nombre: código: Colegio: Fórmula 1
Universidad de Costa Rica Instituto Tecnológico de Costa Rica I EXAMEN PARCIAL 014 PRECÁLCULO -Décimo Año- Nombre: código: Colegio: Fórmula 1 Sábado 5 de abril de 014 1 INSTRUCCIONES 1. El tiempo máimo
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica I EXAMEN PARCIAL 2014 PRECÁLCULO. -Décimo Año- Nombre: código: Colegio: Fórmula 1
Universidad de Costa Rica Instituto Tecnológico de Costa Rica I EXAMEN PARCIAL 014 PRECÁLCULO -Décimo Año- Nombre: código: Colegio: Fórmula 1 Sábado 5 de abril de 014 1 INSTRUCCIONES 1. El tiempo máimo
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. Página 86 Asocia cada uno de los enunciados con la epresión algebraica que le corresponde. e v t V πr h y d) (a a b ab e) a m a n a m n Haz lo mismo con estos enunciados y estas epresiones algebraicas
4 ESO. Mat B. Polinomios y fracciones algebraicas
«El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.
GUIA PREPARACION PRUEBA SINTESIS
COLEGIO SANTA ELENA PROF.: XIMENA CASTRO SINTESIS - II Medio GUIA PREPARACION PRUEBA SINTESIS. Simplifica 0 5 5-5 5 5 5 5 5. El largo se un rectángulo mide + y. Si su perímetro mide 0 + 6y, cuánto mide
TEMA 1 CONCEPTOS BÁSICOS DEL ÁLGEBRA
TEMA CONCEPTOS BÁSICOS DEL ÁLGEBRA FACTORIZACIÓN R. 0 0) 8 0 ) 5a a ) R. ) m ) 6 m R. 6 6 ) 8 a a ) 6 7 ) 9 6y y a R. 5aa ) 5 5 5) 6) a R. a 9a a 7) 7 a R. a6a 5 8) a 0 R. 5) 6 7 6) 0 7) 75 8) a 5a 0a
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Ecuaciones. Son igualdades algebraicas que se cumplen solo para algunos valores de la letra.
TEMA 4: EL LENGUAGE ALGEBRAICO. POLINOMIOS EXPRESIONES ALGEBRAICAS Para obtener las epresiones algebraicas hay que utilizar el lenguaje algebraico. Hay epresiones algebraicas de varios tipos: Monomios.
1. Lenguaje algebraico
1. Lenguaje algebraico El lenguaje algebraico permite epresar mediante símbolos matemáticos enunciados de situaciones de la vida diaria. En el álgebra se presentan problemas planteados en palabras que
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo Operaciones con número naturales Cardinal obtenido al unir dos conjuntos distintos Los términos se denominan. Operación interna N. (Tª
Primer Examen Parcial Pre-Cálculo
Instituto Tecnológico de Costa Rica Universidad de Costa Rica Primer Eamen Parcial Pre-Cálculo Duración: 3 horas 28 de mayo de 2016 Puntaje: 50 puntos Instrucciones Generales: 1. Lea cuidadosamente cada
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
DE FORMA ALGEBRAICA CIERTAS SITUACIONES
EXPRESAR OBJETIVO DE FORMA ALGEBRAICA CIERTAS SITUACIONES NOMBRE: CURSO: FECHA: LENGUAJE NUMÉRICO Y LENGUAJE ALGEBRAICO El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
Resolución Aprobación de Estudios No. 0-0 de Noviembre de 008 Código DANE No. 7900079 Nit: 8980- GU-PA-0 /07/08-V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
EXPRESIONES RACIONALES
EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
EJERCICIOS DE APOYO. PRIMER TRIMESTRE PARA RECUPERAR º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y
ALGEBRA. Término algebraico Coeficiente numérico Parte literal
ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del
2 x a)3x -2 b) x(x + 1) = x 2 + x. d) x + (x +10) = 2 x + 10x 3- A: Perímetro 2x +6; Área 3x
º E.S.O. Polinomios Hoja 1 1- Asocia a cada enunciado una da las epresiones algébricas que aparecen debajo: El cuadrado de un número menos su doble. El 0% de un número. Un número impar. d) Los dos tercios
POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS
ESO POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIOS EXPRESIONES ALGEBRAICAS - Traduce los siguientes enunciados a epresiones algebraicas El doble de un número menos su tercera parte. El doble del resultado
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
EJERCICIOS DE EXPRESIONES ALGEBRAICAS
EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.
Tema 2. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 MATEMÁTICAS OBJETIVO GENERAL El alumno al término del curso tendrá un conocimiento sobre la importancia de las matemáticas para el desempeño de su vida profesional y personal, así
Ejercicios propuestos en el. Departamento de MATEMÁTICAS. para realizar en verano
1º ESO Ejercicios propuestos en el Departamento de MATEMÁTICAS para realizar en verano EL TRABAJO CONTARÁ EN LA NOTA FINAL DE SEPTIEMBRE CON UN MÁXIMO DE 3 PUNTOS, SIEMPRE QUE EN EL EXAMEN SE SAQUE UNA
TEMA 3. NÚMEROS RACIONALES.
TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha
Elementos de álgebra Variables y Constantes
Elementos de álgebra 0.1. Variables y Constantes Las variables en matemática son objetos que representan cualquier cosa o evento. Las letras del alfabeto son usualmente empleadas para representar las variables
SGUIC3M021MT311-A16V1. GUIA DE EJERCITACIÓN Álgebra
SGUIC3M01MT311-A16V1 GUIA DE EJERCITACIÓN Álgebra TABLA DE CORRECCIÓN GUÍA PRÁCTICA ALGEBRA Ítem Alternativa 1 D D 3 C 4 A 5 B 6 D 7 C 8 B 9 E 10 A 11 C 1 C 13 B 14 B 15 E 16 B 17 A 18 C 19 B 0 B 1. La
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego
Práctica Examen 1 Métodos Cuantitativos I
Práctica Examen 1 Métodos Cuantitativos I A. Comprobación de conceptos: 1. Defina cada concepto en sus propias palabras. Compruebe la respuesta refiriéndose a la definición del texto. a. número entero
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Guía N 1 Introducción a las Matemáticas
Glosario: Guía N 1 Introducción a las Matemáticas - Aritmética: Es la rama de las matemáticas que se dedica al estudio de los números y sus propiedades bajo las operaciones de suma, resta, multiplicación
Propiedades de la Radicación
4 B - MATEMÁTICA UNIDAD I NÚMEROS REALES El Conjunto de los números Reales El Conjunto de los números reales (R) está formado por el conjunto de los números racionales (Q) y el de los irracionales (I).
OPERACIONES CON POLINOMIOS
UNIDAD 4 OPERACIONES CON POLINOMIOS PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA. Temario para preparación de examen de admisión Área de matemáticas
UNIVERSIDAD PANAMERICANA CAMPUS GUADALAJARA IngenieríasUP Temario para preparación de examen de admisión Área de matemáticas Conjuntos de números y operaciones básicas. 1. Números naturales. Sistema decimal,
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.
1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar
5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.
5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números
EXPRESIONES ALGEBRAICAS RACIONALES
Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,
CENTRO DE BACHILLERATO TECNOLOGICO INDUTRIAL Y DE SERVICIOS NO. 21. Profesor Enrique López Vásquez Algebra
CENTRO DE BACHILLERATO TECNOLOGICO INDUTRIAL Y DE SERVICIOS NO. 21 Profesor Enrique López Vásquez Algebra Mexicali B.C. FEBRERO NOV 2018 Concepto de algebra Álgebra es el nombre que identifica a una rama
Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso
Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a
Capítulo. Multiplicación y división de enteros. Copyright 2013, 2010, and 2007, Pearson Education, Inc.
Capítulo 5 Multiplicación y división de enteros Definición informal de la multiplicación de enteros Modelo de fichas Interpretación del signo: 3 grupos de 2 fichas rojas Modelo de cargas Interpretación
Hallamos el m.c.m de los denominadores y lo escribimos como denominador del resultado.
Con las fracciones se pueden realizar las operaciones que hemos aprendido a efectuar con números enteros: la adición, la sustracción, la multiplicación, la división, la potenciación y la radicación. I.
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Los números reales resultan al hacer la unión de los distintos conjuntos numéricos REALES RACIONALES (Q) NEGATIVOS (Z - )
CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BA SICAS DOC. YAMILE MEDINA CASTAN EDA GUIA N0. LOS NUMEROS REALES Los números reales resultan al hacer la unión de
Ejemplos: + 3 no es una ecuación, es una identidad. Por qué? La igualdad 3( x + 1) = 2x + 1 sí es una ecuación. Por qué?
TEMA:.- POLINÓMICAS Una ecuación es una igualdad entre dos epresiones algebraicas que sólo se verifica para algunos valores de sus incógnitas. Estos valores son las soluciones de la ecuación. Las epresiones
5 REPASO Y APOYO OBJETIVO 1
REPASO Y APOYO OBJETIVO 1 EXPRESAR DE FORMA ALGEBRAICA CIERTAS SITUACIONES EXPRESIÓN ALGEBRAICA Una expresión algebraica es un conjunto de números y letras unidos con los signos de las operaciones matemáticas.
SEMINARIO MENOR DIOCESANO SAN JOSE DE CUCUTA LA JUVENTUD A JESUCRISTO QUEREMOS DEVOLVER PLAN DEMEJORAMIENTO 2012
AREA: MATEMTICAS GARDOS SEXTO A OCTAVO Aquí encontaras una serie de preguntas tipo icfes, abiertas y de completar en donde deberás estudiarlas, analizarlas y solucionarlas, así mismo ejercicios de aplicación
Nombre estudiante: Fecha: D / M / A Asignatura: MATEMÁT. Educador: Luz Dari Lindarte Clavijo. Socialización con estudiante y padre familia, firma:
EVALUACIÓN ACADÉMICA Gestión Académica Versión 3 / 12-2-2016 Nombre estudiante: Fecha: D / M / A Asignatura: MATEMÁT DBA: Utiliza las propiedades de los números enteros y racionales y las propiedades de
Instituto Tecnológico de Saltillo
Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2
GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (
Clase 1 Tema: Los números reales
Bimestre: I Número de clase: 1 Clase 1 Tema: Los números reales Actividad 1 Lea la siguiente información y elabore un resumen en el cuadro de diálogo. Lectura 1 Los números Reales A partir de las necesidades
Matemática Números Racionales. Laboratorio de Matemática
Números Racionales 018 aboratorio de Matemática Números Racionales 018 Instrucciones: resuelva los siguientes ejercicios. os dibujos NO están a escala. 1 1) Clasifique con un cheque el conjunto al que
Apuntes de los NÚMEROS REALES
Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES
Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta:
Simplifica las siguientes epresiones: 0y 8 y z 8( z + )( ) + Suprimiendo los factores comunes en numerador y denominador resulta: 5y z Sacando factor común en el denominador resulta: 8( + )( ) ( ) ( +
Conceptos fundamentales de Algebra
CAPÍTULO Conceptos fundamentales de Algebra.. Conjuntos. Notaciones Se supone que el lector tiene conocimientos básicos de la Teoría de conjuntos. La notación que se usará será la usual, así, por ejemplo,
Colegio Portocarrero. Curso Departamento de matemáticas.
Colegio Portocarrero. Curso 01-015. Lenguaje algebraico, con solución 1 El precio de 1 kg de naranjas es euros. Epresa en lenguaje algebraico: a) Lo que cuestan 5 kg de naranjas. 1 b) Lo que cuesta kg
Colegio Universitario Boston. Álgebra
1 Factorización de Polinomios En el estudio de la matemática uno de los temas más importantes que encontramos es el de la factorización de polinomios. Este procedimiento nos permite aprender a expresar
9 Expresiones racionales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de 2016. 9 Epresiones racionales 9.1 Fracciones
Materia: Matemática de Octavo Tema: Operaciones en Q Propiedades de la Multiplicación en Q
Materia: Matemática de Octavo Tema: Operaciones en Q Propiedades de la Multiplicación en Q Las propiedades de la multiplicación en el conjunto, ya las hemos estudiado para el conjunto de los números naturales
Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA
Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador
7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez
7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación
ACTIVIDADES DE RECUPERACIÓN DE PENDIENTES DE MATEMÁTICAS DE 3º DE ESO -.ÁLGEBRA.-
ACTIVIDADES DE RECUPERACIÓN DE PENDIENTES DE MATEMÁTICAS DE º DE ESO Ejercicio nº 1.- -.ÁLGEBRA.- Escribe estos enunciados como epresiones algebraicas: El doble de un número b. El doble de la suma de dos
NÚMEROS REALES (lr) OPERATORIA EN lr El resultado de una operación entre racionales es SIEMPRE otro número racional (excluyendo la división por cero).
NÚMEROS REALES (lr) La unión del conjunto de los racionales (Q) y los irracionales (Q ) genera el conjunto de los números reales el cual se expresa como lr. Es decir: OPERATORIA EN lr El resultado de una
POLINOMIOS. 1. Si P(x)= 4x 3-3x 2 +1 y Q(x)= 3x 2-3x+2, opera: a) P-Q b) 3P+2Q c) P+Q d) P.Q. b) 3P+2Q= 12x 3-3x 2-6x+7. Sol: a) P-Q= 4x 3-6x 2 +3x-1
POLINOMIOS 1. Si P()= +1 y Q()= +, opera: a) PQ b) P+Q c) P+Q d) P.Q Sol: a) PQ= 6 +1 b) P+Q= 1 6+7 c) P+Q= + d) P.Q= 1 5 1 +17 +. Si P()= +1, Q()= +1 y R()= 6 +61, opera: a) P+Q; b) PQ+R; c) PR; d) P.QR;
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
Soluciones a los ejercicios propuestos Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I
Soluciones a los ejercicios propuestos Unidad Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I POLINOMIOS SUMA Y PRODUCTO Dados los polinomios P y Q Determina si están
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO ALGEBRA y FUNCIONES EVALUACIÓN DE EXPRESIONES ALGEBRAICAS
Requisitos para presentar en 2ª Oportunidad Semestre: Agosto - Diciembre 2018
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA 8 Requisitos para presentar en 2ª Oportunidad Semestre: Agosto - Diciembre 2018 Materia: Coordinadora: Desarrollo del Pensamiento Algebraico. María Guadalupe
CAPÍTULO 7: TASAS Y OPERACIONES
CAPÍTULO 7: TASAS Y OPERACIONES Fecha: 6 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved.
El siguiente paso es aislar el término con la variable ecuación. Dado que resta a, se debe sumar en los dos lados de la ecuación.
Materia: Matemática de Octavo Tema: Ecuaciones en Q Alguna vez has tratado de resolver un problema relacionado con el millaje? Echa un vistazo a esta situación. El domingo, Leah caminó 4 millas. El lunes,
1. FACTOR COMUN MONOMIO :
Área de IPA. CONTENIDO 1. NOCION :. FACTORIZACIÓN Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Ejemplo : Factoriza 0 en dos de sus divisores :, es decir 0 = Y en álgebra,
CAPÍTULO 4: PROPORCIONES Y EXPRESIONES
Capítulo 4: Proporciones y epresiones CAPÍTULO 4: PROPORCIONES Y EXPRESIONES Fecha: Caja de herramientas 204 CPM Educational Program. All rights reserved. 33 Fecha: 34 204 CPM Educational Program. All
Examen de álgebra Curso SEP-INAOE 14 al 18 de enero del 2008
Eamen de álgebra Curso SEP-INAOE 4 al de enero del 00. Reducir a su forma más simple la siguiente epresión: 4 ( 3 + ) 3 + 3 3 ( + ) + 6 + 4 ( 3 + ) 3 + 3 3 ( + ) + 6 + Efectuamos primero las operaciones
4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS
POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:
MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN
MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
