Capítulo 6: Variable Aleatoria Bidimensional

Documentos relacionados
Tema 4: Variables aleatorias multidimensionales

VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M.

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos

TEMA 3.- VECTORES ALEATORIOS.- CURSO

Tema 4: Variables aleatorias multidimensionales

Resumen de Probabilidad

Repaso de Estadística

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

Tema 5. Variables Aleatorias Conjuntas.

Tema 4: Variable Aleatoria Bidimensional

Procesos estocásticos

Variables aleatorias bidimensionales discretas

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales

Introducción al Tema 9

TEMA 2.- VARIABLES ALEATORIAS

Probabilidad y Estadística

3. Variables aleatorias

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y

Material introductorio

Probabilidad y Estadística

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

VECTORES ALEATORIOS. 1 Introducción. 2 Vectores aleatorios

CLASES DE ESTADÍSTICA II ESPERANZA ABSOLUTA

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Distribuciones multivariadas

Tema 4: VARIABLES ALEATORIAS BIDIMENSIONALES

DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD

Variables Aleatorias y Distribución de Probabilidades


V.a. continuas: integrar. Varianza. Propiedades:

Distribuciones de probabilidad bidimensionales o conjuntas

4 VARIABLES ALEATORIAS DISCRETAS

TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos

Departamento de Matemática Aplicada a la I.T.T.

Momentos de Funciones de Vectores Aleatorios

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Distribución conjunta de variables aleatorias

1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Tema 5: Vectores aleatorios bidimensionales.

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria

Prueba Integral Lapso /7

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración

Estadís4ca y Métodos Numéricos Tema 2. Variable Aleatoria

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

4.1. Definición de variable aleatoria. Clasificación.

Estadística Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Variables aleatorias

Probabilidad y Estadística

f = 0 = n A n + n B = n A + n B n

Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}

2.5. Vectores aleatorios

Variables aleatorias unidimensionales

Práctica 3 Esperanza Condicional

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

9. INTRODUCCIÓN A DISTRIBU- CIONES MULTIVARIANTES

MODELO DE RESPUESTAS Objetivos del 1 al 9

Hoja 4 Variables aleatorias multidimensionales

EJERCICIOS RESUELTOS VARIABLE ALEATORIA BIDIMENSIONAL

Repaso de conceptos estadís-cos. Apéndice A

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 3. Probabilidad y variable aleatoria

Tema 4: Variables aleatorias.

Curso Propedéutico de Cálculo Sesión 7:

TEMA 3 REGRESIÓN Y CORRELACIÓN

Unidad 1: Espacio de Probabilidad

Estadística aplicada al Periodismo

Descriptiva y Probabilidad

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

Variables aleatorias

Modelos Básicos de Distribuciones Discretas y Continuas

Vectores aleatorios. Estadística I curso

Repaso de Teoría de la Probabilidad

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006

Tema 4: Probabilidad y Teoría de Muestras

Tema 3 Normalidad multivariante

Introducción a las variables aleatorias

Vectores aleatorios (distribuciones multivariantes)

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA Probabilidades y Estadística

Estadística I Tema 5: Modelos probabiĺısticos

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

COMPETENCIAS Y OBJETIVOS

6-1. Dos preguntas sobre 100 tiradas de dado

Examen de Estadística

Ruido en los sistemas de comunicaciones

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 4 P (X = 1) = 0,4 P (X = 2) = 0,6 P (Y = 3) = 0,7 P (Y = 9) = 0,3

TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18

C7) Dada la distribución bidimensional de las variables "Numero de desplazamientos diarios" y "Medio de transporte utilizado" es cierto que: a) De los

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

VARIABLES ALEATORIAS CONTINUAS

Transcripción:

Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el conjunto de los números reales. Sin embargo, en muchas ocasiones, los resultados de un experimento aleatorio no pueden expresarse mediante una única cantidad, se requiere una variable aleatoria multidimensional. Nos centramos en este capítulo en el estudio de una variable aleatoria bidimensional. 6.1 Concepto de variable aleatoria bidimensional Una variable aleatoria bidimensional (X, Y ) es una aplicación del espacio muestral Ω en R = RxR Ω XxY RxR ω (X(ω),Y(ω)) Por lo tanto, cada componente de la variable aleatoria bidimensional es una variable aleatoria unidimensional. Ejemplo 6.1: Consideremos el experimento aleatorio de lanzar una moneda tres veces, al que tenemos asociado el siguiente espacio muestral: Ω = {(c, c, c), (c, c, +), (c, +,c), (+,c,c), (c, +, +), (+,c,+), (+, +,c), (+, +, +)} Se define la v.a. bidimensional Z = (X,Y ), donde X(ω) ="Número de caras en ω, e Y (ω) ="Diferencia en valor absoluto entre el número de caras el número de cruces en ω. Entonces: Z(+, +, +) = (, 3) Z(c, +, +) = Z(+,c,+) = Z(+, +,c)=(1, 1) Z(c, c, +) = Z(c, +,c)=z(+,c,c)=(, 1) Z(c, c, c) = (3, 3) 1

6. Distribución de probabilidad inducida. Función de distribución conjunta Vamos a asociar a cada v.a. bidimensional un espacio probabilístico definido en R. 6..1Casodiscreto Sean X e Y variables aleatorias unidimensionales de tipo discreto, que toman un número finitooinfinitonumerabledevalores{x 1, x,...}, { 1,,...}, respectivamente. Se define la función masa de probabilidad conjunta de (X, Y ) como: verificando: i) p ij 1, i, j ii) X X p ij =1 i j p ij = P (X = x i,y = j ), i, j La función de distribución conjunta de (X, Y ) viene dada por: F (x, ) =P (X x, Y ) = X X P (X = x i,y = j ), (x, ) R x i x j Ejemplo 6.: La v.a. Z =(X, Y ) del ejemplo 5.1 tiene función masa de probabilidad dada por: X\Y 1 3 1/8 1 3/8 3/8 3 1/8 su función de distribución es: F (x, ) =P (X x, Y ) = si x<, <1 si x<1, 1 <3 1/8 si x<1, 3 4/8 si 1 x<, 1 7/8 si x<3, 1 6/8 si x 3, 1 <3 1 si x 3, 3,

6..Casocontinuo Sean X e Y dos v.a. continuas definidas en R. Se define la función de densidad conjunta de (X, Y ) como una función f : R R que verifica: i) f(x, ) (x, ) ii) R + R + f(x, )dxd =1 En este caso, la función de distribución conjunta de (X, Y ) vendrádadapor: F (x, ) =P (X x, Y ) = Z x Z f(u, v)dvdu, (x, ) R La función de densidad conjunta se obtiene a partir de la de distribución según la siguiente expresión: f(x, ) = F (x, ) x Ejemplo 6.3: Sea (X, Y ) una v.a. bidimensional continua con función de densidad: ½ x x, 1 f(x, ) = en otro caso Obtenemos su función de distribucion: + Z x Z F (x, ) = Z x Z f(u, v)dvdu = Z uvdvdu = (x), x, 1 4 Z dvdu + Z x Z Ejemplo 6.4: Sea (X, Y ) una v.a. bidimensional con la siguiente función de distribución: F (x, ) =1 e x e + e (x+),x>, > donde X ="Duración de llamadas comerciales" e Y = Duración de llamadas personales". a. Calcular P (X 1,Y ). P (X 1,Y ) = F (1, ) = 1 e e + e 3 b. Determinar la función de densidad conjunta. f(x, ) = F (x, ) x = e x,x>, > dvdu + 3

6.3 Distribuciones marginales condicionadas 6.3.1 Distribuciones marginales En general, se definen las distribuciones marginales como las distribuciones por separado de cada una de las componentes de la v.a. bidimensional. Dada la función de distribución conjunta de (X, Y ), F(x, ), se define la función de distribución marginal de X como: F X (x) =P (X x) =F (x, + ) =P (X x, Y + ), x R Análogamente, la función de distribución marginal de Y viene dada por: F Y () =P (Y ) =F (+,)=P (X +,Y ), R Caso discreto: Dada una v.a. bidimensional (X, Y ) con función masa de probabilidad conjunta p ij = P (X = x i,y = j ), se define la función masa de probabilidad marginal de X como: P X (x i )=P (X = x i )= X j P (X = x i,y = j )= X j p ij = p i. Análogamente, la función masa de probabilidad marginal de Y es: P Y ( j )=P (Y = j )= X i P (X = x i,y = j )= X i p ij = p.j Entonces, las funciones de distribución marginales resultan: F X (x) =P (X x) = X x i x P (X = x i,y = j )= X x i x p i.,x R F Y () =P (Y ) = X j P (X = x i,y = j )= X j p.j, R Caso continuo: Sea una v.a. bidimensional (X, Y ) con función de densidad conjunta f(x, ), con x, R. Las funciones de densidad marginales están dadas por: f X (x) = f () = Z + Z + f(x, )d, x R f(x, )dx, R 4

Las correspondientes funciones de distribución marginales resultan: F X (x) =P (X x) =P (X x, Y R) = F Y () =P (Y ) =P (X R,Y ) = Z x Z + Z + Z f(u, v)dudv, x R f(u, v)dudv, R Ejemplo 6.5: Sea (X, Y ) una v.a. bidimensional discreta con función masa de probabilidad dada por: X\Y 1 3 p i. 1 1/14 /14 1/14 4/14 1/14 3/14 1/14 5/14 3 /14 1/14 /14 5/14 p.j 3/14 /14 5/14 4/14 La función masa de probabilidad de X es: La de Y : P X (1) = P (X =1)= P X () = P (X =)= P X (3) = P (X =3)= 3X P (X =1,Y = j) =p 1. =4/14 j= 3X P (X =,Y = j) =p. =5/14 j= 3X P (X =3,Y = j) =p 3. =5/14 j= P Y () = P (Y =)=p.1 =3/14 P Y (1) = P (Y =1)=p. =/14 P Y () = P (Y =)=p.3 =5/14 P Y (3) = P (Y =3)=p.4 =4/14 La función de distribución marginal de X es: si x<1 4/14 si 1 x< F X (x) =P (X x) = 9/14 si x<3 1 si x 3 F Y () =P (Y ) = si < 3/14 si <1 5/14 si 1 < 1/14 si <3 1 si 3 5

Ejemplo 6.6: Sea (X, Y ) una v.a. bidimensional con función de densidad conjunta: ½ 3x(1 x) si x 1, 1 f(x, ) = Entonces, las funciones de densidad marginales vienen dadas por: f X (x) = 3x(1 x)d =3 µx x 1 ³ =3x 1 x, x 1 µ x 1 f Y () = 3x(1 x)dx =3 x3 = 3, 1 3 La función de distribución conjunta resulta: Z x Z Z x F (x, ) = 3u(1 uv)dvdu =3 µuv u v du = = x (3 x), x 1, 1 Y las funciones de distribución marginales son: F X (x) = F (x, 1) = x (3 x), x 1 (3 ) F Y () = F (1,)=, 1 6.3. Distribuciones condicionadas Como a sabemos, la probabilidad de un suceso condicionada a la ocurrencia de otro suceso viene dada por: P (A B) P (A/B) =,P(B) 6= P (B) Ahora, el condicionamiento tendrá lugar entre variables. Caso discreto: Sea (X, Y ) una v.a. bidimensional discreta. Se define la función masa de probabilidad de X condicionada al valor j de Y como: P X/Y (x i / j ) = p i/j = P (X = x i /Y = j )= = P (X = x i Y = j ) P (Y = j ) = p ij p.j Análogamente, la función masa de probabilidad de Y condicionada al valor x i de X viene dada por: P Y/X ( j /x i ) = p j/i = P (Y = j /X = x i )= = P (X = x i Y = j ) P (X = x i ) = p ij p i. 6

Caso continuo: Sea (X, Y ) una v.a. bidimensional continua. Se define la función de densidad de X dado que Y vale como: f(x/) = f(x, ) f Y (),x R Análogamente, la función de densidad de Y dado que X vale x se define como: f(x, ) f(/x) = f X (x), R Las funciones de distribución asociadas son: F (x/) = P (X x/y = ) = F (/x) = P (Y /X = x) = Z x Z f(x, ) f Y () dx, x R f(x, ) f X (x) d, R Ejemplo 6.7: Sea (X, Y ) una v.a. bidimensional con función de densidad ½ x si x 1, f(x, ) = Las funciones de densidad marginales son: ½ x si x 1 f X (x) = ½ / si f Y () = Las densidades condicionadas vienen dadas por: f(x/) = ½ x si x 1 ½ / si f(/x) = Observamos que en este caso las densidades marginales condicionadas coinciden. 7

6.4 Independencia de variables aleatorias Sabemos que dos sucesos A B son independientes si se cumple que: P (A/B) = P (A) P (B/A) = P (B) en consecuencia: P (A B) =P (A)P (B) Análogamente, diremos que dos variables aleatorias X e Y son independientes si se verifica: P (X = x i,y = j )=p ij = p i. p.j en el caso discreto. f(x, ) =f X (x)f Y () en el caso continuo. Equivalentemente, F (x, ) =F X (x)f Y (). Por lo tanto, si las variables X e Y son independientes, se cumple que: P (a X b, c Y d) =P (a X b)p (c Y d) Ejemplo 6.8: Las variables dadas en el ejemplo 5.7 son independientes, a que las densidades condicionadas coinciden con las marginales. 6.5 Esperanza matemática Sea (X, Y ) una v.a. bidimensional. Se define el valor esperado o esperanza matemática de una función g(x, Y ) como: En caso discreto: E [g(x, Y )] = X i X g(x i, j )p ij j En caso continuo: E [g(x, Y )] = Z + Z + Algunas propiedades de la esperanza son: i) E [ax + by + c] =ae[x]+be[y ]+c g(x, )f(x, )ddx ii) Si X e Y son independientes, entonces E [g(x)g(y )] = E [g(x)]e[g(y )]. En particular, E [XY ]=E [X]E[Y ]. 8

Ejemplo 6.8: Sea (X, Y ) una v.a. bidimensional discreta con f.m.p. conjunta: X\Y 1 1/4 1/4 4 3/8 1/8 La esperanza matemática de g(x, Y )=X + Y es: E X + Y = (+ )1/4+(1+ )1/4+(+4 )3/8+(1+4 )1/8 =73/8 = E X]+E[Y 6.6 Momentos bidimensionales Dada una v.a. bidimensional (X,Y ), definimos los siguientes momentos: Momento no centrado de orden (r, s) : m rs = E[X r Y s ] Momentocentradodeorden(r, s) : µ rs = E[(X E[X]) r (Y E[Y ]) s ] Al momento centrado de orden (1,1) se le llama covarianza, se suele notar por Cov(X, Y ) o σ X,Y. Su expresión es: Cov(X, Y )=E[(X E[X]) (Y E[Y ])] = E[XY ] E[X]E[Y ] Diremos que dos variables son incorreladas si su covarianza es. Claramente, si dos variables son independientes, también son incorreladas. Ejemplo 6.9: Sea (X, Y ) una v.a. bidimensional con función de densidad: f(x, ) = 1 4 (1 + x(x )), 1 x 1, 1 a. Son X e Y independientes?. Comprobamos para ello si f(x, ) =f X (x)f Y (). Las funciones de densidad marginales resultan: f X (x) = f () = 1 4 (1 + x(x ))d =1/, 1 x 1 1 4 (1 + x(x ))dx =1/, 1 1 Como f(x, ) 6= 1, las variables no son independientes. 4 9

b. Son X e Y incorreladas?. Comprobamos si la covarianza es. Cov(X, Y )=E[XY ] E[X]E[Y ] E[XY ] = E[X] = E[Y ] = x 1 4 (1 + x(x ))ddx =, x 1 dx =, 1 d =. Por lo que Cov(X, Y )=enconsecuencia las variables son incorreladas. Con este ejemplo observamos que el que las variables sean incorreladas no implica que sean independientes. Sin embargo, si las variables son independientes sí son incorreladas. 6.7 Ejercicios 1. Se lanzan dos dados simultáneamente. Sea X="número de puntos obtenidos por el primer dado" e Y = el número maor de los puntos obtenidos con los dos dados". Se pide: a. La función masa de probabilidad conjunta. b. Las funciones masa de probabilidad marginales c. La función masa probabilidad de la variable X condicionada a Y =4. d. P (X =,Y =4) P (X =3). e. Son independientes las variables X e Y?. Sea (X, Y ) una v.a. bidimensional con función de densidad conjunta: f(x, ) = ( 1 (x + ) si x, 8 a. Obtener la función de distribución conjunta. b. Obtener las funciones de distribución marginales. c. Obtener las funciones de densidad marginales. d. Calcular P (X <1,Y 1.5), P(X 1), P(X 1.7/Y 1.5). e. Son incorreladas las variables?. 1

3. Sea (X, Y ) una v.a. bidimensional con función masa de probabilidad: X\Y 1 3 1 3/8 3/8 3 1/8 1/8 a. Calcular las funciones de probabilidad marginales. b. Calcular P (Y ), P(X =1 (1 Y )) P (Y =3/X =1). c. Calcular la esperanza matemática de X + Y. d. Son independientes las variables?. 4. Sea (X, Y ) una v.a. bidimensional con función de densidad conjunta: f(x, ) = ( 1 (3x ) si 1 x, 1 3 k a. Calcular el valor de k para que sea función de densidad. b. Obtener las funciones de densidad marginales. c. Obtener la función de densidad de X dado que Y toma el valor. d. Calcular la función de distribución conjunta. e. Calcular P (X < 1.3,Y.5). 5. Sea (X, Y ) una v.a. bidimensional con función de densidad conjunta: ½ e (x+) si x>, > f(x, ) = a. Obtener las funciones de densidad marginales. b. Son independientes las variables? c. Obtener la función de distribución conjunta. d. Calcular P (( <X<1) (1 X<)) e. Obtener la función de densidad de Y condicionada a X =3. f. Calcular la esperanza de X Y g. Calcular Cov(X, Y ). Son incorreladas las variables?. 11