SUCESIONES 3º ESO
Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El primer térmio es a 1, el segudo a 2, el tercero a 3 Ejemplo: E la sucesió de los úmeros pares: 2, 4, 6, 8, 10, 12, 14, 16,.. Cuál es el primer térmio? 2 Cuál es el quito térmio? 10
Térmio geeral de ua sucesió. Represeta u térmio cualquiera de la sucesió E las sucesioes que sigue ua ley de formació, la fórmula del térmio geeral, a, permite determiar cualquier térmio de la sucesió. Ejemplos: E la sucesió de los úmeros pares: 2, 4, 6, 8, El térmio geeral es: a = 2 2 E la sucesió: 1, 4, 9, 16, 25, El térmio geeral es: a = 2 E la sucesió de los úmeros impares: 1, 3, 5, 7, El térmio geeral es: a = 2 2-1
Sucesioes recurretes. Los térmios de estas sucesioes se obtiee a partir de los ateriores. Ejemplo: La sucesió de Fiboacci 1, 1, 2, 3, 5, 8, 13, Cuál es el sexto térmio? 8 Cuál es el séptimo térmio? 13 Cuál es el octavo térmio? 21 Cuál es la ley de formació? Cada térmio es la suma de los dos ateriores: Cada térmio es la suma de los dos ateriores: a = a -1 + a -2 La sucesió cambia si se modifica los dos primeros térmios Calcula los 9 primeros térmios de ua sucesió co la misma ley de formació co a 1 = 1 y a 2 = 3 1, 3, 4, 7, 11, 18, 29, 47, 76,
Progresioes aritméticas. So sucesioes el las que cada térmio se obtiee a partir del aterior sumádole ua catidad costate llamada, d, diferecia. Cuál es la sucesió si el primer térmio, a 1 = 3 y la diferecia, d = 2: 3, 5, 7, 9, 11, 13, 15, Cuál es la diferecia de la siguiete progresió aritmética: 1, 5, 9, 13, 17, 21, 25, d = 4 E ua progresió aritmética la diferecia etre dos térmios cosecutivos es ua costate.
Ejemplos de progresioes aritméticas E la sucesió umérica del úmero de cuadrados azules. Cuál es el valor del primer térmio? Cuál es la diferecia? E la sucesió umérica del úmero de cuadrados verdes. Cuál es el valor del primer térmio? Cuál es la diferecia?
Térmio geeral de ua progresió aritmética. E ua progresió aritmética: a 2 = a 1 + d a 3 = a 2 + d = a 1 + 2d a 4 = a 3 + d = a 1 + 3d a 5 = a 4 + d = a 1 + 4d a = a 1 + (-1)d
Suma de térmios de ua progresió aritmética Los úmeros aturales: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, forma ua progresió aritmética de diferecia, d = 1. Para sumar los diez primeros térmios se observa que: La suma de los 10 primeros térmios, S 10 = 11. 5 = 55 E geeral para sumar térmios: S = ( a + a 1 ) 2
Progresioes geométricas. So sucesioes el las que cada térmio se obtiee a partir del aterior multiplicádolo por ua catidad costate llamada, r,, razó. Cuál es la sucesió si el primer térmio, a 1 = 3 y la razó, r = 2: 3, 6, 12, 24, 48, 96,192, Cuál es la razó de la siguiete progresió geométrica: 2, 6, 18, 54, 162, 486, r = 3 E ua progresió geométrica el cociete etre dos térmios cosecutivos es ua costate.
Ejemplos de progresioes geométricas El lado del cuadrado gris de la figura mide 1 uidad Cuál es el valor de su área? Cuáto vale el área del cuadrado verde? Y el área del cuadrado rojo? Y la del cuadrado azul? Observa que el proceso de costrucció de los cuadrados puede cotiuar idefiidamete y sus áreas forma la sucesió: 1, 1/2, 1/4, 1/8,., que es ua progresió geométrica de razó 1/2 Cosidera la sucesió formada por las logitudes de los lados: 1, 1/ 2, 1/2, 1/2 2., Es s ua progresió geométrica? Cuál es la razó de esta progresió?
Térmio geeral de ua progresió geométrica. E ua progresió geométrica: a 2 = a 1 r a 3 = a 2 r = a 1 r 2 a 4 = a 3 r = a 1 r 3 a 5 = a 4 r = a 1 r 4 a = a 1 r (-1)
Producto de térmios de ua progresió geométrica La sucesió: 2, 4, 8, 16, 32, 64, 128, 256, 512, es ua progresió geométrica de razó, r = 2. Para multiplicar los 8 primeros térmios se observa que: El producto de los 8 primeros térmios, P 8 = (512) 4 =2 E geeral el producto de térmios es: 2 ( a a1) = ( a a1 P = ) =2 36
Suma de térmios de ua progresió geométrica Imagia la siguiete situació: U alumo de 3º de ESO cueta u secreto, a las 9 de la mañaa, a dos compañeros, a las 10, cada uo de ellos se lo ha cotado a otros s dos, ua hora más tarde, los cuatro alumos que acaba de coocer el secreto eto se lo cueta a otros dos y así sucesivamete. Determia la sucesió del úmero de persoas que cooce el secreto eto cada hora a partir de las 8 de la mañaa. 1, 2, 4, 8, 16, 32, 64, 128, Es ua progresió geométrica? Por qué? Cuál es la razó? r = 2 A cuátas persoas les cueta el secreto a las 2 de la tarde? 64 Cuátas persoas cooce el secreto a las 2 de la tarde? 1 + 2 + 4 + 8 + 16 + 32 + 64 =? Para realizar esta suma co facilidad se va a buscar ua fórmula.
Suma de térmios de ua progresió geométrica Sea S la suma de térmios de ua progresió geométrica: S = a 1 + a 2 + a 3 + a 4 + + a r S = r a 1 + r ar 2 + r ar 3 + r ar 4 + + r a y por lo tato: r S = a 2 + a 3 + a 4 + a 5 + + r a Al calcular la diferecia etre r S y S se obtiee: r S - S = r a - a 1, sacado factor comú S e el primer térmio: S (r 1) = r a - a 1, al despejar S se obtiee la fórmula: S a r a = r 1 Para sumar los siete primeros térmios de la progresió aterior: 1 + 2 + 4 + 8 + 16 + 32 + 64, se aplica la fórmula y se obtiee: S a r a r 1 1 64 2 1 2 1 7 1 7 = = = 127
Progresioes geométricas crecietes, decrecietes y oscilates. Ua progresió geométrica es creciete si su razó r es mayor que 1 Por ejemplo la sucesió de los múltiplos de 3: 3, 9, 27, 81, 243, Ua progresió geométrica es decreciete si su razó r es mayor que 0 y meor que 1 Por ejemplo la sucesió co r = 1/2 y a 1 = 1: 1, 1/2, 1/4, 1/8,. Ua progresió geométrica es oscilate si su razó r es u úmero egativo Por ejemplo la sucesió co r = -11 y a 1 = 1: 1, -1, 1, -1, 1, -1.
Suma de ifiitos térmios de ua progresió geométrica E la sucesió de cuadrados de la figura, la sucesió umérica formada por las áreas de los triágulos que sobra para obteer el siguiete cuadrado es: 1/2, 1/4, 1/8, La suma de estas ifiitas áreas es el área del cuadrado gris que vale 1: 1/2 + 1/4 + 1/8 + = 1 E geeral, e ua progresió geométrica decreciete la razó, r,, es meor que 1 y cuado es muy grade el térmio a se aproxima a 0. Elimiado este valor e la fórmula de la suma de térmios de ua progresió geométrica: Se obtiee la expresió que calcula la suma de los ifiitos térmios de ua progresió geométrica decreciete: S S a r a = r 1 a1 = 1 r 1
El iterés compuesto y las progresioes geométricas Se igresa e u baco 3000 a u iterés aual del 4% Al fializar el primer año se tiee u capital: C 1 = 3000 (1+0,04) Después de dos años: C 2 = 3000 (1+0,04) 2 Cuado ha pasado cico años: C 5 = 3000 (1+0,04) 5 Y después de años: C = 3000 (1+0,04) C es el térmio geeral de esta progresió geométrica. E geeral si se igresa e u baco ua catidad, C,, a u iterés aual del i%,, la fórmula que permite calcular la catidad que se tiee después de años es: i C = C 1 + 100