Cuando se termina de delimitar objetos en una imagen usando los operadores de búsqueda de bordes aparece el problema de definir dichos objetos dentro

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cuando se termina de delimitar objetos en una imagen usando los operadores de búsqueda de bordes aparece el problema de definir dichos objetos dentro"

Transcripción

1

2 Cuando se termina de delimitar objetos en una imagen usando los operadores de búsqueda de bordes aparece el problema de definir dichos objetos dentro del sistema.

3 Supongamos que definimos una característica que definió cual pixel está adentro y cual está afuera de cada objeto Creamos así imágenes binarias (un bit para la cuantificación) blanco 0 negro 1 Sea el objeto A definido por A={a ij / propiedad de a ij == True } Creo entonces una matriz binaria AB en la que queda resaltada el/los objetos hallados en la imagen inicial. 3

4 Obtenida la imagen binaria se ve que quedan pixeles o pequeños grupos de ellos que sabemos que deberían pertenecer al objeto pero que por diferentes motivos no quedaron identificados. Otra posibilidad es que aparezcan pixeles que sabemos que no deberían haber aparecido.

5 Para incorporar estos pixeles al objeto conviene hacer una operación que se corresponde con alguna de los siguientes conceptos: Si alguno de los pixeles vecinos al pixel en estudio pertenece al objeto entonces el pixel de estudio también pertenece al objeto. A esta operación lógica se la llama operación de dilatación.

6 Dilatado

7 Para quitar pixeles que no pertenecen al objeto conviene hacer otra operación: Si todos los pixeles vecinos al pixel de estudio pertenecen al objeto, entonces el pixel de estudio también pertenece al objeto. (Si alguno de los pixeles vecinos al pixel de estudio no pertenece al objeto entonces ese pixel de estudio tampoco pertenece al nuevo objeto). Esta operación se llama erosión.

8 Erosionado

9 Este par de operaciones se puede restringir con algún elemento de estructura. Antes dijimos: si todos los vecinos Ahora diremos si estos vecinos (los que cumplen la vecindad según una forma determinada)

10 Dilatación con estructura de vecinos N=4 y N=8 Cuando no se define la estructura se da por entendido que es de vecindad de orden 8 (N=8)

11 Mostrar con ejemplos las dilataciones y erosiones. presentar apertura y cierre. Extender a vecinos de orden 4 o 2 verticales u horizontales o en diagonal o cualquier juego de vecinos. Ampliar el concepto de conexión desde una matriz binaria a tonalidades de gris. Dilataciomes y erosiones múltiples. Adelgazamiento. Esqueletización.

12 Parte del plano de Madrid dilatado y erosionado

13 13

14 Acá usamos el concepto de vecino Conviene recordar la definición de vecindad y conectividad. Vecino lo es según una estructura de pixeles alrededor del central. Dos pixeles estarán conectados cuando haya alguna propiedad que comparten ambos pixeles. Vecinos de orden 4 o de orden 8. También se lo puede definir a partir de alguna estructura particular dando el origen y definiendo el/los puntos vecinos {[0,0],[1,1]}

15 Sea un objeto A= {a i,j /propiedad de a i,j ==verdad} Y un elemento de estructura por ejemplo B={[0,0] [1,0] [0,1]}

16 Para formalizar el recorrido sobre la vecindad conviene hacer las siguientes definiciones. Al objeto. A = {a ij para todo a ij de A} Lo desplazaremos en ß A + ß = {a ij + ß para todo a ij de A} O será desplazado según una estructura B={[0,0];ß 1 ;ß 2 } A + B = {a ij + ß k para todo a ij de A y para todo ß k de B}

17 Entonces la operación de dilatación resultará de desplazar todo el cuerpo A (o sea cada pixel de A) según cada uno de los elementos ß k de la estructura B. Y por último se toma la unión de todos estos desplazamientos

18 Dilatado

19 En tanto que la erosión resultará de desplazar todo el cuerpo A (o sea cada pixel de A) según la inversa de cada uno de los elementos de la estructura B o sea en -ß k. Y por último se toma la intersección de todos estos desplazamientos

20 Erosionado

21 La dilatación será entonces La erosión será entonces Con las dilataciones agrandamos los objetos en tanto que con las erosiones los achicamos. 21

22 Con las dilataciones y erosiones se modifica el volumen del objeto, es por eso que se decide combinar ambas operaciones. Es decir hacer tantas de una como de otra. Se definen la Apertura y Cierre como:

23 O sea que en la Apertura primero se hace una erosión y luego una dilatación (si había un hueco en el interior de un objeto en la imagen A, se lo abre y si hay un objeto del tamaño de un pixel, se lo borra) En cambio en el Cierre primero se hace una dilatación y luego una erosión (si había un hueco en el interior de un objeto en la imagen A, desaparece también se quitan rugosidades huecas de los bordes de los objetos). El objeto de estas operaciones es el de mantener el tamaño del objeto 23

24 The opening of A by B, is given by the erosion by B, followed by the dilation by B, that is The opening (given by the dark dashed lines) of A (given by the solid lines. The structuring element B is a disc. The internal dashed structure is A eroded by B. 24

25 Apertura y Cierre Cierre Apertura

26 26

27 27

28 28

29 Segunda vuelta. Los operadores morfológicos son Operacioes Booleanas. Generalización.

30 Esto significa que al sumar sobre m y n estoy recorriendo la matriz, observo la característica del pixel (i,j) y si la cumple la dejo ( o pongo un uno en la matriz binaria que construyo) y si no, pongo un cero.

31 31

32 El concepto de operador morfológico es estudiado y formalmente definido dentro de los espacios de Minkowski. Pero vamos a tratar de hacer una presentación menos formal y más práctica de ellos. Definiremos el operador dilatación basado en criterio: Si alguno de los vecinos del pixel en estudio está conectado con él entonces ese pixel permanece en el objeto. D(A,B)=A B=

33 Para que esto quede claro conviene saber que significado le damos al concepto de vecino y al concepto de conección. Por simplicidad comencemos suponiendo que los vecinos son los ocho pixeles que rodean al que estamos considerando. Y por conexión supongamos que tienen el mismo valor. La metodología de su aplicación es la misma de la convolución salvo que en vez de sumar y multiplicar se usan las operaciones AND y OR.

34 Entonces el primero de los operadores tenderá a agrandar el objeto completando agujeros pequeños internos y extendiendo los bordes. Lo llamaremos OPERADOR DILATACIÓN D(A,B)=A B Y el segundo de los operadores tenderá a achicar el objeto agrandando agujeros pequeños internos y contrayendo los bordes. Lo llamaremos OPERADOR EROSIÓN.

35 Vecinos de orden 4 o de orden 8. También se lo puede definir a partir de alguna estructura particular {[0,0],[1,1]}

36 Sea un objeto A= {a i,j /propiedad de a i,j ==verdad} Y un elemento de estructura B={[0,0] [1,0] [0,1]}

37 37

38

39

40 40

41 41

42 42

43 43

44 Supongamos que para alguna figura determinada hemos obtenido su imagen binaria. El contorno será el conjunto de puntos que resultan de hacer la resta entre una dilatación y la imagen binaria o de la imagen original binaria menos su erosión E= B S= {x, y S x, y B} 1 1 B=[1 1] D= B S= {x, y S x, y B}

45 45

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005 Apertura y Clausura (Opening and Closing) Como vimos, la dilatación y la erosión están muy relacionadas con la forma; la primera operación expande la imagen mientras que la segunda la contrae. La dilatación

Más detalles

Operaciones Morfológicas en Imágenes Binarias

Operaciones Morfológicas en Imágenes Binarias Operaciones Morfológicas en Imágenes Binarias Introducción La morfología matemática es una herramienta muy utilizada en el procesamiento de i- mágenes. Las operaciones morfológicas pueden simplificar los

Más detalles

Qué es una imágen digital?

Qué es una imágen digital? Qué es una imágen digital? Una imagen digital es una fotografía, un dibujo, un trabajo artístico o cualquier otra imagen que es convertida en un fichero de ordenador. Qué es una imágen digital? Una imagen

Más detalles

Tema 6: Morfología. Primera parte

Tema 6: Morfología. Primera parte Tema 6: Morfología Primera parte Morfología La morfología matemática se basa en operaciones de teoría de conjuntos. En el caso de imágenes binarias, los conjuntos tratados son subconjuntos de Z 2 y en

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005 Extracción de Frontera (Boundary Extraction) La frontera de un conjunto A, escrita como β(a), se puede obtener erosionando A por B y luego calcular la diferencia entre A y su erosión. Esto es β ( A) =

Más detalles

Curso Básico Word 2003 Unidad 3

Curso Básico Word 2003 Unidad 3 BORDES Y SOMBREADO... 18 Descripción... 18 Bordes... 19 Valor... 19 Estilo... 19 Color... 19 Ancho... 19 Vista previa... 19 Aplicar a... 19 Bordes de página... 21 Sombreado... 21 Botón de Borde exterior

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc TEMA 5: HOJAS DE CÁLCULO Edición de hojas de cálculo con OpenOffice Calc Qué vamos a ver? Qué es una hoja de cálculo y para qué sirve El entorno de trabajo de OpenOffice Calc Edición básica de hojas de

Más detalles

PRIMERA PARTE LAS PRIMERAS PLANILLAS

PRIMERA PARTE LAS PRIMERAS PLANILLAS PRIMERA PARTE LAS PRIMERAS PLANILLAS El objetivo de este capítulo es tener una primera aproximación al programa. Conocerle la cara: cómo se ve, para qué sirve, cuáles son y cómo se usan las principales

Más detalles

CLASIFICACIÓN DE IMÁGENES

CLASIFICACIÓN DE IMÁGENES CLASIFICACIÓN DE IMÁGENES Cesar Juárez Megías I.T.T. Imagen y sonido Carlos III de Madrid 100061832@alumnos.uc3m.es OBJETIVO. El objetivo principal de nuestro programa se basaría en la clasificación de

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

Métodos Avanzados para Análisis y Representación de Imágenes

Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática p. 1/44 Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática Departamento de Informática - FICH Universidad Nacional del Litoral Agosto de 2012 Morfología

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE 3.1. Introducción

Más detalles

Antes de empezar con el tutorial, vamos a ver algunas cosas que nos van a ayudar mucho a entender como usar este programa.

Antes de empezar con el tutorial, vamos a ver algunas cosas que nos van a ayudar mucho a entender como usar este programa. Tutorial PhotoShop: Selección y Line Art Antes de empezar con el tutorial, vamos a ver algunas cosas que nos van a ayudar mucho a entender como usar este programa. 1- Redimensionar imágenes. Para cambiar

Más detalles

Modo del color, Ajustes, Duplicar y Aplicar imagen, Calcular, Tamaño de imagen, Tamaño de lienzo, Rotar lienzo, Separar, Histograma, Reventar

Modo del color, Ajustes, Duplicar y Aplicar imagen, Calcular, Tamaño de imagen, Tamaño de lienzo, Rotar lienzo, Separar, Histograma, Reventar Menú Imagen Modo del color, Ajustes, Duplicar y Aplicar imagen, Calcular, Tamaño de imagen, Tamaño de lienzo, Rotar lienzo, Separar, Histograma, Reventar Menú Imagen En este menú se puede manipular los

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

MICROSOFT WORD 2007 AVANZADO. Unidad Didáctica Nº 1

MICROSOFT WORD 2007 AVANZADO. Unidad Didáctica Nº 1 MICROSOFT WORD 2007 AVANZADO Unidad Didáctica Nº 1 I Tablas A) Explicación conceptual y de uso de una tabla B) Creación de tablas C) Trabajo con tablas D) Formato de las tablas Ejercicio de Repaso Portal

Más detalles

Esteganografía En Imágenes Basado En Mascaras de Convolución Espacial. Universidad Nacional de Trujillo

Esteganografía En Imágenes Basado En Mascaras de Convolución Espacial. Universidad Nacional de Trujillo Esteganografía En Imágenes Basado En Mascaras de Convolución Espacial Universidad Nacional de Trujillo Resumen La Esteganografía toma su mayor auge a partir de la aparición de los ordenadores. En el caso

Más detalles

Unidad 1. La información

Unidad 1. La información Unidad 1. La información En esta unidad aprenderás: Los conceptos básicos de la informática. Cómo se representa la información dentro del ordenador. Las unidades de información. 1.1 Conceptos básicos Informática.

Más detalles

Programación de una interfaz gráfica con diferentes módulos para el tratamiento digital de imágenes en entornos industriales

Programación de una interfaz gráfica con diferentes módulos para el tratamiento digital de imágenes en entornos industriales ESCUELA TÉCNICA Y SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PROYECTO FIN DE CARRERA Programación de una interfaz gráfica con diferentes módulos para el tratamiento

Más detalles

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0 Clase 5 Un registro es un conjunto de n latch o Flip-Flops asociados que permiten almacenar temporalmente una palabra o grupo de n bit. Hay dos clases de registros típicos sincrónicos 1. el registro de

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN EL SISTEMA DECIMAL Es el sistema usado habitualmente en todo el mundo. Según los antropólogos, el origen del sistema decimal está en los diez dedos que tenemos los humanos en las

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Capítulo 3. 3. Marco Teórico.

Capítulo 3. 3. Marco Teórico. Capítulo 3 3. Marco Teórico. La visión artificial o visión por computador se define como un área multidisciplinar que pretende, en cierta medida, reproducir artificialmente el sentido de la vista mediante

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos COLEGIO HISPANO INGLÉS Rambla Santa Cruz, 94-38004 Santa Cruz de Tenerife +34 922 276 056 - Fax: +34 922 278 477 buzon@colegio-hispano-ingles.es TECNOLOGÍA 4º ESO Sistemas de numeración Un sistema de numeración

Más detalles

El módulo tipográfico

El módulo tipográfico contenidos teóricos 4 El módulo tipográfico LA GRILLA Un programa de diseño al servicio del proyecto www.tipografiavenancio.com.ar 1/6 Uno de los temas más polémicos entre los estudiantes y profesionales

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Introducción a las imágenes digitales

Introducción a las imágenes digitales Introducción a las imágenes digitales Segunda parte Topología Digital El proceso de digitalización Una imagen natural capturada con una cámara, un telescopio, un microscopio o cualquier otro tipo de instrumento

Más detalles

6.1 Procesamiento morfológico de imágenes

6.1 Procesamiento morfológico de imágenes Procesamiento morfológico Las tareas de segmentación no suelen dar un resultado exacto de la delimitación de los objetos o regiones de interés. Aparecen píxeles mal clasificados, bordes imprecisos de los

Más detalles

Es necesario conocer otras dos herramientas de búsqueda en Internet: los «metabuscadores» ó «motores de búsqueda» y los «portales».

Es necesario conocer otras dos herramientas de búsqueda en Internet: los «metabuscadores» ó «motores de búsqueda» y los «portales». Búsqueda de información en la red Una de los usos más extendidos de Internet es la búsqueda de información útil para el/la usuario/a. Sin embargo, su localización no resulta siempre una tarea fácil debido

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

1. Duplicar la capa de fondo:

1. Duplicar la capa de fondo: 1. Duplicar la capa de fondo: Con nuestra foto recién abierta en el Photoshop, lo primero que tenemos que hacer es hacer una copia de nuestra capa de fondo, que es la capa que contiene nuestra foto y en

Más detalles

Presentaciones Multimedia. Módulo II - OpenOffice.org Impress

Presentaciones Multimedia. Módulo II - OpenOffice.org Impress Presentaciones Multimedia Módulo II - OpenOffice.org Impress 1 OpenOffice.org Impress Índice de contenidos Repasando conceptos del Módulo anterior Modificar texto en una diapositiva Borrar texto de una

Más detalles

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1

1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

Aplicaciones de Excel en los Centros para la Práctica Empresarial Labor@

Aplicaciones de Excel en los Centros para la Práctica Empresarial Labor@ Aplicaciones de Excel en los Centros para la Práctica Empresarial Labor@ Metas de Aprendizaje Contenidos Hacer un uso eficiente de las posibilidades básicas que brinda la hoja electrónica Excel. Diseñar

Más detalles

Manual de GIMP. Capítulo 7. Los filtros (I) Manual de GIMP. Capítulo 7: Los filtros (I) Reconocimiento-NoComercial-CompartirIgual 2.

Manual de GIMP. Capítulo 7. Los filtros (I) Manual de GIMP. Capítulo 7: Los filtros (I) Reconocimiento-NoComercial-CompartirIgual 2. Manual de GIMP Capítulo 7: Los filtros (I) Reconocimiento-NoComercial-CompartirIgual 2.5 España Realizado por: José Sánchez Rodríguez (Universidad de Málaga) josesanchez@uma.es Julio Ruiz Palmero (Universidad

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

http://en.wikipedia.org/wiki/edgar_f._codd

http://en.wikipedia.org/wiki/edgar_f._codd 26/03/2012 1 http://en.wikipedia.org/wiki/edgar_f._codd Codd estableció los fundamentos del modelo relacional en el artículos de 1970 "A Relational Model of Data for Large Shared Data Banks". En adelante,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza

Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza Las cuatro operaciones En la Escuela Básica por Francisco Rivero Mendoza 1 Conociendo los números Antes de pasar a estudiar los correspondientes algoritmos de la suma y la resta, es preciso desarrollar

Más detalles

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005 Filtrado Espacial Introducción El filtrado espacial es la operación que se aplica a una imagen para resaltar o atenuar detalles espaciales con el fin de mejorar la interpretación visual o facilitar un

Más detalles

CONTADORES Y REGISTROS

CONTADORES Y REGISTROS Capítulo 7 CONTADORES Y REGISTROS 7.. CONTADORES Un contador es un circuito secuencial cuya función es seguir una cuenta o conjunto predeterminado de estados como consecuencia de la aplicación de un tren

Más detalles

Procesamiento Digital de Imágenes PRUEBA Nº2: PAUTA

Procesamiento Digital de Imágenes PRUEBA Nº2: PAUTA PRUEBA Nº2: PAUTA Fecha: 23-07-2007 1.- (10 Ptos.) En procesamiento de imágenes es muy recurrente la necesidad de eliminar pequeños objetos o "artefactos" que rodean al objeto de interés, como los 4 pequeños

Más detalles

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico Unidad 4: Vectores 4.1 Introducción En este capítulo daremos el concepto de vector, el cual es una herramienta fundamental tanto para la física como para la matemática. La historia de los vectores se remonta

Más detalles

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas

Más detalles

Procesamiento de Imágenes

Procesamiento de Imágenes Procesamiento de Imágenes Curso 011 - Clase Filtros Espaciales Filtrado espacial Ya trabajamos procesando sólo al piel individualmente. Ahora vamos a hacer un procesamiento en una vecindad de cada piel.

Más detalles

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES CAPÍTULO PROCESAMIENTO DIGITAL DE IMÁGENES En este capítulo se presentan de manera breve, una explicación de la visión, las imágenes digitales y como son capturadas por medios electrónicos, el campo encargado

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Cierre y Apertura de ejercicio. Gestión - Contabilidad

Cierre y Apertura de ejercicio. Gestión - Contabilidad Cierre y Apertura de ejercicio. Gestión - Contabilidad Cliente : Cooperativa Madrileña de Ferreteros, soc. coop. Referencia : I-3-PC-02 / 000041 Asunto : Cierre y apertura de ejercicio. Gestión Contabilidad

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

1. Descripción de la barra de herramientas dibujo

1. Descripción de la barra de herramientas dibujo 1. Descripción de la barra de herramientas dibujo La barra de herramientas dibujo, como las restantes barras, se muestra desde Ver/barras de herramientas o bien haciendo clic derecho sobre la zona de barras

Más detalles

El beso de la princesa

El beso de la princesa -- El beso de la princesa Hace algunos años era habitual encontrar por allí, al cruzar algún bosque, o en las cercanías del castillo, a una princesa abocada a la tarea de convertir feos sapos en bellos

Más detalles

APÉNDICE C Vision Toolkit: Funciones

APÉNDICE C Vision Toolkit: Funciones APÉNDICE C Vision Toolkit: Funciones En la figura B.2 se muestran las funciones de Vision que se encuentran en el diagrama de bloques. Dentro de las funciones de Vision se agregan las opciones para realizar

Más detalles

Curso Excel 2010 Rangos y tablas Teoría 3. Rangos y tablas... 1. Contenido... 1. Operaciones con rangos... 2. Copia de un rango...

Curso Excel 2010 Rangos y tablas Teoría 3. Rangos y tablas... 1. Contenido... 1. Operaciones con rangos... 2. Copia de un rango... RANGOS Y TABLAS Los rangos y tablas en Excel son la base de los tipos de libros más usados, como listados, bases de datos, resúmenes estadísticos, etc. En las últimas versiones se ha ido dando cada vez

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Bits, Bytes y Datos y tipos de datos.

Bits, Bytes y Datos y tipos de datos. Bits, Bytes y Datos y tipos de datos. Cualquier computador, incluso el más complejo es en realidad sólo un gran volumen de bits bien organizados. Es difícil definir el término información, ya que tiene

Más detalles

Imágenes binarias. Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing. imagenes binarias 1

Imágenes binarias. Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing. imagenes binarias 1 Imágenes binarias Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing imagenes binarias 1 Propiedades geométricas simples: Area: la integral de la

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Capítulo 6 Filtrado en el Dominio de la Frecuencia

Capítulo 6 Filtrado en el Dominio de la Frecuencia Capítulo 6 Filtrado en el Dominio de la Frecuencia...39 6. Método en el Dominio de la Frecuencia...39 6. Filtros Espaciales en la frecuencia...40 6.. Convolución Lineal y la Transformada Discreta de Fourier...45

Más detalles

Maximiliano G. G. - Septiembre 2010. - mxgdvg@gmail.com (Versión 0.)

Maximiliano G. G. - Septiembre 2010. - mxgdvg@gmail.com (Versión 0.) Estas son mis respuestas a algunas cuestiones y preguntas de exámenes (no hay soluciones oficiales resueltas por el equipo docente en esta asignatura). Como soy un alumno, no necesariamente son correctas

Más detalles

Introducción La hoja de cálculo Excel.

Introducción La hoja de cálculo Excel. Curso Excel Básico 2003 Introducción Introducción La hoja de cálculo Excel. Distinguir las partes de la ventana de Excel, definición y explicación de las características de Excel así como iconos útiles

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS ESTRUCTURA DE COMPUTADORES Pag. 8.1 LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS 1. Circuitos de multiplicación La operación de multiplicar es mas compleja que la suma y por tanto se

Más detalles

RADIOLOGIA DENTAL BILBAO, S.L.

RADIOLOGIA DENTAL BILBAO, S.L. Estimado Dr./Dra.: RADIOLOGIA DENTAL BILBAO, S.L. Radiodiagnóstico dental en 3 dimensiones EDIFICI0 ALBIA II C/ San Vicente, 8 2ª Plta. Dpto. C 48001 BILBAO Telf. /Fax: 94 424 16 53 radiodent.rx@euskalnet.net

Más detalles

EXCEL XP. Qué es Excel? La ventana de Excel UNIVERSIDAD REY JUAN CARLOS

EXCEL XP. Qué es Excel? La ventana de Excel UNIVERSIDAD REY JUAN CARLOS UNIVERSIDAD REY JUAN CARLOS EXCEL XP Qué es Excel? Es una hoja de cálculo. Una hoja de cálculo es una especie de tabla cuyas casillas o celdas pueden contener distintos valores: Texto. Números, fechas

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA.

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. 1. - INTRODUCCIÓN Las operaciones que hemos realizado hasta ahora sobre una imagen, se realizaron en el dominio espacial, es decir, trabajando

Más detalles

Software de Particle Tracking Version 1.0

Software de Particle Tracking Version 1.0 Software de Particle Tracking Version 1.0 Martín Pastor Laboratorio de Medios Granulares Departamento de Física y Matemática Aplicada Universidad de Navarra Enero, 2007 Índice general 1. Introducción 3

Más detalles

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN DECIMAL, BINARIO Y HEXADECIMAL EDICIÓN: 091105 DEPARTAMENTO DE TECNOLOGÍA I.E.S. PABLO GARGALLO SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

PRÁCTICAS DE ELECTRÓNICA DIGITAL

PRÁCTICAS DE ELECTRÓNICA DIGITAL PRÁCTICAS DE ELECTRÓNICA DIGITAL CURSO 4º E.S.O. COMPONENTES DEL GRUPO: Nombre y apellidos: Nombre y apellidos: 1 Antes de proceder a los montajes conviene conocer los elementos que vamos a usar. SOBRE

Más detalles

Manual de Instalación y Configuración

Manual de Instalación y Configuración Manual de Instalación y Configuración CONTENIDO 1. Instalación y Desinstalación del Programa...2 1.1 Requisitos de Sistema...2 1.2 Programa de Instalación...2 1.3 Desinstalación del Programa...3 2. Configuración...4

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información

TEMA 1: SISTEMAS INFORMÁTICOS. Parte 2: representación de la información TEMA 1: SISTEMAS INFORMÁTICOS Parte 2: representación de la información Qué vamos a ver? Cómo se representa y almacena la información en un ordenador Cómo podemos relacionar la información que entendemos

Más detalles

Programando en C a Bajo Nivel

Programando en C a Bajo Nivel Universidad de Buenos Aires Facultad De Ingeniería Programando en C a Bajo Nivel [75.40] Algoritmos y Programación I 1er Cuatrimestre 011 Cátedra: Ing. Pablo Guarna Autor: Bernardo Ortega Moncada Versión

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67

MatemásTIC. Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla. 65 Noviembre 2010, pp. 57-67 65, pp. 57-67 Estudio y práctica del álgebra matricial con una aplicación TIC didáctica y sencilla MatemásTIC A lo largo de los distintos números de Suma nos planteamos en esta sección descubrir distintas

Más detalles

Teoría Tema 5 Espacios vectoriales

Teoría Tema 5 Espacios vectoriales página 1/14 Teoría Tema 5 Espacios vectoriales Índice de contenido Puntos en 2 y 3 dimensiones...2 Vectores en el plano...5 Suma de vectores...7 Combinación lineal de vectores...8 Sistema generador...10

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Tutorial 1/3 Marzo 2003. omv@ole.com

Tutorial 1/3 Marzo 2003. omv@ole.com Tutorial 1/3 Marzo 2003 DISEÑO DE UNA ALACENA EN 3D A continuación se detallan todos los pasos para diseñar la alacena de la portada. Se presupone que se tienen conocimientos básicos de Autocad en 2D para

Más detalles

MÓDULO 2: Manejar las ventanas de Windows. Antes de comenzar

MÓDULO 2: Manejar las ventanas de Windows. Antes de comenzar MÓDULO 2: Manejar las ventanas de Windows Antes de comenzar El funcionamiento de Windows está relacionado con su nombre, ventanas. El funcionamiento de las ventanas en Windows se mantiene invariable a

Más detalles

O3 Entorno de Trabajo

O3 Entorno de Trabajo O3 Entorno de Trabajo Entorno de trabajo En este capítulo explicaremos los diferentes elementos que componen el entorno de trabajo de la aplicación. El modo de trabajo que se explicará a continuación es

Más detalles

TEMA 5. ELECTRÓNICA DIGITAL

TEMA 5. ELECTRÓNICA DIGITAL TEMA 5. ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN Los ordenadores están compuestos de elementos electrónicos cuyas señales, en principio, son analógicas. Pero las señales que entiende el ordenador son digitales.

Más detalles