UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA PÉNDULO BALÍSTICO"

Transcripción

1 3 PÉNDULO BALÍSTICO OBJETIVOS Investigar el péndulo alístico. Revisar la teoría física y los principios fundamentales que estan detrás del experimento planeado. Determinar la velocidad de disparo de un proyectil utilizando los métodos aproximado y el método exacto. INTRODUCCIÓN El Péndulo Balístico se emplea en criminalística para determinar la velocidad de disparo de los proyectiles de las armas de fuego. EQUIPO El Péndulo de Balística E incluye lo siguiente: Base metálica del Péndulo Balístico. olas de acero. Lanzador de proyectiles de corto rango. Taco (unido con Velcro para mantenerse). Accesorios de choque. 3 olas plásticas. masas de latón para péndulo. gafas de seguridad. Arazadera en forma de C. ARCO TEÓRICO SOBRE EL PÉNDULO BALÍSTICO El Péndulo Balístico es un método clásico para determinar la velocidad de un proyectil. Este sirve tamién para demostrar algunos principios fundamentales de la física. La ola es lanzada dentro del péndulo, el cual luego oscila entre un angulo medile. De la altura alcanzada por el péndulo podemos calcular su energía potencial. Esta energía potencial es igual a la energía cinética del péndulo al final de la oscilación, justo después del choque con la ola. No podemos igualar la energía cinética del péndulo después del choque con la energía cinética de la ola antes del choque, ya que el choque entre la ola y el péndulo es inelástico y la energía cinética no se conserva en un choque inelástico. El momento se conserva en todas las formas de choque, sin emargo; sí saemos que el momento de la ola antes del choque es igual al momento del péndulo después del choque. Una vez nosotros conozcamos el momento de la ola y su masa, podemos determinar la velocidad inicial. Hay dos maneras de calcular la velocidad del proyectil. El primer método (método aproximado), asume que el péndulo y la ola actúan juntos como una masa puntual localizada en su centro de masas cominado. Este método no toma en consideración la inercia rotacional.

2 33 El segundo método (método exacto), utiliza la inercia rotacional del péndulo en los cálculos. Las ecuaciones son un poco más complicadas, y es necesario tomar más datos para encontrar el momento de inercia del péndulo; los resultados otenidos son generalmente mejores. Note que el suscrito C.. usado en la siguiente ecuación es para centro de masa. ÉTODO APROXIADO PARA CALCULAR LA VELOCIDAD DE DISPARO DEL PROYECTIL Comienza con la energía potencial del péndulo al tope de su oscilación: U = g h C. (1) Donde es la masa cominada del péndulo y la ola, g es la aceleración de la gravedad y h es el camio de altura. Sustituimos por la altura: h. = R ( 1 cosθ ) C () R C. ( 1 cosθ ) U = g (3) Aquí: R C - es la distancia del pivote al centro de masas del sistema proyectil péndulo y θ - es el ángulo de deflexión del péndulo. La energía potencial U es igual a la energía cinética K del péndulo inmediatamente después del choque: 1 K = v p (4) El momentum P p del péndulo justamente después del choque es: P p = v p (5) Al cual lo podemos sustituir en la ecuación previa quedando: K Pp = (6) Resolviendo esta ecuación para el momento del péndulo da: P p = ( K) (7) Este momento es igual al momento de la ola antes del choque: P = m (8) v Igualando estas dos ecuaciones y reemplazando KE por la energía potencial conocida nos da: = g R C. ( 1 cosθ ) m v (9)

3 34 Resolvemos esto para la velocidad de la ola y simplificamos para otener: v = g R C. ( 1 cosθ ) (10) m Figura 1. ÉTODO EXACTO PARA CALCULAR LA VELOCIDAD DE DISPARO DEL PROYECTIL La energía potencial se halla de manera idéntica a la mostrada previamente: R C. ( 1 cosθ ) U = g (11) Para la energía cinética, usamos la ecuación para la energía cinética angular en lugar de lineal y sustituimos en la ecuación para momento angular. 1 ω K = I (1) L p = I ω (13) K Lp = (14) I Aquí I es el momento de inercia del sistema péndulo ola y ω es la velocidad angular inmediatamente después del choque. Como se hizo previamente, se resuelve esta última ecuación para el momento angular:

4 35 L p = I( K ) (15) Este momento angular es igual al momento angular de la ola antes del choque, medida desde el punto del pivote del péndulo. L = m R ω m R v (16) = R es la distancia del pivote del péndulo al proyectil. (Este radio no es en general igual a R cm, el cual es la distancia del punto de pivote al centro de masa del sistema Péndulo/asa). Figura Estos dos momentos angulares son iguales para cada uno así: m R v I g. ( 1 cosθ ) (17) = R C Resolvemos para v: 1 v = I g RC. ( 1 cosθ ) (18) m R Ahora necesitamos encontrar I, el momento de inercia del péndulo y la ola. Para hacer esto comenzaremos con el equivalente rotacional de la segunda ley de Newton: τ = I α (19) Donde τ es el torque, I es el momento de inercia y α es la aceleración angular. La fuerza en el centro de masa del péndulo es justamente g y la componente de esta fuerza dirigida hacia el centro del péndulo oscilador es: F = g sen θ (0) El torque en el péndulo es: I α = R g sen θ (1) C. Para ángulos pequeños θ, sen θ θ, si hacemos esta sustitución y resolvemos para α, conseguiremos:

5 36 α g RC. θ () I Esta ecuación tiene la misma forma que la ecuación para movimiento armónico simple lineal: k α x = ω x (3) m Si comparamos estas dos ecuaciones, lineal y angular, vemos que el péndulo exhie un movimiento armónico simple y que el cuadrado de la frecuencia angular (ω ) para este movimiento es justo: g R C. ω = (4) I Resolviendo esto para I nos da el resultado deseado: I g RC. g RC. T = = (5) ω 4 π Donde T es el periodo del péndulo. Nota: Nosotros hemos hecho una aproximación del ángulo pequeño para encontrar I, pero I no depende de θ. Esto significa que deemos medir el periodo T usando pequeñas oscilaciones; pero una vez que hayamos calculado I con este periodo, podemos usar este valor de I a pesar de la amplitud alcanzada durante otras partes del experimento. DETERINACIÓN DE LA VELOCIDAD DEL PROYECTIL POR EL ÉTODO APROXIADO ATERIALES ADICIONALES La ola de acero El lanzador de proyectiles Una arasadera en C Una cuerda La velocidad del cañón del lanzador de proyectiles se determina lanzando la ola en el péndulo y oservando el ángulo al cual se alancea el péndulo. La ecuación para la velocidad de la ola es aproximadamente. v = g R C. ( 1 cosθ ) (6) m Donde es la masa cominada del péndulo y pelota, m es la masa de la ola, g es la aceleración de gravedad, R cm es la distancia del pivote al centro de la masa del péndulo, y Ө es el ángulo alcanzado por el péndulo. ONTAJE I 1. Coloque el Lanzador de Proyectiles al montaje del Péndulo alístico al nivel del capturador de la ola. Asegúrese de que el péndulo cuelgue verticalmente con respecto al lanzador.

6 37. Sujete la ase del péndulo a la mesa, con una arasadera en C. Asegúrese que la arasadera no interfiera con el alance del péndulo. PROCEDIIENTO I 1. Uique el péndulo a 90, luego cargue el Lanzador de proyectiles. Permita al péndulo colgar liremente, y mueva el indicador del ángulo para ponerlo en cero grados.. Dispare el lanzador y anote el ángulo alcanzado. Agregue o quíte masa al péndulo. Repita esta pruea hasta que usted esté satisfecho con la masa del péndulo. 3. Una vez usted ha escogido la masa para usar para su experimento, quite el péndulo de la ase destornillando y quitando el eje del pivote. Usando el centro de masa, encuentre la masa del péndulo y ola juntos. Anote este valor como en la tala Halle la masa de la ola, anote esto como m. 5. Haga un lazo con la cuerda, y cuelgue el péndulo del lazo (Ver figura 3). Coloque la ola y el capturador de la ola en posición, ajuste la posición del péndulo hasta que equilire. ida la distancia del punto al pivote, este es el centro de masa, y anótelo como R cm. Usted puede encontrar el centro de masas equilirando el péndulo en el orde de una regla u ojeto similar. 6. Reensamle el péndulo, y asegúrese que quede ien hecho. Esté seguro que el indicador del ángulo, esté a la derecha del péndulo. 7. Cargue el lanzador, luego ponga el indicador del ángulo para orientar 1 º menos del alcanzado en el paso. Esto eliminará la fricción causada por el indicador en el arrastre del péndulo, así el péndulo moverá sólo el indicador para los últimos grados. Luego dispare el lanzador, y anote el ángulo alcanzado por el péndulo en la tala 1. Repita este procedimiento varias veces. CÁLCULOS I Figura Oserve la medida del ángulo alcanzado por el péndulo. Anote este valor en la tala 1.. Calcule la velocidad del proyectil y la del cañón del Lanzador del Proyectiles. PREGUNTAS I 1. Hay otra manera de medir la velocidad del cañón, para que usted pueda verificar sus resultados? Usted puede usar otro método y comparar la dos respuesta.. Qué fuentes de error están presentes en este experimento? Qué tánto afectan a sus resultados estos errores? 3. Se simplificarían los cálculos (ver la sección de teoría) si se conservara la energía cinética en la colisión entre la pelota y péndulo? Qué porcentaje de la energía cinética se ha perdido en la colisión entre la pelota y el péndulo? Sería válido asumir que esa energía se conservó en dicha colisión?

7 38 4. Cómo hallaría el ángulo alcanzado camiando el péndulo; si la ola no fuera capturada por el péndulo? Usted puede proar esto dándole la vuelta al péndulo para que la ola golpee la parte de atrás del capturador de la ola. Hay más energía o menos energía transferida al péndulo? Tala 1. agnitud Valores Angulo.aprox.exact (g) θ 1 (g) θ R C. (cm) θ 3 R (cm) θ Prom T (s) V Aprox ( ) I ( ) V Exacto ( ) Error relativo ATERIALES: La ola de acero El lanzador de proyectiles Una arasadera en C Una cuerda (centro de masas) Un cronómetro VELOCIDAD DEL PROYECTIL - ÉTODO EXACTO La ecuación para determinar la velocidad exacta de la ola es: v 1 = I g RC. ( 1 cosθ ) m R Donde: I es el momento de inercia del péndulo con la ola en el capturador. El valor de I puede encontrarse midiendo el periodo de oscilaciones pequeñas del péndulo y ola, usando la ecuación: Donde: T es el periodo. I = g R 4 π C. T PROCEDIIENTO II 1. Siga los pasos del PROCEDIIENTO I descrito arria.. ida la distancia entre el punto del pivote y el centro de la ola. Anote esto como R. 3. Quite el lanzador de proyectiles para que el péndulo pueda girar liremente. Con la ola en el péndulo, déle un desplazamiento inicial de 5º o menos. Use el cronómetro, tome el tiempo por lo menos de diez oscilaciones, y anote el resultado como T en tala 1.

8 39 CÁLCULOS II 1. Oserve la medida del ángulo alcanzada por el péndulo. Anote este valor en la tala 1.. Calcule el valor de I, y anótelo en la tala Calcule la velocidad del Proyectil PREGUNTAS II 1. Responda a las PREGUNTAS I.. Aumentando la masa del péndulo, disminuye la eficacia de la energía transferida en la colisión? Pruéelo. 3. Hay una diferencia significativa entre los valores calculados de los dos métodos? Qué factores aumentarían la diferencia entre estos dos resultados? Cómo usted construiría un péndulo alístico para que la ecuación aproximada diera uenos los resultados? CONCLUSIONES BIBLIOGRAFÍA

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

LABORATORIO DE MECANICA PÉNDULO BALÍSTICO

LABORATORIO DE MECANICA PÉNDULO BALÍSTICO DEPARTAMENTO DE FISICA Y GEOLOGIA No 9 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS LABORATORIO DE MECANICA Objetivos Verificar el principio de conservación de cantidad de movimiento y de la no

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

LABORATORIO DE MECANICA PÉNDULO BALÍSTICO

LABORATORIO DE MECANICA PÉNDULO BALÍSTICO DEPARTAMENTO DE FISICA Y GEOLOGIA No 9 UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS LABORATORIO DE MECANICA Objetivos Verificar el principio de conservación de cantidad de movimiento y de la no

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Mecánica II. 2010 Departamento de Física Universidad de Sonora

Mecánica II. 2010 Departamento de Física Universidad de Sonora Mecánica II Dr. Roberto Pedro Duarte Zamorano 010 Departamento de Física Universidad de Sonora Temario 1) Cinemática rotacional. ) Dinámica rotacional. 3) Las leyes de Newton en sistemas de referencia

Más detalles

LABORATORIO DE MECANICA PENDULO BALISTICO

LABORATORIO DE MECANICA PENDULO BALISTICO No 9 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Verificar el principio de conservación de cantidad de movimiento y de la

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba Épsilon - Revista de Educación Matemática 2012, Vol. 29(1), nº 80, pp. 75-81 Actividades sobre el tamaño de la Luna y su distancia a la Tierra Beatriz Galán Luque Natividad Adamuz-Povedano Universidad

Más detalles

Colisión de dos partículas

Colisión de dos partículas Capítulo 14 Colisión de dos partículas 14.1 Descripción de un proceso de colisión en el sistema centro de masa En el capítulo anterior describimos la colisión de un proyectil contra un centro de fuerza

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

CINEMÁTICA Y DINÁMICA. PRÁCTICA DE LABORATORIO No. 5 PÉNDULO BALÍSTICO (COLISIONES)

CINEMÁTICA Y DINÁMICA. PRÁCTICA DE LABORATORIO No. 5 PÉNDULO BALÍSTICO (COLISIONES) CINEMÁTICA Y DINÁMICA PRÁCTICA DE LABORATORIO No. 5 PÉNDULO BALÍSTICO (COLISIONES) 1. INTRODUCCIÓN. Los principios de conservación son fundamentales para la Física. Por medio de estos principios es posile

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

LABORATORIO DE MECANICA FUERZA CENTRÍPETA

LABORATORIO DE MECANICA FUERZA CENTRÍPETA 8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Unidad: Conservación de la energía y el momentum lineal

Unidad: Conservación de la energía y el momentum lineal Unidad: Conservación de la energía y el momentum lineal En esta unidad veremos como la conservación de la energía y el momentum lineal conducen a resultados sorprendentes en algunos experimentos. Seguramente

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

1 Yoyó con cuerda despreciable 1

1 Yoyó con cuerda despreciable 1 1 Yoyó con cuerda despreciable 1 En este documento se describe el problema clásico de la Física elemental en el que un yoyó, modelado como un disco, cae bajo la acción de la gravedad, sujeto con una cuerda

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Trabajo y energía: ejercicios resueltos

Trabajo y energía: ejercicios resueltos Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la

Más detalles

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Laboratorio de Física General Primer Curso (Mecánica) LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Fecha: 07/0/05 1. Objetivo de la práctica Comprobar la ley de conservación de la energía mecánica mediante

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

UNIVERSIDAD DE VALLADOLID LABORATORIO DE REDES BASADAS EN FIBRA ÓPTICA

UNIVERSIDAD DE VALLADOLID LABORATORIO DE REDES BASADAS EN FIBRA ÓPTICA UNIVERSIDAD DE VALLADOLID Dpto. de Teoría de la Señal y Comunicaciones e Ingeniería Telemática Escuela Técnica Superior de Ingenieros de Telecomunicación LABORATORIO DE REDES BASADAS EN FIBRA ÓPTICA Práctica

Más detalles

Estudio de la Física de una Catapulta

Estudio de la Física de una Catapulta Estudio de la Física de una Catapulta Universidad de Favaloro, Facultad de Ingeniería Cano, Ramiro...cramirocano@hotmail.com Cearras, Mariana... benito_bb@hotmail.com Díaz, Federico...facil7@hotmail.com

Más detalles

Áreas de rectángulos y paralelogramos

Áreas de rectángulos y paralelogramos LECCIÓN CONDENSADA 8.1 Áreas de rectángulos y paralelogramos En esta lección Revisarás la fórmula del área de un rectángulo Usarás la fórmula del área de un rectángulo para encontrar las áreas de otras

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 4A

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 4A UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS GUÍA DE TRABAJO DE LABORATORIO DE FÍSICA MECÁNICA PRÁCTICA N 4A TEMA: MOVIMIENTO PARABOLICO CON DIFERENTES ANGULOS DE LANZAMIENTO.

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

SE CONSERVA LA ENERGÍA

SE CONSERVA LA ENERGÍA 95 CHOQUE ELASTICO Tengo un choque elástico cuando los cuerpos chocan y no se pierde energía en el choque. Es decir, en los choques elásticos SE CONSERVA LA ENERGÍA. ( Atento con esto porque es el concepto

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8

Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8 Haz tu habitación en 2D desde una 1 plantilla Definir Sección Especial 6 Insertar un archivo Autocad o una imagen 2 escaneada Exportar a archivos DXF 7 - AutoCAD Guardar imagen 8 Imagen Agrupar Objetos

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Estudio de las fuerzas actuantes en la interacción de un disco en rotación con un campo magnético estacionario.

Estudio de las fuerzas actuantes en la interacción de un disco en rotación con un campo magnético estacionario. Estudio de las fuerzas actuantes en la interacción de un disco en rotación con un campo magnético estacionario. Sebastián Arroyo, Tomas Riccardi (Marzo 2011) Se estudió el fenómeno de interacción magnética

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

RECOMENDACIÓN UIT-R S.1559

RECOMENDACIÓN UIT-R S.1559 Rec. UIT-R S.1559 1 RECOMENDACIÓN UIT-R S.1559 Metodología para el cálculo de la distribución geográfica de los niveles de la densidad de flujo de potencia equivalente de enlace descendente máximos generados

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud?

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Errores La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Sabemos que el volumen de un cubo se calcula por medio

Más detalles

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL 6 de Marzo de 2012 Apellidos, Nombre:... Centro de Estudio:... En la prueba de selección se plantean 9 problemas de

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

BUQUES: AHORRAR EN COMBUSTIBLE

BUQUES: AHORRAR EN COMBUSTIBLE BUQUES: AHORRAR EN COMBUSTIBLE El consumo de combustible es el porcentaje más elevado de los costes operativos en buques. Iberfluid Instruments S.A. les propone una solución para poder AHORRAR EN EL CONSUMO

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1 CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 1: LEY DE COULOMB 1.1 OBJETIVO GENERAL - Verificación experimental de la ley de Coulomb 1.2 Específicos:

Más detalles

UNIVERSIDAD VERACRUZANA

UNIVERSIDAD VERACRUZANA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERIA MANUAL DE PRÁCTICAS DE FISICA BASICA MONOGRAFIA QUE PARA OBTENER EL TITULO DE: INGENIERO MECANICO ELECTRICO P R E S E N TA: FERNANDO CHAVARRIA DOMINGUEZ COATZACOALCOS,

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

Protocolo de Experiencias de Mecánica

Protocolo de Experiencias de Mecánica Torreón de la Física de Cartes y Aula Espacio Tocar la Ciencia J. Güémez Aula de la Ciencia Universidad de Cantabria Septiembre 9, 2010 Protocolo de Experiencias de Mecánica La mecánica tiene que ver con:

Más detalles

Medición de la aceleración de la gravedad mediante plano inclinado

Medición de la aceleración de la gravedad mediante plano inclinado Medición de la aceleración de la gravedad mediante plano inclinado Lopez, Johanna Giselle (gyf_lola@hotmail.com) Martinez Roldan, Antu (antucolomenos@hotmail.com) Viglezzi, Ramiro (ramiro.viglezzi@gmail.com)

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

CURSO BASICO DE ESTRELLAS DOBLES. Lección Nº 5: Orbitas de las estrellas binarias

CURSO BASICO DE ESTRELLAS DOBLES. Lección Nº 5: Orbitas de las estrellas binarias Lección Nº 5: Orbitas de las estrellas binarias I) Órbitas verdaderas Cuando definimos a las estrellas binarias, hacemos referencia a que una de las componentes del sistema gira alrededor de la otra considerando

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a.

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a. 4.4. CONSERVACIÓN DEL MOMENTO ANGULAR. 4.4.1. La Tierra dista del Sol, una unidad astronómica y es aproximadamente 3500 veces el radio de la Tierra, con ese dato se puede asegurar que la relación entre

Más detalles