PROBLEMAS PROPUESTOS DE OSCILACIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS PROPUESTOS DE OSCILACIONES"

Transcripción

1 PROBLEMAS PROPUESTOS DE OSCILACIONES 1. La posición de un cuerpo puede describirse mediante x =A cos(ωt + δ). La frecuencia angular ω, la posición inicial x 0 y la velocidad v 0 son conocidas. Encuentre la amplitud A y la constante de fase δ en términos de ω, x 0 y v 0. Solución: AA = xx vv Una partícula ejecuta movimiento armónico simple. Su desplazamiento es x = A cos(ωt + δ), donde, como es usual, la amplitud A es una constante positiva. En t = 0, la partícula está en el origen y se mueve en la dirección x positiva. Cuál es la elección adecuada de la constante de fase δ en este caso? Solución: δ = 3π/2. 3. La frecuencia de una masa unida a un resorte es de 3,0 Hz. En el tiempo t = 0, la masa tiene un desplazamiento inicial de 0,20 m y una velocidad inicial de 4,0 m/s. a) Cuál es la posición de la masa como función del tiempo? Solución: x = 0,929 cos(6π t 0,815) b) Cuándo llegará por primera vez la masa a un punto de retorno? Cuál será su aceleración en dicho tiempo? Solución: 0,043 s; -103 m/s El cable de levantamiento de una torre está hecho de acero, con un diámetro de 5,0 cm. Su longitud desde el suelo hasta la carga es de 160 m. Si se considera como un resorte Cuál es su constante de resorte efectiva? Cuál es la frecuencia de oscilación cuando una masa de 7, kg se une al extremo inferior del cable y se le permite oscilar arriba y abajo? La masa del cable no se considera. Solución: 2, N/m; 3,16 Hz. ωω 2 5. Un monitor de grosor es un instrumento de laboratorio que se utiliza para determinar el grosor de una película delgada que se deposita sobre la superficie de un cristal de cuarzo. El cristal puede tratarse como un sistema resorte-masa con k = 6, N/m y m = 0,50 g. Cuál es la frecuencia de oscilación de este sistema? Esta frecuencia cambia ligeramente conforme se agrega masa al cristal. Si la frecuencia disminuye 0,010%, Cuánta masa se ha depositado? Si el área del cristal es de 2,0 cm 2 y la densidad de masa del material de la película es de 7,5 g/cm 2, Cuál es el grosor de la película depositada? Solución: 5, Hz; 1, g; 6, cm.

2 6. Una masa m se desliza sobre un plano sin fricción inclinado a un ángulo θ con la horizontal. La masa se une a un resorte, de constante k, paralelo al plano Cuánto se estira el resorte en el equilibrio? Cuál es la frecuencia de las oscilaciones de la masa arriba y abajo sobre el plano? Solución: mmmm ssssssss kk ; 1 2ππ kk mm 7. Dos masas m 1 y m 2 se unen mediante un resorte con constante de resorte k. Demuestre que la frecuencia de vibración de estas masas a lo largo de la línea que las conecta es ωω = kk(mm 1 + mm 2 mm 1 mm 2 (Sugerencia: El centro de masa permanece en reposo.) 8. Un reloj de péndulo, controlado por un péndulo de 0,9932 m de largo, mantiene bien el tiempo en Nueva York (g = 9,803 m/s 2 ). a) Si este reloj se lleva a Austin, Texas (g = 9,793 m/s 2 ), Cuántos minutos por día se retrasará? b) Con la finalidad de ajustar el reloj, En cuántos milímetros debe acortarse el péndulo? Solución: a) 0,73 min/día; b) 1 mm. 9. Para probar que la aceleración de la gravedad es la misma para un trozo de hierro y un trozo de latón, un experimentador toma un péndulo de 1,800 m de largo con una lenteja de hierro y otro péndulo de la misma longitud con una lenteja de latón y los pone a balancear al unísono. Después de balancear durante 12,00 min, los dos péndulos no están más que un cuarto de balanceo (en una ruta) fuera de paso. Cuál es la diferencia más grande entre los valores de g para el hierro y el latón consistente con estos datos? Exprese su respuesta como una diferencia fraccional. Solución: 9, m/s Se taladra un orificio en la marca de 30 cm de un metro que se cuelga sobre una pared mediante un clavo que pasa a través de este orificio. Si al metro se le da un empujón, de modo que se balancee en torno del clavo, Cuál es el periodo del movimiento? Solución: 1,6 s. 11. Un péndulo físico consiste de una barra sin masa de longitud 2L que rota alrededor de un eje que pasa por su centro. Una masa m 1 se une al extremo inferior de la barra y a una masa menor m 2 en el extremo superior. Cuál es el periodo de este péndulo? Solución: 2ππ LL gg mm 1+mm 2 mm 1 mm 2

3 12. Un péndulo físico consiste en un largo cono delgado suspendido en su ápice. La altura del cono es L Cuál es el periodo de este péndulo? Solución: 2ππ 4LL 5gg 13. Cuando un columpio en movimiento no es impulsado, la amplitud angular de oscilación disminuye debido al aire y otra fricción. El movimiento de un columpio de 3,0 m disminuye en amplitud de 12 a 10 después de cinco ciclos completos. Cuál es Q del sistema? Si el pasajero y el asiento se tratan como una masa puntual con m = 25 kg, A qué ritmo promedio se disipa energía mecánica? Solución: 92; 0,32 W. 14. Con la litografía de haz de electrones, los ingenieros intentan fabricar osciladores de sistemas nanoelectromecánicos (NEMS) con frecuencias tan altas como 100 GHz (para comunicaciones y computadores de rapidez superior). Si la masa equivalente de tal oscilador es de 1, g y se necesita una amplitud mínima de 0,10 nm para detectar una fuerza armónica aplicada de 1, N de amplitud, cuál debe ser el Q mínimo de tal oscilador? Solución: En una sierra caladora eléctrica, el movimiento de rotación del motor eléctrico se convierte en un movimiento de ida y vuelta de la segueta mediante un mecanismo similar al que se muestra en la figura. Suponga que la espiga de la rueda giratoria se mueve alrededor de un círculo de 3,0 cm de diámetro a rev/min, y por consiguiente mueve el brazo ranurado al que se atornilla la segueta Cuáles son la amplitud y frecuencia del movimiento armónico simple de ida y vuelta de la segueta? Solución: 1,5 cm; 66,7 Hz. 16. Suponga que dos partículas realizan movimiento armónico simple a lo largo del eje x, con un periodo de 8,0 s. La primera partícula se mueve de acuerdo con la ecuación xx = 0,30 cccccc ππππ 4 y la segunda de acuerdo con la ecuación xx = 0,30 ssssss ππππ 4 donde la distancia se mide en metros y el tiempo en segundos. a) Cuándo alcanza el punto medio la primera partícula? Cuándo alcanza el punto de retorno? Dibuje un diagrama que muestre a la partícula y su satélite en estos tiempos. Solución: Punto medio en 2 s, 6 s, 10 s, Punto de regreso en 0 s, 4 s, 8 s, b) Cuándo alcanza el punto medio la segunda partícula? Cuándo alcanza el punto de retorno? Dibuje un diagrama que muestre a la partícula y su satélite en estos tiempos. Solución: Punto medio en 0 s, 4 s, 8 s, Punto de regreso en 2 s, 6 s, 10 s, c) Mediante algún argumento, establezca que, siempre que la primera partícula pase a través de un punto sobre el eje x, la segunda partícula pasará a través de este mismo punto 2,0 s después.

4 17. El movimiento del pistón en el motor de un automóvil es aproximadamente armónico simple. Suponga que el pistón viaja de ida y vuelta sobre una distancia de 8,50 cm y tiene una masa de 1,2 kg. Cuáles son su aceleración y rapidez máximas cuando el motor funciona a rev/min? Cuál es la fuerza máxima sobre el pistón en ese caso? Solución: 26,7 m/s; 1, m/s 2 ; 2, N. 18. Un oscilador armónico simple tiene una frecuencia de 1,5 Hz. Qué ocurrirá con la frecuencia si el resorte se corta por el centro y ambas mitades se unen a la masa de modo que los dos resortes actúan conjuntamente (en paralelo)? Solución: 2,12 Hz. 19. Las sogas utilizadas por los montañistas son bastante elásticas y se comportan como resortes. Una soga de 10 m tiene una constante de resorte k = 4, N/m. Suponga que un montañista de 80 kg cuelga de esta soga, que se estira verticalmente hada abajo. Cuál es la frecuencia de oscilación arriba y abajo del montañista? Solución: 1,25 Hz. 20. Un oscilador armónico simple consiste en una masa de 3,0 kg unida a un resorte horizontal con k = 6, N/m y que se mueve sobre una pista horizontal sin fricción. Inicialmente, la masa se libera desde el reposo a una distancia de 0,25 m del punto de equilibrio Cuál es la energía de este oscilador armónico? Cuál es la máxima rapidez que alcanza cuando pasa a través del punto de equilibrio? 21. Un péndulo físico consiste en una lenteja esférica uniforme de masa M y radio R suspendida de una cuerda sin masa, de longitud L. Considerando el tamaño de la lenteja, demuestre que el periodo de oscilaciones pequeñas de este péndulo es TT = 2ππ 2 5 RR2 + (RR + LL) 2 gg(rr + LL) 22. Un columpio de 2,0 m de largo cuelga de una rama horizontal de un árbol. Con qué frecuencia debe mecer la rama para acumular oscilaciones del péndulo por resonancia? Solución: 0,35 Hz. 23. La posición de una partícula viene dada por x = (7 cm) cos 6πt, donde t viene dado en segundos. Determinar (a) la frecuencia, (b) el periodo y (c) la amplitud del movimiento de la partícula. (d) Cuál es el primer instante después de t = 0 en el que la partícula está en su posición de equilibrio? En qué sentido se está moviendo en ese instante? Solución: (a) 3,00 Hz; (b) 0,333 s; (c) 7,0 cm; (d) 0,0833 s en la dirección x. 24. Una partícula se mueve sobre una circunferencia de radio 40 cm con una velocidad constante de 80 cm/s. Hallar (a) la frecuencia y el periodo del movimiento de la componente x de su posición. (b) Escribir una ecuación para la componente x de la posición de la partícula en función del tiempo t, suponiendo que la partícula está sobre el eje x en el instante t = 0. Solución: (a) 0,32 Hz y 3,1 s; (b) x = (40 cm) cos[(2,0 s -1 )t + (π/2)]

5 25. Un objeto de 1,5 kg oscila con movimiento armónico simple unido a un muelle de constante de fuerza k = 500 N/m. Su velocidad máxima es 70 cm/s. (a) Cuál es la energía total? (b) Cuál es la amplitud de la oscilación? Solución: (a) 0,368 J; (b) 3,83 cm. 26. Un objeto de 3 kg sujeto a un muelle horizontal oscila con una amplitud A = 10 cm y una frecuencia f = 2,4 Hz. (a) Cuál es la constante de fuerza del muelle? (b) Cuál es el periodo del movimiento? (c) Cuál es la velocidad máxima del objeto? (d) Cuál es la aceleración máxima del objeto? Solución: (a) 0,68 kn/m; (b) 0,42 s; (c) 1,5 m/s; (d) 23 m/s La figura muestra el péndulo de un reloj. La barra uniforme de longitud L = 2,0 m tiene una masa m = 0,8 kg. Sujeto a la barra hay un disco de masa M = 1,2 kg y radio = 0,15 m. El reloj se ha construido de modo que funcione con total precisión si el periodo del péndulo es exactamente 3,50 s. (a) Cuál debe ser la distancia d para que el periodo del péndulo sea 2,5 s? (b) Supongamos que el reloj de péndulo se atrasa 5,0 min por día. A qué distancia y en qué sentido debe desplazarse el disco para conseguir que el reloj marque correctamente el tiempo? Solución: (a) d = 1,64 m; (b) 2,31 cm. 28. Para medir indirectamente la viscosidad de ciertos aceites, se puede determinar el tiempo que tardan en decaer las oscilaciones de un oscilador inmerso en dicho fluido, cuando se conocen previamente las propiedades del oscilador. Puesto que la velocidad del oscilador es más bien pequeña, no habrá turbulencia y la fuerza de arrastre del fluido sobre una esfera de radio a que se mueve a velocidad v es F roz = 6πaηv, donde η es la viscosidad del fluido. Supongamos que el oscilador está formado por un muelle de constante elástica 350 N/cm y una esfera de oro de 6 cm de radio que cuelga del muelle. (a) Cuál es la viscosidad del fluido si la constante de tiempo es de 2,8 s? (b} Cuánto vale el factor Q? Solución: (a) 5,5 Pa s; (b) Determinar la frecuencia de resonancia de cada uno de los tres sistemas indicados en la figura. Solución: (a) 1,0 Hz; (b) 2,0 Hz; (c) 0,35 Hz. 30. Un objeto de 2 kg oscila sobre un muelle de constante de fuerza k = 400 N/m. La constante de amortiguamiento es b = 2,00 kg/s. Está forzado por una fuerza sinusoidal de valor máximo 10 N y frecuencia angular ω = 10 rad/s. (a) Cuál es la amplitud de las oscilaciones? (b) Si se varía la frecuencia de la fuerza impulsora, A qué frecuencia se producirá la resonancia? (c) Hallar la amplitud de las vibraciones en la resonancia. (d) Cuál es la anchura Δω de la curva de resonancia? Solución: (a) 4,98 cm; (b) 14,1 rad/s; (c) 35,4 cm; (d) 1,00 rad/s.

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB;

amax=aω 2 ; β=10logi/io; ω=2πf;t=1/f; κ=1/λ; τ=ln2/λ; P=1/f (m);e p= gdr; N=Noe λt ; 1/f =1/s +1/s; Fc=mv 2 /r; y(x,t)=asen(ωt±kx); W=qΔV; F=qvxB; E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 5: VIBRACIONES Y ONDAS F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Práctica La Conservación de la Energía

Práctica La Conservación de la Energía Práctica La Conservación de la Energía Eduardo Rodríguez Departamento de Física, Universidad de Concepción 30 de junio de 2003 La Conservación de la Energía Un péndulo en oscilación llega finalmente al

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

CAPITULO 11. MOVIMIENTO OSCILATORIO.

CAPITULO 11. MOVIMIENTO OSCILATORIO. CAPITULO 11. MOVIMIENTO OSCILATORIO. Los principales objetivos de los capítulos anteriores estaban orientados a describir el movimiento de un cuerpo que se puede predecir si se conocen las condiciones

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

Capítulo 5 Oscilaciones

Capítulo 5 Oscilaciones Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75 5.A PROBLEMAS DE SELECCIÓN Sección 5.A

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple.

Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple. Prácticas de laboratorio de Física I 1 Objetivos Péndulo simple Curso 2010/11 Comprobar los factores que determinan el periodo de un péndulo simple. Determinar la aceleración de la gravedad a través del

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 18: Elementos de máquinas y sistemas (I)

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 18: Elementos de máquinas y sistemas (I) PARTAMENTO 1.- Un tocadiscos dispone de unas ruedas de fricción interiores para mover el plato sobre el cual se colocan los discos. La rueda del plato tiene 20 cm de diámetro, y el diámetro de la rueda

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Una vez descrita la constitución general de un robot, podemos empezar con la

Una vez descrita la constitución general de un robot, podemos empezar con la CAPÍTULO 2 Construcción y Mecanismo de Operación del Brazo Robótico Una vez descrita la constitución general de un robot, podemos empezar con la descripción de nuestro robot, cómo fue construido y cómo

Más detalles

Problema 1 Subidón de adrenalina bajo el puente (4 puntos)

Problema 1 Subidón de adrenalina bajo el puente (4 puntos) Problema 1 Subidón de adrenalina bajo el puente (4 puntos) Entre los llamados deportes de riesgo ha alcanzado gran popularidad el bungee jumping (en castellano goming, puenting). Consiste en dejarse caer

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo

INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Competencia: INSTITUCION EDUCATIVA DISTRITAL CAFAM LOS NARANJOS Plan de mejoramiento grado undécimo Reconoce la importancia que tiene las ondas en nuestra cotidianidad, e interpreta todas las características

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..1 Movimiento armónico simple x 0 k m Sistema masa-resorte para el estudio de las vibraciones mecánicas Para iniciar el estudio de las vibraciones mecánicas,

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Movimiento Rectilíneo Uniforme

Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica

Más detalles

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca Cuestión (a) Un grifo gotea sobre una superficie de agua. El goteo tiene lugar a razón de 80 gotas por minuto y genera en el agua ondas circulares separadas 45 cm. Cuál es la velocidad de propagación de

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, junio 2010. Fase general OPCION A Cuestión 1.- Enuncie la 2 a ley de Kepler. Explique en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y dónde es mínima. Enuncie

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE Objetivos 1. Verificar la ley de Hooke, 2. Medir la constante k de un resorte, y 3. Medir el período de oscilación de un sistema masa-resorte y compararlo

Más detalles

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012

SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 SOCIEDAD PERUANA DE FÍSICA PRIMERA PRUEBA DE CLASIFICACION 2012 Sede Lima - Facultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos Inicio de Prueba 10:00 A.M. Finalización de Prueba 13:00

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz Entre la la física física conceptual aplicada MétodoIDEA Ondas 4º de eso Féli A. Gutiérrez Múzquiz Contenidos 1. CARACTERÍSTICAS DE LAS O DAS 2. I TERFERE CIAS...... 3 6 3. O DAS ESTACIO ARIAS.. 2 1. CARACTERÍSTICAS

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

M E C Á N I C A. Pendulos Acoplados. Péndulos Acoplados

M E C Á N I C A. Pendulos Acoplados. Péndulos Acoplados M E C Á N I C A Pendulos Acoplados Péndulos Acoplados M E C Á N I C A Un péndulo simple está formado por una masa puntual suspendida de un hilo inextensible y sin masa, capaz de oscilar libremente en torno

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles