Definición de Cónicas

Documentos relacionados
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

INECUACIONES Y VALOR ABSOLUTO

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

7. Cónicas. Propiedades métricas y ópticas

Geometría Analítica Agosto 2016

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Academia de Matemáticas T.M Geometría Analítica Página 1

Si se pueden obtener las imágenes de x por simple sustitución.

CONICAS Y LUGARES GEOMÉTRICOS ( problemas resueltos)

MATEMÁTICAS UNIDAD 4 GRADO 10º. Cónicas y repaso de funciones

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

EJERCICIOS RESUELTOS DE CÓNICAS

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

LUGARES GEOMÉTRICOS. CÓNICAS

Gráficas de funciones

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

FUNCIONES CUADRÁTICAS

Temario de Matemáticas V (1500)

EJERCICIOS PROPUESTOS

Matemáticas III. Geometría analítica

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA

APUNTES DE GEOMETRÍA ANALÍTICA

GEOMETRÍA ANALÍTICA: CÓNICAS

Capítulo 3 Soluciones de ejercicios seleccionados

Fecha: 29/10/2013 MATEMÁTICAS

Club de Matemáticas CBTis 149. clubmate149.com

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

O X de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso:

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Matemáticas 2 Agosto 2015

FUNCIONES y = f(x) ESO3

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA

Funciones y sus gráficas

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

CONSTRUCCIÓN GEOMÉTRICA DE LAS CÓNICAS

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.

Tema 10. Funciones (II). Recta, parábola, hipérbola, exponenciales, logaritmos y circulares.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

Funciones Cuadráticas en una Variable Real

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.

ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA

IX. LA PARÁBOLA 9.1. LA PARÁBOLA COMO LUGAR GEOMÉTRICO 9.2. CONSTRUCCIÓN DE UNA PARÁBOLA CON REGLA Y COMPÁS

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

1. Dominio, simetría, puntos de corte y periodicidad

2.2 Rectas en el plano

MATEMÁTICAS 2º DE ESO

AYUDAS SOBRE LA LINEA RECTA

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

SUPERFICIES CUÁDRICAS

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

Áreas entre curvas. Ejercicios resueltos

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA No 1

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

3. La circunferencia.

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas

APLICACIONES DE LA INTEGRAL DEFINIDA

La representación gráfica de una función cuadrática es una parábola.

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

PARÁBOLA UNIDAD IX IX.1 DEFINICIÓN DE PARÁBOLA

CALCULO 11-M-1 Primera Parte

EJERCICIOS DE GEOMETRÍA RESUELTOS

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

Funciones y gráficas III

Curvas geométricas DIBUJO TÉCNICO I. Curvas técnicas OBJETIVOS

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

Interpretación geométrica de la derivada

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

Ejercicios de representación de funciones

Transcripción:

Sean D y F una recta y un punto del plano tales que F D. Sea e un número positivo. Una cónica es el lugar geométrico de los puntos P del plano tales que su distancia a F es e-veces su distancia a la recta D. Es decir: P Cónica PF = epd F se llama foco de la cónica. D se llama directriz de la cónica (veremos sólo el caso en que es vertical u horizontal). e se llama exentricidad de la cónica. Además Si e < 1 la cónica se llama. Si e = 1 la cónica se llama. Si e > 1 la cónica se llama.

Ecuación de la Está cónica corresponde al caso e = 1. Para escribir su ecuación consideraremos que el foco está en la ubicación F = (0, p) donde p 0 y que la directriz D es la recta horizontal de ecuación y = p. Conesto, claramente el origen es un punto de la parábola ya que dista p de F y D. Para escribir la ecuacion de la parábola consideremos un punto P = (x, y) cualquiera del plano e impongamos que su distancia a F y a D son iguales: P = (x, y) PF = PD x 2 + (y p) 2 = y + p ; x 2 + y 2 2py + p 2 = y 2 + 2py + p 2 x 2 = 4py y = 1 4p x 2. elevando al cuadrado,

Gráfico de la Consideremos el caso p > 0. Entonces podemos apreciar lo siguiente: 1 El punto (0, 0) evidentemente satisface la ecuación de la parábola, luego la parábola pasa por el origen, como ya lo habíamos observado anteriormente. 2 Como x 2 0 y p > 0 entonces, todos los puntos de la parábola deben tener ordenada no negativa (y 0), es decir, el gráfico de la parábola debe estar contenido en el Primer y Segundo cuadrante, además del Origen. 3 Si P = (x, y) es un punto cualquiera de la parábola entonces sus coordenadas satisfacen la ecuación. Sin embargo, como ( x) 2 = x 2, se concluye que el punto P = ( x, y) también satisface la ecuación de la parábola, o sea, pertenece a ella. Notemos que P es el punto simétrico de P con respecto a OY. En consecuencia la parábola es una curva simétrica con respecto al eje OY. La intersección entre la parábola y el eje de simetría se llama vértice de la parábola. En este caso es el origen (0, 0). 4 En el primer cuadrante podemos calcular los valores de y obtenidos para diferentes valores de x. Si se consideram valores cada vez mayores de x, se obtienen valores cada vez mayores de y, por lo tanto la parábola es una curva creciente en el primer cuadrante.

Gráfico de la Consideremos el caso p > 0. Entonces podemos apreciar lo siguiente: 1 El punto (0, 0) evidentemente satisface la ecuación de la parábola, luego la parábola pasa por el origen, como ya lo habíamos observado anteriormente. 2 Como x 2 0 y p > 0 entonces, todos los puntos de la parábola deben tener ordenada no negativa (y 0), es decir, el gráfico de la parábola debe estar contenido en el Primer y Segundo cuadrante, además del Origen. 3 Si P = (x, y) es un punto cualquiera de la parábola entonces sus coordenadas satisfacen la ecuación. Sin embargo, como ( x) 2 = x 2, se concluye que el punto P = ( x, y) también satisface la ecuación de la parábola, o sea, pertenece a ella. Notemos que P es el punto simétrico de P con respecto a OY. En consecuencia la parábola es una curva simétrica con respecto al eje OY. La intersección entre la parábola y el eje de simetría se llama vértice de la parábola. En este caso es el origen (0, 0). 4 En el primer cuadrante podemos calcular los valores de y obtenidos para diferentes valores de x. Si se consideram valores cada vez mayores de x, se obtienen valores cada vez mayores de y, por lo tanto la parábola es una curva creciente en el primer cuadrante.

Gráfico de la Consideremos el caso p > 0. Entonces podemos apreciar lo siguiente: 1 El punto (0, 0) evidentemente satisface la ecuación de la parábola, luego la parábola pasa por el origen, como ya lo habíamos observado anteriormente. 2 Como x 2 0 y p > 0 entonces, todos los puntos de la parábola deben tener ordenada no negativa (y 0), es decir, el gráfico de la parábola debe estar contenido en el Primer y Segundo cuadrante, además del Origen. 3 Si P = (x, y) es un punto cualquiera de la parábola entonces sus coordenadas satisfacen la ecuación. Sin embargo, como ( x) 2 = x 2, se concluye que el punto P = ( x, y) también satisface la ecuación de la parábola, o sea, pertenece a ella. Notemos que P es el punto simétrico de P con respecto a OY. En consecuencia la parábola es una curva simétrica con respecto al eje OY. La intersección entre la parábola y el eje de simetría se llama vértice de la parábola. En este caso es el origen (0, 0). 4 En el primer cuadrante podemos calcular los valores de y obtenidos para diferentes valores de x. Si se consideram valores cada vez mayores de x, se obtienen valores cada vez mayores de y, por lo tanto la parábola es una curva creciente en el primer cuadrante.

Gráfico de la Consideremos el caso p > 0. Entonces podemos apreciar lo siguiente: 1 El punto (0, 0) evidentemente satisface la ecuación de la parábola, luego la parábola pasa por el origen, como ya lo habíamos observado anteriormente. 2 Como x 2 0 y p > 0 entonces, todos los puntos de la parábola deben tener ordenada no negativa (y 0), es decir, el gráfico de la parábola debe estar contenido en el Primer y Segundo cuadrante, además del Origen. 3 Si P = (x, y) es un punto cualquiera de la parábola entonces sus coordenadas satisfacen la ecuación. Sin embargo, como ( x) 2 = x 2, se concluye que el punto P = ( x, y) también satisface la ecuación de la parábola, o sea, pertenece a ella. Notemos que P es el punto simétrico de P con respecto a OY. En consecuencia la parábola es una curva simétrica con respecto al eje OY. La intersección entre la parábola y el eje de simetría se llama vértice de la parábola. En este caso es el origen (0, 0). 4 En el primer cuadrante podemos calcular los valores de y obtenidos para diferentes valores de x. Si se consideram valores cada vez mayores de x, se obtienen valores cada vez mayores de y, por lo tanto la parábola es una curva creciente en el primer cuadrante.

Gráfico de la Por todo lo anterior el gráfico será: Y p F O X D p Figure: Gráfico de la parábola.

Observaciones: 1) El gráfico en el caso p < 0 es análogo al anterior, pero abierto hacia abajo. 2) Si escribieramos la ecuación de la parábola en el cado de directriz vertical x = p y foco F = (p, 0), repitiendo el mismo proceso anterior, la ecuación de la parábola quedaría y 2 = 4px, la cual corresponde a una parábola de eje horizontal abierta hacia la derecha si p > 0 o abierta hacia la izquierda si p < 0.

Cambio de coordenadas mediante traslación paralela de ejes Sean S = {OXY } y S = {O X Y } dos sistemas de coordenadas de tal modo que los ejes OX y O X son paralelos y en el mismo sentido, lo mismo que los ejes OY y O Y y el origen O tiene coordenadas (x 0, y 0 ) en S como muestra la figura. En este caso diremos que el sistema S es una traslación paralela del sistema S. Y Y S S y o O X O x o X Figure: Traslación de sistema de coordenadas. Un punto P del plano tendrá coordenadas (x, y) con recpecto a S y coordenadas (x, y ) con respecto a S. De un esquema sencillo puede apreciarse que: x = x + x 0 y = y + y 0 o bien x = x x 0 y = y y 0

Cambio de coordenadas mediante traslación paralela de ejes De este modo, cada vez que en la ecuación de un lugar geométrico aparezcan las expresiones x x 0 o y y 0, estas pueden interpretarse como las coordenadas x e y de los mismos puntos respecto a un sistema trasladado cuyo origen esta en (x 0, y 0 ) Ejemplos 1) L : y = mx es una recta de pendiente m que pasa por el origen y L : (y y 0 ) = m(x x 0 ) es una recta de la misma pendiente que pasa por el punto (x 0, y 0 ), es decir por el origen de un sistema trasladado a ese punto. 2) C : x 2 + y 2 = r 2 es una circunferencia de radio r centrada en el origen y C : (x x o ) 2 + (y y o ) 2 = r 2 también corresponde a una circunferencia de radio r pero centrada (x 0, y 0 ). 2) P : y = 1 4p x 2 es una parábola de eje vertical con vertice en el origen y P : y y 0 = 1 4p (x x 0) 2 es otra parábola de eje vertical con vértice en el punto (x 0, y 0 ). En el último caso, el Foco de la parábola tiene coordenadas (x 0, y 0 + p) y la directriz tiene ecuación y = y 0 p. Es decir las posiciones de estos objetos son las mismas de la parábola original, pero trasladadas x 0 e y 0 en los sentidos horizontal y vertical respectivamente.

General Theorem (Teorema) La ecuación y = ax 2 + bx + c con a 0 representa una parábola de eje vertical con directriz D : y = 1 foco F = ( b, 1 b ) y vértice V = (, ), donde = 2a 4a 2a 4a b2 4ac. Demostración. Efectivamente, la ecuación y = ax 2 + bx + c puede ordenarse completando cuadrados perfectos del siguiente modo: y = ax 2 + bx + c y = a[x 2 + b a x + c a ] y = a[x 2 + 2 b 2a x + ( b 2a )2 ( b 2a )2 + c a ] y = a[(x + b 2a )2 b2 4a 2 + c a ] y = a(x + b 2a )2 b2 4ac 4a (y + b2 4ac ) = a(x + b 4a 2a )2 (y y 0 ) = a(x x 0 ) 2, donde x 0 = b 2a, y 0 = b2 4ac. 4a 4a,

General Theorem (Teorema) La ecuación y = ax 2 + bx + c con a 0 representa una parábola de eje vertical con directriz D : y = 1 foco F = ( b, 1 b ) y vértice V = (, ), donde = 2a 4a 2a 4a b2 4ac. Demostración. Efectivamente, la ecuación y = ax 2 + bx + c puede ordenarse completando cuadrados perfectos del siguiente modo: y = ax 2 + bx + c y = a[x 2 + b a x + c a ] y = a[x 2 + 2 b 2a x + ( b 2a )2 ( b 2a )2 + c a ] y = a[(x + b 2a )2 b2 4a 2 + c a ] y = a(x + b 2a )2 b2 4ac 4a (y + b2 4ac ) = a(x + b 4a 2a )2 (y y 0 ) = a(x x 0 ) 2, donde x 0 = b 2a, y 0 = b2 4ac. 4a 4a,

General Es decir, se trata de una parábola de eje vertical, con vértice desplazado a la posición (x 0, y 0 ). Como ya vimos anteriormente,p = 1 y por lo tanto el foco será 4a F = (x 0, y 0 + p) ( = b 2a, 4a + 1 ) 4a ( = b 2a, 1 ). 4a Para la directriz tendremos y = y 0 1 4a = 4a 1 4a = 1 + 4a. Claramente las coordenadas del vértice serán V = (x 0, y 0 ) = ( b 2a, 4a ), donde = b2 4ac.

Ecuación de la Corresponde al caso e < 1. Para escribir su ecuación en forma simple, conviene ubicar el Foco sobre el eje OX en las coordenadas F = (f, 0), y la Directriz vertical de ecuación x = d, donde f d. Con esta elección, la ecuación de la elipse es P = (x, y) PF = epd (x f ) 2 + y 2 = e x d ; elevando al cuadrado, x 2 2fx + f 2 + y 2 = e ( 2 x 2 2dx + d 2) x 2 (1 e 2 ) + 2x(e 2 d f ) + y 2 = e 2 d 2 f 2. Como la elección del foco y la directriz se ha realizado para que la ecuación sea simple, impondremos que f = e 2 d, con esto eliminamos el factor de primer grado en la ecuación y nos ahorramos una completación de cuadrado perfecto. Con esto, la ecuación de la elipse se reduce a la cual suele escribirse del modo siguiente x 2 (1 e 2 ) + y 2 = e 2 d 2 (1 e 2 ), x 2 e 2 d 2 + y 2 e 2 d 2 (1 e 2 ) = 1.

Ecuación de la x 2 e 2 d 2 + y 2 e 2 d 2 (1 e 2 ) = 1. Si en esta ecuación, llamemos a = ed y b = ed 1 e 2, entonces la ecuación queda x 2 a 2 + y 2 b 2 = 1 donde f = e 2 d = ae y d = a e Además En consecuencia: b a = 1 e 2 e = a2 b 2 a x 2 a + y 2 = 1 con a > b (1) 2 b2 corresponde siempre a una elipse con: a 2 b 2 a Excentricidad: e = Foco: F = (ae, 0)

Gráfico de la elipse 1) Como en la ecuación aparecen x 2 e y 2, deducimos que se trata de una figura doblemente simétrica con respecto a los ejes. En efecto, si P = (x, y) es un punto cualquiera de la elipse, entonces sus coordenadas satisfacen la ecuación. Pero ( y) 2 = y 2 y además ( x) 2 = x 2, luego los puntos (x, y), ( x, y), ( x, y), también satisfacen la ecuación, luego pertenecen a ella. Como consecuencia de lo anterior, basta con hacer el análisis gráfico de la elipse sólo en el primer cuadrante. 2) En el primer cuadrante podemos despejar y en términos de x obteniendo y = b a a2 x 2 De aquí vemos que para poder calcular y es necesario que x a, luego el gráfico de la elipse debe hacerse sólo en la zona entre x = 0 y x = a (del primer cuadrante) 3) Tambien podemos despejar x en términos de y en el primer cuadrante obteniendo x = a b b2 y 2 De aqui vemos que y debe estar comprendido entre y = 0 e y = b. 4) Siempre en el primer cuadrante, podemos obtener algunos puntos considerando que y = b a a2 x 2. Partiendo en x = 0 se obtiene y = b. Si x crece de 0 hasta a se ve que y decrece de b hasta 0. Al final, cuando x = a se obtiene y = 0.

Gráfico de la elipse Luego el grafico será: Y D D b a F O F a X b Figure: Gráfico de la elipse. Observación Por la simetría del gráfico, se aprecia facilmente que el punto F = ( ae, 0) y la recta D de ecuación x = a e funcionan como un foco y directriz de la elipse. Por lo tanto la elipse tiene dos focos y dos directrices.

Propiedad importante Sea P un punto cualquiera de la elipse x 2 + y 2 a 2 b 2 Y D D = 1 y sean P y P las proyecciones de P sobre las directrices. Entonces es claro que PF = epp y PF = epp P b P P Luego a F O F a X PF +PF = e(pp +PP ) = ep P = e 2a e = 2a b es decir PF + PF = 2a flash**

Observaciones 1) Si a < b entonces la ecuación x 2 + y 2 a 2 b 2 = 1 corresponde a una elipse donde se han intercambiado los roles b 2 a 2 b de x e y y los roles de a y b, de modo que e =, F (0, be), F (0, be), D : y = b y e D : y = b e 2) En consecuencia la ecuación x 2 + y 2 = 1 con a b representa siempre a una elipse de semiejes a y b, a 2 b 2 que es horizontal si a > b o vertical si a < b. 3) Si a = b entonces la ecuación corresponde a una circunferencia de radio a y no a una elipse.

Ecuación de la Corresponde al caso e > 1. Nuevamente, para escribir su ecuación en forma simple, conviene ubicar el Foco sobre el eje OX en las coordenadas F = (f, 0), y la Directriz vertical de ecuación x = d, donde f d. Con esta elección, la ecuación de la hipérbola es P = (x, y) PF = epd (x f ) 2 + y 2 = e x d ; elevando al cuadrado, x 2 2fx + f 2 + y 2 = e ( 2 x 2 2dx + d 2) x 2 (e 2 1) + 2x(e 2 d f ) + y 2 = e 2 d 2 f 2. En este caso también eligiremos f = e 2 d para evitarnos una completación de cuadrados. Con esto la ecuación de la hipérbola será: x 2 (e 2 1) + y 2 = e 2 d 2 (e 2 1), la cual dividiendo por e 2 d 2 (e 2 1) suele escribirse del modo siguiente x 2 e 2 d 2 y 2 e 2 d 2 (e 2 1) = 1.

Ecuación de la x 2 e 2 d 2 y 2 e 2 d 2 (e 2 1) = 1. Aquí, si llamemos a = ed y b = ed e 2 1, entonces la ecuación queda donde x 2 a 2 y 2 b 2 = 1 (2) f = e 2 d = ae y d = a e Además b a = e 2 1 e = a2 + b 2 a En consecuencia: corresponde siempre a una hipérbola con: x 2 a 2 y 2 b 2 = 1 con a > b a 2 +b 2 a Excentricidad: e = Foco: F = (ae, 0) Directriz: D : x = a e

Gráfico de la hipérbola 1) Como en la ecuación aparecen x 2 e y 2, deducimos que se trata de una figura doblemente simétrica con respecto a los ejes. En efecto, si P = (x, y) es un punto cualquiera de la elipse, entonces sus coordenadas satisfacen la ecuación. Pero ( y) 2 = y 2 y además ( x) 2 = x 2, luego los puntos (x, y), ( x, y), ( x, y), también satisfacen la ecuación, luego pertenecen a ella. Como consecuencia de lo anterior, basta con hacer el análisis gráfico de la elipse sólo en el primer cuadrante. 2) En el primer cuadrante podemos despejar y en términos de x obteniendo y = b a x 2 a 2. De aquí vemos que para poder calcular y es necesario que x a, luego el gráfico de la elipse debe hacerse sólo en la zona a la derecha de x = a (en el primer cuadrante) 3) Tambien podemos despejar x en términos de y en el primer cuadrante obteniendo De aquí vemos que y puede tomar cualquier valor. x = a b b2 + y 2 4) Siempre en el primer cuadrante, podemos obtener algunos puntos considerando que y = b a x 2 a 2 Luego para x = a se obtiene y = 0

Gráfico de la hipérbola Además si x crece entonces y también crece Por último si x toma valores muy grandes podemos hacer la siguiente aproximación: y = b a x 1 ( a x )2 b a x Es decir la hipérbola se aproxima a la recta y = b x. Dicha recta se llama asintota de la hipérbola. a Por simetría vemos que las rectas y = ± b x son todas las asintotas de la hipérbola. a

Gráfico de la hipérbola Luego el grafico será: Y b a O a X Observación Por la simetría del gráfico, se aprecia facilmente que el punto F = ( ae, 0) y la recta D de ecuación x = a e funcionan como un foco y directriz de la hipérbola. Por lo tanto la hipérbola tiene dos focos y dos directrices.

Propiedad importante Sea P un punto cualquiera de la hipérbola x 2 directrices. Y D D y 2 a 2 b 2 = 1 y sean P y P las proyecciones de P sobre las Entonces es claro que PF = epp y PF = epp P P P Luego F a O a F X PF PF = e(pp PP ) = ep P = e 2a e = 2a es decir PF PF = 2a.

Observaciones 1) La ecuación y 2 x 2 = 1 corresponde a una hipérbola donde se han intercambiado los roles de x e y y los a 2 b 2 b roloes de a y b, de modo que e = 2 +a 2, b F (0, be), F (0, be), D : y = b y e D : y = b. e Las asintotas serían x = ± ay es decir y = ± b x 2 x, o sea las mismas asintotas que la hipérbola = 1 b a b 2 estas dos hiperbolas que comparten las asintotas se llaman hipérbolas conjugadas y sus ecuaciones se escriben: x 2 a y 2 2 b = ±1 2 2) Si a = b entonces la hipérbola x 2 y 2 = a 2 se llama hipérbola equilatera. Estas hiperbolas tienen exentricidad e = 2 y sus asíntotas son las bisectrices de los cuadrantes. a 2 y 2