La elasticidad (Parte 1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La elasticidad (Parte 1)"

Transcripción

1 La elasticidad (Parte 1) Cuando la materia sufre deformaciones a causa de fuerzas externas que actúan sobre ella; la elasticidad se define, como la propiedad que tiene la materia de recuperar su forma original, una vez cese la causa que produzca su deformación. El grado de elasticidad de la materia esta en proporción con la recuperación de su forma original. En virtud de este punto de vista, podríamos decir que, por ejemplo entre un caucho y una cuerda de piano; el caucho es menos elástico que la cuerda de piano; puesto que, aunque la cuerda de piano, es más difícil de estirar (deformar), ella puede alcanzar la forma original después de deformada; en tanto que el caucho no la alcanza. En esta cualidad se sustenta el uso de las cuerdas de los instrumentos musicales en general, pues ellos deben aguantar muchas deformaciones para producir los diferentes sonidos, sin que se modifique sensiblemente la calidad de esos sonidos que les son característicos. En el fenómeno de la elasticidad están más directamente involucrados; el vacío existente en la materia, y la naturaleza de las fuerzas con que interaccionan las partículas que conforman la materia. En las figuras A, B, C y D se muestran varias estructuras fundamentales (unidades que conforman todo el volumen del material) de varios materiales (A Cloruro de sodio, B Diamante, C Cuarzo, y D Peroskita), para tener una idea acerca de: el vacío existente en la materia (Figuras A, B, C, y D), y la forma aproximada de las fuerzas que conectan los átomos del material (Figura E), para el caso del cloruro de sodio o sal de cocina. Al referirnos al vacío, estamos hablando de un espacio en el que no se encuentra partícula alguna, ni en su forma molecular, ni átomos, ni partículas subatómicas de las conocidas hasta hora, ni trazas de ellas. Obviamos la existencia de los campos, eléctrico, magnético (por los iones que son partículas cargadas y en movimiento), y gravitacionales (por la masa), que están siempre presentes; puesto que cada uno de estos campos tienen asociadas energías; entonces, por la relación de equivalencia entre masa- energía (E = mc 2 ), bien podríamos identificar de esa manera, otra forma de materia, que por su magnitud no la podemos asociar con la materia ordinaria; esto como para justificar la no existencia de un vacío absoluto. La elasticidad, bien la podemos identificar como esa propiedad fundamental de la materia que nos permite entender el flujo de energía a través de la misma. Cómo evaluamos la elasticidad? Por simplicidad consideramos cuerpos que asumimos sean homogéneos en su conformación (la misma clase de partículas constituyentes) en todo su volumen, esto con el fin de restringir nuestra discusión al caso unidimensional, independiente de cual dirección sea la que tomemos para el análisis. Ley de Hooke

2 El comportamiento de los cuerpos o sistemas respecto a sus propiedades elásticas, no es igual en todo el rango de deformación producido por las fuerzas externas; experimentalmente se ha encontrado que la relación entre la fuerza y la deformación para pequeñas deformaciones, es lineal. La magnitud del rango en que los sistemas presentan comportamiento lineal es muy variado; y podemos decir que, cada sistema tiene su propio rango; pues esta asociado con sus propiedades intrínsecas. El sistema que mejor ilustra el comportamiento elástico de los cuerpos lo constituyen los resortes. Para analizar las propiedades elásticas de estos; la figura 1, muestra tres resortes suspendidos verticalmente por un extremo; en el primero de la izquierda, su deformación corresponderá al efecto que produce sobre él su propio peso, por la acción de la gravedad actuando sobre su centro de masa; y aunque hay resortes en los que su propio peso es suficiente para producir en ellos deformaciones relativamente grandes (son resortes especiales), en la mayoría de los casos se usan resortes, en los que esa deformación es muy pequeña, y podemos considerar que la longitud normal, y la que adquiere el resorte deformado por su propio peso son prácticamente la misma. A los otros dos resortes, por el extremo contrario al de suspensión se les ha colocado masas tales que, la masa del tercer resorte es el doble de la del segundo. De la figura se observa que la deformación del tercer resorte es el doble de la del segundo resorte; así que, cualquier masa (cuya magnitud sea menor que 2m) que se suspenda de alguno de estos resortes producirá una deformación cuyo valor estará entre 0 y 2x, y si graficamos el peso versus la deformación obtendremos una recta como la indicada en la figura 2.

3 A los sistemas que experimentan comportamientos similares, se dice que obedecen la Ley de Hooke. Esta ley establece que, la deformación, Δx, (en el caso unidimensional 1D) que experimenta un sistema por la acción de una fuerza externa, F Ext., es proporcional a la magnitud de la fuerza; es decir, Δx α F Ext., (siempre y cuando se conserve la proporcionalidad lineal entre la fuerza y la deformación. Así que de la figura 2, si llamamos con k la pendiente de la recta, la Ley de Hooke se puede escribir como F Ext. = - kx (1) El signo menos en la ec. 1, significa que, como las fuerzas siempre actúan en parejas (tercera ley de Newton), la fuerza externa actúa contra la fuerza que ejerce el resorte en sentido contrario (signo menos), tratando de impedir su deformación (o perturbación). La figura 4 muestra un bloque de diamante en su forma natural, tal y como se encuentra en la naturaleza; a pesar de que en ella no se muestra un trozo uniforme del material, su estructura fundamental es mostrada en la figuras 5a, 5b y 6a, en sus formas: tridimensional, 3D, bidimensional, 2D, y unidimensional, 1D, respectivamente. En la figura 6b, es representada la estructura 1D; asumiendo que la fuerza que une dos de sus iones, se pueda considerar como equivalente a la de un resorte de constante k. Aunque esta es una primera aproximación, y subjetivamente, por la diferencia en las dimensiones involucradas (carácter microscópico de los iones, y macroscópico del resorte) no parece ser razonable; pero en lo que sigue, veremos el sustento de la aproximación, y su consistencia, tal que para el caso de pequeñas perturbaciones, resulta ser lo suficientemente buena. El efecto de la fuerza externa, F Ext., sobre el resorte, es hacer que en él, se alcance una condición de energía potencial, E p, que es la equivalente al trabajo que hace la fuerza externa F Ext. al deformar el resorte en la distancia x; así que, del concepto de energía potencial tenemos E r p. Re f. = F dr (2) Para el caso unidimensional, la fuerza será entonces dada por

4 de p F( x) = (3) dx El signo menos en las últimas ecuaciones, esta asociado con el hecho de que, la fuerza ejercida por el resorte en respuesta a la fuerza externa, es oponerse al incremento de la energía del sistema, por el trabajo que sobre él hace la fuerza externa; o en otras palabras, trabajar contra la fuerza externa, para llevar el sistema al estado de menor energía. De la ec. 2, para los casos más comunes de la energía potencial gravitacional y elástica tenemos lo siguiente Con el fin de tener una idea, así sea aproximada, de lo que ocurre en los sistemas cuando son perturbados por fuerzas externas, en términos de sus propiedades elásticas, trataré de mostrar intuitivamente, el soporte teórico que justifica la inclusión de la fuerza elástica de un resorte en la discusión de la elasticidad; haciendo énfasis en su comportamiento en la región lineal.

5 La forma del diamante mostrada en la figura 4, ha sido tomado como el prototipo de los materiales naturales más duros (rígidos) de la naturaleza, aunque la figura tenga apariencia de varias fases del material, tomaremos como modelo aquel cuya estructura 3D corresponda a la de la fig. 5a. Para el caso 1D, la representación 6b, nos permitirá tener una idea muy aproximada de lo que ocurre en sistemas con análogas estructuras, cuando estas son perturbadas por fuerzas externas.

6 Figura 7. Representación típica de las energías potenciales involucradas en un enlace iónico, característico de los materiales más rígidos, y su comparación con la curva de energía potencial de un resorte (armónico). La figura 7 muestra las formas de la energía potencial que entran en juego en el proceso de formación del enlace iónico; lo he tomado como prototipo en razón a que en los materiales más rígidos (duros) de la naturaleza, en la unión entre sus átomos predomina este tipo de enlace. Se han tomado estos materiales como modelo de discusión, ya que en la interpretación de las propiedades elásticas de la materia, en los cuerpos duros, es más difícil intuir esas propiedades, que en los cuerpos blandos, o en los gases. Por la importancia que tiene el potencial armónico en el estudio de las vibraciones y las ondas; vistos estos, en principio, como fenómenos macroscópicos, es oportuno tratar de relacionarlo, a través de la elasticidad, con el comportamiento de la materia a nivel microscópico. En la figura 7, las energías potenciales (o potenciales) representados con líneas punteadas, corresponden a la atracción que media entre dos átomos, con cargas contrarias hasta la distancia r o, (llamada radio de equilibrio), y la repulsión que aparece cuando la distancia entre los átomos es menor que r o. La superposición de las dos curvas de potencial produce como resultado la curva de la energía potencial molecular E pm. Ahora, justamente en r = r o (posición de equilibrio), se ha superpuesto a la curva de la energía potencial molecular, la curva de la energía potencial del resorte, descrita antes, la cual tiene la dependencia cuadrática con la distancia r. Como se dijo antes, la relación F = - kx es válida para pequeñas deformaciones producidas por la fuerza (región lineal de la curva F vs x, Fig. 2). Cuando tratamos de interpretar las propiedades elásticas de los cuerpos, simulamos la fuerza que une los átomos, asumiendo que es equivalente a la de un resorte de constante k, Fig. 6b, estamos teniendo en cuenta, la coincidencia existente, muy cerca de r o, Fig. 7, donde la

7 curva del potencial armónico coincide con el molecular. Estas ideas intuitivas sobre la elasticidad, en estos casos extremos, nos permiten entender en una primera aproximación, el comportamiento dinámico de la materia en el proceso de transferencia de energía; que es lo que constituye la parte fundamental en este curso. Con el fin de no caer en absurdos, es importante aclarar, que esa aparente simplicidad de la estructura 1D del diamante, y análogamente en todos los materiales, cuyas estructuras cristalinas (ordenadas); es debida al ordenamiento que en las tres direcciones geométricas, en todo su volumen, caracterizan a tales materiales. Es también importante advertir que el análisis involucrando los iones y las fuerzas en 2D o 3D, implica introducir complicaciones matemáticas, que se salen de los objetivos del curso. Complicaciones aún mayores aparecerán si los materiales en cuestión, fueran desordenados (no cristalinos), o amorfos (sin estructura o forma), pero para su discusión es fundamental la información que se obtenga en el análisis de los sistemas ordenados. No obstante la aclaración y advertencia del párrafo anterior; el análisis de sistemas simples, como el mostrado en la figura 6b, o aún, una forma más elemental de ese sistema, como el de un resorte y una masa (sistema masa-resorte), proporciona una información demasiado importante; pues nos permite ahondar en la comprensión de tales sistemas, y entender las consecuencias asociadas con su dinámica, parte de la cual esta directamente relacionada con la propagación de la energía a través de las ondas. Cuestiones: 1. Considere la siguiente situación: se tiene un material muy duro (comparable al diamante), otro menos duro, otro catalogado como blando, y además agua y gas; asumiendo en todos los casos, que las fuerzas que conectan los iones se comportan como resortes (como en el caso del diamante); en un mismo gráfico, como el de la figura 2, grafique la fuerza contra la deformación para los casos anotados. 2. Según lo dicho hasta aquí, podrá existir alguna deformación en los resortes de la Fig. 6b, si el diamante estuviera a 0 o K? El sistema masa-resorte La figura 8 muestra dos formas muy comunes de representar un sistema muy importante para los objetivos de este curso, es el llamado sistema masa-resorte. Estudiante: Por qué es tan importante este sistema? Profesor: Al describir los sistemas físicos que nos rodean, los más familiares, lo podemos hacer, recurriendo al uso de sus propiedades macroscópicas fundamentales; como por ejemplo la masa, el peso, la densidad, temperatura, color, olor, sabor, textura, etc, a las que llegamos mediante nuestra observación directa, y/o haciendo medidas muy simples; es decir, no nos es difícil describir algo que estamos viendo, e interactuando directamente con él. Pero ocurre que tales sistemas están conformados de partículas tan pequeñas que no las podemos ver a simple vista, y algunas, ni con los más potentes microscopios u otros instrumentos que ha producido la tecnología, y aquellas propiedades están de alguna manera relacionadas con el comportamiento colectivo de tales partículas. Así que, necesitamos entender el funcionamiento colectivo, para poderlo asociar con tales propiedades, y para el efecto, el sistema masa-resorte ha ocupado un papel protagónico. El que este sistema sirva de alguna manera de vinculo para relacionar las propiedades microscópicas con las macroscópicas de los sistemas físicos, no cree que es suficiente motivo para que nos interesemos en estudiar cuidadosamente.

8 Estudiante. Realmente si es muy importante lograr esa conexión; por eso ya comienzo a interesarme en el sistema masa-resorte. Pero de qué manera se logra ese puente? Profesor. Eso será lo haremos en lo que sigue. Profesor. Para el efecto Qué diferencia cree usted que existe en los dos sistemas de la figura 8? Estudiante. De acuerdo a lo que aprendí en el curso de mecánica, si yo hago el diagrama de fuerzas en los dos sistemas obtendría lo siguiente: en la figura 9a, la reacción al peso de la masa m, o sea mg, la ejerce el resorte con una fuerza elástica, kx, de igual magnitud que mg pero en sentido contrario; en cambio en la figura 9b, la reacción al peso mg, no la ejerce el resorte, sino la superficie sobre la que descansa la masa m. Profesor. Muy bien, parece que aprovecho bien el curso de mecánica. Profesor. En términos energéticos, cómo es la energía en ambos sistemas?

9 Estudiante. Como la suma de las fuerzas es cero en ambos sistemas, los dos sistemas están en equilibrio, eso quiere decir que no de a hecho trabajo sobre los sistemas, y en consecuencia en ambos la energía es cero. Profesor. Ese es un juicio, no solo muy ligero; sino análogo al que frecuente hacen los estudiantes. Hay que recordar que la energía mecánica de un sistema se compone de energía cinética y energía potencial; la primera dependiente del cuadrado de la velocidad, y la segunda de la posición en un sistema de referencia previamente definido. Si bien, como usted dice, los dos sistemas están en equilibrio, porque la fuerza neta sobre cada sistema es nula, y los dos están en reposo; en relación con la energía cinética es cierto que sea nula, pero para la energía potencial, hay que tener mucho cuidado, pues ésta depende de la posición, y en ese sentido los dos sistemas son bien diferentes. Estudiante. Realmente juzgué las cosas de manera muy simple; eso a nosotros, nos ocurre con frecuencia, pecamos de apresurados, no deteniéndonos a analizar las situaciones con detalle. Reexaminado la cuestión, veo que mientras en la figura 9a, el resorte es deformado por la acción del peso mg, en la 9b el resorte no experimentó ninguna deformación, pues la reacción al peso, la realiza la superficie sobre la que descansa la masa m; por lo tanto la energía potencial si es diferente en estos sistemas. Profesor. A pesar de su reconsideración, dada la importancia de este sistema, es necesario analizar más de cerca el asunto. Para el sistema de la figura 9a, en razón a la dependencia que tiene la energía potencial de la posición, la elección de la referencia nos da varias opciones. Así por ejemplo, podríamos tomar como referencia, el resorte sin deformar; es decir con su longitud normal l, como la que tiene el resorte en fig.9b; o podemos tomar como referencia el resorte deformado por su propio peso, o deformado por un peso cualquiera mg, Figura 10. Por eso es importante tener mucho cuidado en cualquier análisis, para no caer en ligerezas que nos lleven a cometer errores.

ENERGIA POTENCIAL: ELÁSTICA Y GRAVITATORIA

ENERGIA POTENCIAL: ELÁSTICA Y GRAVITATORIA LABORATORIO DE FÍSICA GENERAL 0ª Edición ENERGIA POTENCIAL: ELÁSTICA Y GRAVITATORIA EXPERIENCIA N 05 Robert Hooke (Freshwater, Inglaterra, 635 - Londres, 703) Físico y astrónomo inglés. En 655 Robert Hooke

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 05

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 05 ENERGIA POTENCIAL: ELÁSTICA Y GRAVITATORIA EXPERIENCIA N 05 Robert Hooke (Freshwater, Inglaterra, 635 - Londres, 703) Físico y astrónomo inglés. En 655 Robert Hooke colaboró con Robert Boyle en la construcción

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo

GEOMETRÍA MOLECULAR. Lic. Lidia Iñigo GEOMETRÍA MOLECULAR Lic. Lidia Iñigo Hemos dicho al estudiar uniones químicas que un enlace covalente es polar cuando existe cierta diferencia de electronegatividad entre los átomos que se unen. La magnitud

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos.

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos. GRAÁFICOS DE GESTIÓON (LINEALES, BARRAS Y TARTAS) 1.- INTRODUCCIÓN Este documento introduce los Gráficos de Gestión de uso más común y de mayor utilidad: Gráficos Lineales, Gráficos de Barras y Gráficos

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Actividad: Qué es la anomalía del agua?

Actividad: Qué es la anomalía del agua? Nivel: 1º Medio Subsector: Ciencias químicas Unidad temática: El agua Actividad: Seguramente ya has escuchado sobre la anomalía del agua. Sabes en qué consiste y qué es algo anómalo? Se dice que algo es

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros

Las razones financieras ayudan a determinar las relaciones existentes entre diferentes rubros de los estados financieros Razones financieras Uno de los métodos más útiles y más comunes dentro del análisis financiero es el conocido como método de razones financieras, también conocido como método de razones simples. Este método

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema: Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el

Más detalles

CAPÍTULO 1 PRIMEROS PASOS

CAPÍTULO 1 PRIMEROS PASOS PRIMEROS PASOS INTRODUCCIÓN Seguro que alguna vez te has preguntado por qué los colores y la gama tonal de la imagen que estás viendo en el monitor no salen igual en las copias que te entrega el laboratorio.

Más detalles

III. DIFUSION EN SOLIDOS

III. DIFUSION EN SOLIDOS Metalografía y Tratamientos Térmicos III - 1 - III. DIFUSION EN SOLIDOS III.1. Velocidad de procesos en sólidos Muchos procesos de producción y aplicaciones en materiales de ingeniería están relacionados

Más detalles

ANÁLISIS FINANCIERO VERTICAL

ANÁLISIS FINANCIERO VERTICAL ANÁLISIS FINANCIERO VERTICAL El Análisis Vertical de los estados financieros es una de las técnicas más simple y se la considera como una evaluación estática, puesto que no analiza los cambios ocurridos

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

PROPIEDADES DE LOS GASES. TEORÍA CINÉTICO MOLECULAR

PROPIEDADES DE LOS GASES. TEORÍA CINÉTICO MOLECULAR PROPIEDADES DE LOS GASES. TEORÍA CINÉTICO MOLECULAR Introducción: Silvia Marqués de los Santos IES FUENTE DE SAN LUÍS Valencia A pesar de vivir en un mundo en continuo contacto con los gases, el comportamiento

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES 1.1 Ecuación de onda. Las ecuaciones de Maxwell se publicaron en 1864, su principal función es predecir la propagación de la energía en formas de Onda.

Más detalles

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad.

LABORATORIO 7: LEY DE HOOKE. Calcular la constante de elasticidad de un resorte y determinar el límite de elasticidad. UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO 7: LEY DE HOOKE Calcular la constante de elasticidad de un resorte

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B 141 1 FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 Unidad 6 B 142 2 Índice SEGUIMIENTO DE PERSONAS 1 INFORMES 2 143 3 SEGUIMIENTO DE PERSONAS E INFORMES EN MOODLE El seguimiento de los participantes en Moodle

Más detalles

LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL

LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL LABORATORIO Nº 2 LEY DE HOOKE Y CAMBIOS DE ENERGÍA POTENCIAL I. LOGROS Calcular experimentalmente el valor de la constante de elasticidad de un resorte empleando la ley de Hooke. Analizar los cambios de

Más detalles

PROBLEMAS DE ECUACIONES SIMULTÁNEAS

PROBLEMAS DE ECUACIONES SIMULTÁNEAS PROBLEMAS DE ECUACIONES SIMULTÁNEAS Por: ELÍAS LOYOLA CAMPOS 1. En un recinto del zoológico se tienen dos tipos de animales: avestruces y jirafas. Hay 30 ojos y 44 patas, cuántos animales hay de cada tipo?

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

Primera ley de la Termodinámica para un volumen de control

Primera ley de la Termodinámica para un volumen de control Primera ley de la Termodinámica para un volumen de control 1. Objetivo Utilizar la primera ley de la termodinámica para el análisis del volumen de control de un caso real. 2. Método Se considerará un volumen

Más detalles

Textualidad. Cohesión: referencia, elipsis, sustitución, conectores. Cohesión léxica: antonimia, series ordenadas, cadena cohesiva.

Textualidad. Cohesión: referencia, elipsis, sustitución, conectores. Cohesión léxica: antonimia, series ordenadas, cadena cohesiva. Textualidad. Cohesión: referencia, elipsis, sustitución, conectores. Cohesión léxica: antonimia, series ordenadas, cadena cohesiva. Siempre hablamos de texto, sin haber explicado muy bien de qué se trata.

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

Electricidad y calor. Temario. Temario. Webpage: http://paginas.fisica.uson.mx/qb

Electricidad y calor. Temario. Temario. Webpage: http://paginas.fisica.uson.mx/qb Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

OPERACIONES ELEMENTALES CON VECTORES

OPERACIONES ELEMENTALES CON VECTORES VECTORES EN 3D (O EN R 3) Presentación: este apunte te servirá para repasar y asimilar que son los vectores en un espacio tridimensional, sólo hablamos de los vectores como se utilizan en Álgebra, para

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Laboratorio Física I

Laboratorio Física I Laboratorio Física I Guía Pedro Miranda y Fabián Juárez 1. Informes de laboratorio 1.1. Introducción Uno de los elementos más utilizados en la comunicación de conocimientos es el informe. El propósito

Más detalles

Mindfulness, o la meditación occidental

Mindfulness, o la meditación occidental Mindfulness, o la meditación occidental Muchas personas dicen no sentirse libres en sus vidas para hacer lo que quieren, y en la mayoría de casos no tienen a nadie que les ponga una pistola en la sien

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda

Tit ulo docume nto Cómo va lora r t u empre sa. Nombre docum ent o Documento de Preguntas y respuestas. Autor Luis Ignacio Sánchez Rueda Tit ulo docume nto Cómo va lora r t u empre sa Nombre docum ent o Documento de Preguntas y respuestas Autor Luis Ignacio Sánchez Rueda 1 COMO VALORAR LA EMPRESA 1. Una misma empresa puede valer diferente

Más detalles

Los elementos que usualmente componen la identidad digital son:

Los elementos que usualmente componen la identidad digital son: Enero 2016 Programa Civismo Digital - Escolar Material Educativo Lección: TU IDENTIDAD EN INTERNET v. 1.0 Topico: Alfabetización Digital, Huella Digital Objetivo: Fomentar en los alumnos la importancia

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

NIFBdM C-7 OTRAS INVERSIONES PERMANENTES

NIFBdM C-7 OTRAS INVERSIONES PERMANENTES NIFBdM C-7 OTRAS INVERSIONES PERMANENTES OBJETIVO Establecer los criterios de valuación, presentación y revelación para el reconocimiento inicial y posterior de las otras inversiones permanentes del Banco.

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

OBJETIVO MATERIAL. 1 resorte, 1 soporte, 1 regla de un metro, 1 gancho, 5 pesas ranuradas de 20 gf, 2 pesas de 50 gf y 4 balanzas TEORÍA

OBJETIVO MATERIAL. 1 resorte, 1 soporte, 1 regla de un metro, 1 gancho, 5 pesas ranuradas de 20 gf, 2 pesas de 50 gf y 4 balanzas TEORÍA OBJETIVO Comprobar experimentalmente la ley de Hooke y examinar la ley de conservación de energía en un proceso de interacción entre un resorte que se ha estirado y una masa suspendida del resorte a cierta

Más detalles

CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez

CUPES L. Ciencias experimentales. Configuración Electrónica. Recopiló: M.C. Macaria Hernández Chávez CUPES L Ciencias experimentales Configuración Electrónica Recopiló: M.C. Macaria Hernández Chávez 1. Existen 7 niveles de energía o capas donde pueden situarse los electrones, numerados del 1, el más interno,

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

Operativa en Acciones: Introducción a la Bolsa

Operativa en Acciones: Introducción a la Bolsa Operativa en Acciones: Introducción a la Bolsa Índice 1. Introducción 2. Mercado de acciones 3. Libro de órdenes 4. Ordenes Básicas 5. Liquidez 6. Información Básica Conceptos 7. Operativa Ejemplo 8. Horarios

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

http://www.hikashop.com/en/component/updateme/doc/page-...

http://www.hikashop.com/en/component/updateme/doc/page-... español Contenido de visualización en el extremo delantero Descripción Página del producto con un menú Listado de productos con un menú Listado de categorías con un menú Los productos con un módulo Categorías

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

De acuerdo con la diferente naturaleza de las operaciones, esta política diferenciará fundamentalmente entre dos tipos de operaciones:

De acuerdo con la diferente naturaleza de las operaciones, esta política diferenciará fundamentalmente entre dos tipos de operaciones: Política de ejecución de Órdenes de Altura COMENTARIOS PREVIOS Y ALCANCE DE ESTA POLÍTICA Esta política será de aplicación a las órdenes recibidas de clientes que no tengan la categoría de contraparte

Más detalles

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

CAPITULO 1 INTRODUCCIÓN. Puesta en Evidencia de un circulo virtuoso creado por los SRI entre los Mercados Financieros y las Empresas

CAPITULO 1 INTRODUCCIÓN. Puesta en Evidencia de un circulo virtuoso creado por los SRI entre los Mercados Financieros y las Empresas CAPITULO 1 INTRODUCCIÓN 16 Capítulo I: Introducción 1.1 Breve descripción del proyecto: Nuestro proyecto de tesis trata de mostrar el círculo virtuoso que se produce entre los instrumentos de inversión

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Luis Eduardo Barón Bienvenidos al Módulo N. 3 de Internet Para Emprendedores. Yo soy Luis Eduardo Barón. Álvaro Mendoza Y yo soy Álvaro Mendoza.

Luis Eduardo Barón Bienvenidos al Módulo N. 3 de Internet Para Emprendedores. Yo soy Luis Eduardo Barón. Álvaro Mendoza Y yo soy Álvaro Mendoza. Bienvenidos al Módulo N. 3 de Internet Para Emprendedores. Yo soy Luis Eduardo Barón. Y yo soy. En el día de hoy tenemos un módulo que has estado esperando. Ya viste cómo puedes buscar tu mercado, cómo

Más detalles

Congreso de Colegios Católicos, Una pasión que se renueva. Pontificia Universidad Católica de Chile. Septiembre 2015.

Congreso de Colegios Católicos, Una pasión que se renueva. Pontificia Universidad Católica de Chile. Septiembre 2015. Panel: Ley de Inclusión, reglamentación y Colegios Católicos Andrés Palma 1 Hola, muy buenas tardes, muchas gracias a la Conferencia Episcopal, a FIDE, a la Universidad Católica por la invitación para

Más detalles

Cuarto Foro: Democracia y Medios: Monitoreo de Programas de Radio y Televisión que Difunden Noticias

Cuarto Foro: Democracia y Medios: Monitoreo de Programas de Radio y Televisión que Difunden Noticias Cuarto Foro: Democracia y Medios: Monitoreo de Programas de Radio y Televisión que Difunden Noticias IFE- UNAM Intervención del Dr. Benito Nacif Hernández Sinopsis El foro Democracia y Medios: Monitoreo

Más detalles

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A)

Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) aprenderaprogramar.com Instrucción IrA (GoTo). Saltos no naturales en el flujo normal de un programa. Pseudocódigo y diagramas de flujo. (CU00182A) Sección: Cursos Categoría: Curso Bases de la programación

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR

TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR Tema 5 Simetría Molecular 1 TEMA 5: INTRODUCCIÓN A LA SIMETRÍA MOLECULAR La simetría de una molécula determina muchas de sus propiedades e incluso determina cómo se producen algunas reacciones. El estudio

Más detalles