S I M U L A C I Ó N M É T O D O M O N T E C A R L O

Tamaño: px
Comenzar la demostración a partir de la página:

Download "S I M U L A C I Ó N M É T O D O M O N T E C A R L O"

Transcripción

1 S I M U L A C I Ó N M É T O D O M O N T E C A R L O Simulación : es el proceso de diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentos con este modelo con el propósito de entender el comportamiento del sistema o evaluar varias estrategias con las cuales se puede operar el sistema (Shannon Robert) Modelo de simulación: conjunto de hipótesis acerca del funcionamiento del sistema expresado como relaciones matemáticas y/o lógicas entre los elementos del sistema. Proceso de simulación: ejecución del modelo a través del tiempo en un ordenador para generar muestras representativas del comportamiento. Simulación estadística variables aleatorias. Métodos de simulación o Monte Carlo: Está basada en el muestreo sistemático de Simulación continua: Los estados del sistema cambian continuamente su valor. Estas simulaciones se modelan generalmente con ecuaciones diferenciales. Simulación por eventos discretos: Se define el modelo cuyo comportamiento varía en instantes del tiempo dados. Los momentos en los que se producen los cambios son los que se identifican como los eventos del sistema o simulación. Simulación por autómatas celulares: Se aplica a casos complejos, en los que se divide al comportamiento del sistema en subsistemas más pequeños denominadas células. El resultado de la simulación está dado por la interacción de las diversas células. Etapas del proceso de simulación Definición, descripción del problema. Plan. Formulación del modelo. Programación. Verificaciçon y Validación del modelo. Diseño de experimentos y plan de corridas. Análisis de resultados Diagrama de flujo del modelo de simulación 1

2 Reunir datos y elaborar el modelo NO Programar el modelo NO Está validada? Está verificada? SÍ SI Diseñar el experimento NO Está completa? SÍ Documentar y Poner en práctica Lenguajes de simulación Simulación Continua: 1130/CSMP, 360 CSMP y DYNAMO, MISTRAL Simulación a Eventos Discretos: GPSS, SIMSCRIPT, SDL/SIM. Para casos simples podemos recurrir a la utilización de planillas de cálculo. También podemos implementar aplicaciones en los lenguajes Fortran, C++, Java, Dephi,... 2

3 Por qué Simulación en Investigación Operativa? Los responsables de la toma de decisiones necesitan información cuantificable, sobre diferentes hechos que puedan ocurrir. La simulación constituye una técnica económica que nos permite ofrecer varios escenarios posibles de un modelo del negocio, nos permite equivocarnos sin provocar efectos sobre el mundo real. Podemos afirmar entonces, que la simulación es una rama experimental dentro de la Investigación Operativa. Números aleatorios Deben tener igual probabilidad de salir elegidos. No debe existir correlación serial Se generan por tablas (Rand 1955), o por dispositivos especiales: ruleta. En la práctica se utilizan algoritmos y se generan números pseudo aleatorios. Números Pseudo aleatorios Sustituyen a los números aleatorios. Se generan por algoritmos o fórmulas. Se debe asegurar la existencia de secuencias largas y densas. Generación de Números Pseudo aleatorios Centros Cuadrados: 44 2 = Métodos Congruenciales: x n =(ax n-1 + c) (mod m Transformación Inversa x=f -1 (x) siendo F(x)=Prob(X<=x) S I M U L A C I Ó N M O N T E C A R L O Los métodos de Monte Carlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias repetidas. En la práctica, las pruebas aleatorias se sustituyen por resultados de ciertos cálculos realizados con números aleatorios. 3

4 I N T R O D U C C I Ó N Bajo el nombre de Método Monte Carlo o Simulación Monte Carlo se agrupan una serie de procedimientos que analizan distribuciones de variables aleatorias usando simulación de números aleatorios. El Método de Monte Carlo da solución a una gran variedad de problemas matemáticos haciendo experimentos con muestreos estadísticos en una computadora. El método es aplicable a cualquier tipo de problema, ya sea estocástico o determinístico. Generalmente en estadística los modelos aleatorios se usan para simular fenómenos que poseen algún componente aleatorio. Pero en el método Monte Carlo, por otro lado, el objeto de la investigación es el objeto en sí mismo, un suceso aleatorio o pseudo-aleatorio se usa para estudiar el modelo. A veces la aplicación del método Monte Carlo se usa para analizar problemas que no tienen un componente aleatorio explícito; en estos casos un parámetro determinista del problema se expresa como una distribución aleatoria y se simula dicha distribución. Un ejemplo sería el famoso problema de las Agujas de Bufón. La simulación de Monte Carlo también fue creada para resolver integrales que no se pueden resolver por métodos analíticos, para solucionar estas integrales se usaron números aleatorios. Posteriormente se utilizó para cualquier esquema que emplee números aleatorios, usando variables aleatorias con distribuciones de probabilidad conocidas, el cual es usado para resolver ciertos problemas estocásticos y determinísticos, donde el tiempo no juega un papel importante. H I S T O R I A El método fue llamado así por el principado de Mónaco por ser ``la capital del juego de azar'', al tomar una ruleta como un generador simple de números aleatorios. El nombre y el desarrollo sistemático de los métodos de Monte Carlo datan aproximadamente de 1944 con el desarrollo de la computadora. Sin embargo hay varias instancias (aisladas y no desarrolladas) en muchas ocasiones anteriores a El uso real de los métodos de Monte Carlo como una herramienta de investigación, proviene del trabajo de la bomba atómica durante la Segunda Guerra Mundial. Este trabajo involucraba la simulación directa de problemas probabilísticos de hidrodinámica concernientes a la difusión de neutrones aleatorios en material de fusión. Aún en la primera etapa de estas investigaciones, John von Neumann y Stanislao Ulam refinaron esta curiosa ``Ruleta rusa'' y los métodos``de división''. Sin embargo, el desarrollo sistemático de estas ideas tuvo que esperar el trabajo de Harris y Herman Kahn en Aproximadamente en el mismo año, Fermi, Metropolos y Ulam obtuvieron estimadores para los valores característicos de la ecuación de Schrödinger para la captura de neutrones a nivel nuclear. Alrededor de 1970, los desarrollos teóricos en complejidad computacional comienzan a proveer mayor precisión y relación para el empleo del método Monte Carlo. La teoría identifica una clase de problemas para los cuales el tiempo necesario para evaluar la solución exacta al problema crece con la clase, al menos exponencialmente con M. La cuestión a ser resuelta era si MC pudiese o no estimar la solución al problema de tipo intratable con una adecuación estadística acotada a una complejidad temporal polinomial en M. Karp(1985) 4

5 muestra esta propiedad para estimar en una red plana multiterminal con arcos fallidos aleatorios. Dyer(1989) utiliza MC para estimar el volumen de un convex body en el espacio Euclidiano M-dimensional. Broder(1986), Jerrum y Sinclair (1988) establecen la propiedad para estimar la persistencia de una matriz o en forma equivalente, el número de matching perfectos en un grafo bipartito. A L G O R I T M O S El algoritmo de Simulación Monte Carlo Crudo o Puro está fundamentado en la generación de números aleatorios por el método de Transformación Inversa, el cual se basa en las distribuciones acumuladas de frecuencias: Determinar la/s V.A. y sus distribuciones acumuladas(f) Generar un número aleatorio uniforme (0,1). Iterar tantas veces como Determinar el valor de la V.A. para el número muestras necesitamos aleatorio generado de acuerdo a las clases que tengamos. Calcular media, desviación estándar error y realizar el histograma. Analizar resultados para distintos tamaños de muestra. Otra opción para trabajar con Monte Carlo, cuando la variable aleatoria no es directamente el resultado de la simulación o tenemos relaciones entre variables es la siguiente: Diseñar el modelo lógico de decisión Especificar distribuciones de probabilidad para las variables aleatorias relevantes. Incluir posibles dependencias entre variables. Muestrear valores de las variables aleatorias. Calcular el resultado del modelo según los valores del muestreo (iteración) y registrar el resultado Repetir el proceso hasta tener una muestra estadísticamente representativa Obtener la distribución de frecuencias del resultado de las iteraciones Calcular media, desvío. Analizar los resultados Las principales características a tener en cuenta para la implementación o utilización del algoritmo son: El sistema debe ser descripto por 1 o más funciones de distribución de probabilidad (fdp) Generador de números aleatorios: como se generan los números aleatorios es importante para evitar que se produzca correlación entre los valores muestrales. 5

6 Establecer límites y reglas de muestreo para las fdp: conocemos que valores pueden adoptar las variables. Definir Scoring: Cuando un valor aleatorio tiene o no sentido para el modelo a simular. Estimación Error: Con que error trabajamos, cuanto error podemos aceptar para que una corrida sea válida? Técnicas de reducción de varianza. Paralelización y vectorización: En aplicaciones con muchas variables se estudia trabajar con varios procesadores paralelos para realizar la simulación. E J E M P L O P R A C T I C O I Tenemos la siguiente distribución de probabilidades para una demanda aleatoria y queremos ver que sucede con el promedio de la demanda en varias iteraciones: Demanda Frecuencia Unidades Utilizando la distribución acumulada(f(x) es la probabilidad que la variable aleatoria tome valores menores o iguales a x) podemos determinar cual es el valor obtenido de unidades cuando se genera un número aleatorio a partir de una distribución continua uniforme. Este método de generación de variable aleatoria se llama Transformación Inversa. Unidades Frecuencia Frecuencia Acumulada Generando los valores aleatorios vamos a ver como se obtiene el valor de la demanda para cada día, interesándonos en este caso como es el orden de aparición de los valores. Se busca el número aleatorio generado en la tabla de probabilidades acumuladas, una vez 6

7 encontrado( si no es el valor exacto, éste debe se menor que el de la fila seleccionada pero mayor que el de la fila anterior), de esa fila tomada como solución se toma el valor de las unidades (Cuando trabajamos en Excel debemos tomar el límite inferior del intervalo para busca en las acumuladas, para poder emplear la función BUSCARV(), para 42 sería 0, para 43 0, y así sucesivamente). Ejemplo: Supongamos que el número aleatorio generado sea 0,52, a qué valor de unidades corresponde? Nos fijamos en la columna de frecuencias Frecuencias , Demanda Unidades 1.00 acumuladas, ese valor exacto no aparece, el siguiente mayor es 0,70 y corresponde a 48 unidades. Se puede apreciar mejor en el gráfico, trazando una recta desde el eje de la frecuencia hasta que intersecta con la línea de la función acumulada, luego se baja a la coordenada de unidades y se obtiene el valor correspondiente; en este caso 48. Cuando trabajamos con variables discretas la función acumulada tiene un intervalo o salto para cada variable( para casos prácticos hay que definir los intervalos y luego con una función de búsqueda hallar el valor). Para funciones continuas se puede hallar la inversa de la función acumulada. De esta forma logramos a partir de la distribución de densidad calcular los valores de la variable aleatoria dada. Número de Números Valor de Simulación aleatorios la Demanda n En la siguiente tabla, vemos como a medida que aumenta el numero de simulaciones, el valor simulado se acerca al valor original de la media y desviación estándar, además de la disminución del error típico. Cantidad de Media Desvío Error simulaciones

8 E J E M P L O P R A C T I C O I I Analizaremos ahora una propuesta para la fabricación de un nuevo artículo durante 4 años. Con los datos de la siguiente tabla: Costos de puesta en marcha $ Costos variables 75% de los ingresos Precio de Venta $ Costos del capital 10% Costos fijos $ Tasa Fiscal 34% Amortización anual $ Demanda promedio anual 10 unidades La demanda es la variable aleatoria de nuestro modelo, ya que puede tomar los siguientes valores: 8,9,10,11,12, es una distribución discreta uniforme. Para poder simular los valores de esta variable utilizaremos la fórmula ENTERO(8+5*ALEATORIO()). Debido a que los intervalos son todos de igual tamaño (1/5), es igualmente posible que ALEATORIO() llegue a cada uno de ellos, y por lo tanto es igualmente posible que la fórmula de cualquiera de los cinco valores posibles. La función ALEATORIO() de Excel genera un número en el intervalo (0:1) de una distribución uniforme continua. A través de la simulación veremos que valores va a tomar el valor neto actual (VNA, El VNA es calculado mediante la formula n valoresi correspondiente del Excel con un interés del 10% ( VNA = ). En la columna i i= 1 ( 1 + tasa ) correspondiente al año 1 se han indicado las formulas que definen cada valor) en los 4 años, utilizando el siguiente modelo matemático de la situación: Año 0 Año 1 Año 2 Año 3 Año 4 Demanda ENTERO(8+5*ALE ATORIO()) Ingresos Precio de Venta*Demanda Costo Fijo Costo fijo Costo Variable 75% Ingresos Amortización Utilidad antes de Impuestos Ingresos - Suma(costos) Impuestos 34 % anterior Utilidad después de impuestos Utilidad - Impuestos Flujo neto de efectivo Valor Neto Actual Utilidad - Amortización

9 Ahora realizaremos varias corridas con diferentes tamaños de muestra para ver que sucede con el VNA. Armamos en otra hoja un cuadro con dos columnas y tantas filas como iteraciones(tamaño de la muestra) deseemos realizar. En la columna VNA copiamos con pegado especial(fórmula) la celda del modelo en la cual se calcula el VNA. Seleccionamos toda la tabla y con la herramienta Tabla en Datos se forma una tabla dinámica que contendrá las simulaciones para la cantidad de iteraciones que hagamos. Luego para cada tamaño de muestra aplicaremos Estadística descriptiva(en herramientas, Análisis de datos) e Histograma (las clases que utilizamos son: , , , 0, 10000, 20000, 30000) 9

10 Cantidad de Iteraciones Media Desviación Estándar Máximo Mínimo Error Ahora realizamos una síntesis de las simulaciones desarrolladas para poder ver que sucedió con el modelo: Histograma para 10 iteraciones Frecuencia Clase y mayor % % 80.00% 60.00% 40.00% 20.00%.00% Frecu encia % acum ulado El valor de la media y desviación estándar se estacionan a medida que aumenta la cantidad de iteraciones. También, como podemos observar en el gráfico, disminuye notablemente el error. También el modelo nos presenta mayor variabilidad para los valores máximo y mínimo. 10

11 Resumen Valores de la variables aleatorias Cantidad de Iteraciones N Experimentos 5000 Media Desviación Estandar Maximo Minimo Error A P L I C A C I O N E S Criptografía. Cromo dinámica cuántica. Densidad y flujo de tráfico. Diseño de reactores nucleares. Diseño de VLSI. Ecología. Econometría. Evolución estelar. Física de materiales. Métodos cuantitativos de organización industrial. Programas de computadora. Pronóstico del índice de la bolsa. Prospecciones en explotaciones petrolíferas. Radioterapia contra el cáncer. Sistemas de colas. Sistemas de inventario P y Q. Valoración de cartera de valores. S I N T E S I S El método de Monte Carlo es una herramienta de investigación y planeamiento; básicamente es una técnica de muestreo artificial, empleada para operar numéricamente sistemas complejos que tengan componentes aleatorios o determinísticos, manteniendo tanto 11

12 la entrada como la salida un cierto grado de incertidumbre. En Investigación Operativa, Monte Carlo es utilizado con fines experimentales, es decir se pueden elaborar distintos modelos e ir intercambiando parámetros para estudiar cuales son los posibles resultados. Cuando el tamaño de las muestras es relativamente reducido, los resultados obtenidos No debemos confundir la simulación con un método de optimización, como por ejemplo el Simplex. En los métodos de Optimización las variables de decisión son las salidas de la técnica a las cuales buscamos calcular el/los valor/es óptimo/s, por el contrario en Monte Carlo u otro tipo de simulación dichas variables constituyen las entradas del mismo; el modelo simulado propuesto evalúa distintas alternativas para un conjunto particular de soluciones. en la simulación pueden ser muy sensibles a las condiciones iniciales. Un área de investigación está constituida por los métodos Quasi-Monte Carlo, estos métodos básicamente acotan la generación de los números aleatorios. R E F E R E N C I A S [1] A brief overview of what the Monte-Carlo method is and does. [2] Arsham H. System Simulation: The Shortest Route to Applications. [3] Barreto H. and Howland F. Introductory Econometrics via Monte Carlo Simulation with Microsoft Excel. [4] Bong D. Monte Carlo Simulation. [5] Bustamante A. Evaluación de riesgos mediante simulación Monte Carlo. [6] Deutsch, Leuangthong, Nguyen, Norrena, Ortiz, Oz, Pyrcz, and Zanon. Principles of Monte Carlo Simulation. [7] Eppen G., Gould F., Schmidt C., Mootre J., y Weatetherford L. Investigación de Operaciones en la Ciencia Administrativa. Editorial Prentice Hall. 5 Edición [8] Hillier F, Lieberman G. Introducción a la Investigación de Operaciones. McGraw-Hill Editores [9] Impact of Monte Carlo methods on scientific research. [10] Introduction to Monte Carlo Methods. 12

13 [11] Monte Carlo Simulation of Stochastic Processes. [12] Padilla Shannon Ho. Monte Carlo Method. [13] Quasi Monte Carlo Simulation. [14] Real options with Monte Carlo Simulations. [15] Silvestre, Moreno, Toscana y Luis. Curso de Simulación Monte Carlo. III Encuentro Nacional de docentes de Investigación Operativa. Facultad de Cs. Económicas. Universidad Nacional del Centro de la Provincia de Buenos Aires [16] Simulación. Introducción a la investigación de Operaciones. Facultad de Ingeniería. UDELAR. [17] Taha H. Investigación de Operaciones una introducción. Ed. Prentice Hall. 6 edición [18] Técnicas de Monte Carlo. [19] THE WWW VIRTUAL LIBRARY: RANDOM NUMBERS and MONTE CARLO METHODS SUBSECTION: MONTE CARLO METHODS. [20] Winston W. (2005) Investigación de Operaciones. Aplicaciones y algoritmos. 4 ta edición. International Thomson Editores. [21] Woller J. Basics of Monte Carlo Simulations. Univ. of Nebraska-Lincoln 13

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO 5. PLATEAMIETO DEL MODELO AÁLISIS-PLAZO 5.1. COCEPTOS PREVIOS Previamente a cualquier descripción se presentan aquí una serie de definiciones aclaratorias: Simulación: Es el proceso de diseñar y desarrollar

Más detalles

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO Objetivos del Capítulo Introducir los conceptos e ideas clave de la simulación Monte Carlo. Introducirse en las capacidades que ofrece Excel

Más detalles

Simulación Monte Carlo

Simulación Monte Carlo Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.

SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3. LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de

Más detalles

ECONOMETRÍA FINANCIERA

ECONOMETRÍA FINANCIERA ECONOMETRÍA FINANCIERA CONTENIDO 1 2 3 4 5 6 7 Objetivo Introducción Las betas Financieras Capital Asset Pricing Model CAPM Arbitrage Princing Model APT Predicción con el Método de Montecarlo Solución

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO MODELING WITH RANDOM VARIABLES IN SIMULINK USING MONTECARLO SIMULATIONS

MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO MODELING WITH RANDOM VARIABLES IN SIMULINK USING MONTECARLO SIMULATIONS MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO Velásquez, Sergio 1 Velásquez, Ronny 1 (Recibido enero 2012, Aceptado junio 2012) 1 Dpto. de Ingeniería Electrónica, UNEXPO

Más detalles

Carrera: 2-2-6. Participantes

Carrera: 2-2-6. Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Investigación de Operaciones Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas

Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas PR-08-A3 FICHA CURRICULAR Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas Departamento: Ingeniería e Investigaciones Tecnológicas Carrera/s: Ingeniería Informática

Más detalles

Fundamentos Básicos de Monte Carlo N-Particle.

Fundamentos Básicos de Monte Carlo N-Particle. Capítulo. Fundamentos Básicos de Monte Carlo -Particle.. Historia. El método de Monte Carlo debe su nombre a la cuidad de Montecarlo en Mónaco donde se juega la ruleta, el juego de azar que genera números

Más detalles

PROGRAMA DE ESTUDIO. Horas de Práctica

PROGRAMA DE ESTUDIO. Horas de Práctica PROGRAMA DE ESTUDIO Nombre de la asignatura: MODELADO Y SIMULACIÓN DE PROCESOS Clave: IQM12 Ciclo Formativo: Básico ( ) Profesional (X) Especializado ( ) Fecha de elaboración: 7 DE MARZO DE 2015 Horas

Más detalles

Simulación ISC. Profr. Pedro Pablo Mayorga

Simulación ISC. Profr. Pedro Pablo Mayorga Simulación ISC Profr. Pedro Pablo Mayorga Ventajas 1. Es un proceso relativamente eficiente y flexible. 2. Puede ser usada para analizar y sintetizar una compleja y extensa situación real, pero no puede

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

Simulación. Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu

Simulación. Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu Simulación Andrés Ramos Universidad Pontificia Comillas http://www.iit.upcomillas.es/aramos/ Andres.Ramos@comillas.edu Índice Sistemas, modelos y simulación Elementos de la simulación Software de simulación

Más detalles

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Simulación. Carrera: INE-0405 2-2-6. Participantes. Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE-0405 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Sílabo del curso Investigación Operativa II

Sílabo del curso Investigación Operativa II Sílabo del curso Investigación Operativa II Agosto diciembre 2013 VI Ciclo Profesor Luis Miguel Sierra 1 I. Datos generales del curso Asignatura : Investigación Operativa II Código : 03145 Requisito :

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de operaciones Ingeniería en Sistemas Computacionales SCB - 0419

Más detalles

Carrera: Ingeniería Civil CIE 0524

Carrera: Ingeniería Civil CIE 0524 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Investigación de Operaciones Ingeniería Civil CIE 0524 2 2 6 2.- HISTORIA DEL

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

Simulación. Carrera: SCM - 0430 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Simulación. Carrera: SCM - 0430 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería en Sistemas Computacionales SCM - 0430 3-2-8 2.- HISTORIA

Más detalles

Aplicación de simulación Monte Carlo en un sistema de Inventarios Dinámico

Aplicación de simulación Monte Carlo en un sistema de Inventarios Dinámico Administración Aplicación de simulación Monte Carlo en un sistema de Inventarios Dinámico Vicente Ángel Ramírez Barrera Ángel Eduardo Ramírez Nieves RESUMEN La principal herramienta con que se cuenta actualmente

Más detalles

CURSO DE INTRODUCCION

CURSO DE INTRODUCCION CURSO DE INTRODUCCION A CRYSTAL BALL Cnel R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar http//www.mgmconsultores.com.ar

Más detalles

Simulación y Modelos Estocásticos

Simulación y Modelos Estocásticos y Modelos Estocásticos Héctor Allende O!"# $# %#&' ( ) *+,-+,,*,/ ) -++,,*,/ ) 0 1 %*++,,*,/ $2,/ 04 %! 2! 5,,#6)5 1 Conceptos básicos: fundamentos de modelos de simulación y del modelado de sistemas complejos,

Más detalles

Modelos matemáticos de simulación

Modelos matemáticos de simulación Modelos matemáticos de simulación Andrés Ramos Andres.Ramos@iit.icai.upcomillas.es Universidad Pontificia Comillas Begoña Vitoriano bvitoriano@mat.ucm.es Universidad Complutense de Madrid Índice Sistemas,

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Workshop de Investigadores en Ciencias de la Computación WICC 2002 Aplicación del Método de Montecarlo para el cálculo de integrales definidas López, María Victoria y Mariño, Sonia Itatí Departamento de Informática Facultad de Ciencias Exactas y Naturales y Agrimensura

Más detalles

Introducción a la Investigación Operativa. Enfoque Metodológico y los procesos decisorios

Introducción a la Investigación Operativa. Enfoque Metodológico y los procesos decisorios 1. Introducción A partir de la primera revolución industrial, se produce el crecimiento de la complejidad organizacional Surge la tendencia al crecimiento de los subsistemas en forma autónoma, con sus

Más detalles

Simulación a Eventos Discretos

Simulación a Eventos Discretos Simulación a Eventos Discretos Clase nro 1. 2010 Docentes: Antonio Mauttone (Responsable), Sebastián Alaggia, Mari(t)a Urquhart. Información Horarios y salones: Teórico: Martes y Jueves de 10:00 a 12:00,

Más detalles

Simulación Discreta Estocástica Tutor: Deivis Galván

Simulación Discreta Estocástica Tutor: Deivis Galván Capitulo 1 Simulación Discreta Estocástica Tutor: Deivis Galván OBJETIVOS Al aprobar la asignatura el alumno será capaz de: Conocer, comprender y aplicar los principios del modelado de sistemas complejos

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL

CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL CURSOS DE ESPECIALIZACIÓN MICROSOFT EXCEL MICROSOFT EXCEL. FÓRMULAS Y FUNCIONES. 6 HORAS Ampliar los conocimientos sobre funciones de Microsoft Excel de forma completa y avanzada, con el fin de mejorar

Más detalles

Cuadernillo de Simulación. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Simulación. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Simulación M. en C.Luis Ignacio Sandoval Paéz 1 Índice Introducción a la simulación. 1.1 Definiciones e importancia de la simulación en la Ingeniería. 1.2 Conceptos básicos de modelación.

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Planificación Anual Asignatura Investigación operativa Año 2015

Planificación Anual Asignatura Investigación operativa Año 2015 DOCENTE RESPONSABLE Nombre y Apellido Silvia Beatriz Urrutia Planificación Anual Asignatura Investigación operativa Año 2015 Categoría Docente Profesor Adjunto MARCO DE REFERENCIA Asignatura Investigación

Más detalles

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus

FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas Syllabus INFORMACIÓN GENERAL Área de formación Núcleo de Contenido Núcleo de Conocimiento Núcleo Temático Profesional Especifica Ingeniería Aplicada Operativa Modelación Semestre IX Número de Créditos Académicos

Más detalles

Carrera: IFM - 0421 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: IFM - 0421 3-2-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Licenciatura en Informática IFM - 0421 3-2-8 2.-

Más detalles

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA

SEMESTRE: CREDITOS: 3 HORAS PRESENCIALES: 3 Horas de Acompañamiento: 1 TOTAL HORAS/ Semana: 4 CODIGO: 612007954 PROBLEMA FACULTAD DE INGENIERÍA Programa de Ingeniería de Sistemas NUCLEO DE CONTENIDO: Básicas de Ingeniería NUCLEO DE CONOCIMIENTO: Investigación de Operaciones. NUCLEO TEMÀTICO: Modelación (Simulación) SEMESTRE:

Más detalles

Contenido. Capítulo 1: Qué es la simulación?... 1.1 Modelación... Capítulo 2: Conceptos principales de simulación :;...

Contenido. Capítulo 1: Qué es la simulación?... 1.1 Modelación... Capítulo 2: Conceptos principales de simulación :;... ., Contenido Capítulo 1: Qué es la simulación?... 1 1.1 Modelación... 1.1.1 Qué se está modelando?... 1.1.2 Y si sólo se juega con el sistema?... 1.1.3 A veces no se puede (o no se debe) jugar con el sistema...

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Investigación de Operaciones SCC-1013 2-2 - 4 Ingeniería en Sistemas Computacionales 2.- PRESENTACIÓN

Más detalles

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Carrera: MCM - 0531. Participantes. Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Mecánica MCM - 0531 3 2 8 2.- HISTORIA DEL

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

CARTA DESCRIPTIVA Código: FO-MI-108 Versión: 3 Fecha: 25-10-2013

CARTA DESCRIPTIVA Código: FO-MI-108 Versión: 3 Fecha: 25-10-2013 CARTA DESCRIPTIVA Código: FO-MI-108 Versión: 3 Fecha: 25-10-2013 1. PRESENTACIÓN FACULTAD: Ingenierías PROGRAMA: Ingeniería de sistemas NOMBRE DEL CURSO: Electiva 1 Simulación y Modelación de Sistemas

Más detalles

SIMULACIÓN DE MONTE CARLO CON EXCEL

SIMULACIÓN DE MONTE CARLO CON EXCEL SIMULACIÓN DE MONTE CARLO CON EXCEL Autores: Javier Faulín (ffaulin@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu). ESQUEMA DE CONTENIDOS La función ALEATORIO() Qué es la simulación MC? Simulación Monte Carlo

Más detalles

Simulación. Carrera: SCD-1022 SATCA 1

Simulación. Carrera: SCD-1022 SATCA 1 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Simulación Ingeniería en Sistemas Computacionales Clave de la asignatura: SATCA 1 SCD-1022 2 3 5 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

MODELADO Y SIMULACIÓN

MODELADO Y SIMULACIÓN ASIGNATURA DE GRADO: MODELADO Y SIMULACIÓN Curso 2014/2015 (Código:71014106) 1.PRESENTACIÓN DE LA ASIGNATURA La asignatura Modelado y Simulación se imparte en el primer semestre del cuarto curso del Grado

Más detalles

SIMULACIÓN VERSUS OPTIMIZACIÓN:

SIMULACIÓN VERSUS OPTIMIZACIÓN: SIMULACIÓN MONTE CARLO Procesos Químicos II La idea básica de la simulación es la construcción de un dispositivo experimental, o simulador, que actuará como (simulará) el sistema de interés en ciertos

Más detalles

Universidad Tecnológica de Panamá. Facultad de Ingeniería Industrial. Departamento de Producción

Universidad Tecnológica de Panamá. Facultad de Ingeniería Industrial. Departamento de Producción Universidad Tecnológica de Panamá Facultad de Ingeniería Industrial Departamento de Producción Introducción a la Simulación Documento para acompañar a los cursos de Diseño de Sistemas Estocásticos, Investigación

Más detalles

El MÉTODO MONTECARLO en dosimetría y otras aplicaciones

El MÉTODO MONTECARLO en dosimetría y otras aplicaciones El ININ hoy El MÉTODO MONTECARLO en dosimetría y otras aplicaciones Por Leticia Rojas (elrc@nuclear.inin.mx) Introducción En este trabajo tratamos de explicar cómo se utiliza la simulación Monte Carlo

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA SILABO I. DATOS GENERALES 1. Nombre de la Asignatura : INVESTIGACIÓN OPERATIVA 2. Carácter : Obligatorio 3. Carrera Profesional : Administración de Empresas 4. Código : AD0602 5. Semestre Académico : 2014

Más detalles

Análisis estadístico con Microsoft Excel

Análisis estadístico con Microsoft Excel Análisis estadístico con Microsoft Excel Microsoft Excel ofrece un conjunto de herramientas para el análisis de los datos (denominado Herramientas para análisis) con el que podrá ahorrar pasos en el desarrollo

Más detalles

Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5

Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5 1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5 2.- PRESENTACIÓN Caracterización de la asignatura. Probabilidad y estadística descriptiva Ingeniería en gestión

Más detalles

Semestre: Agosto-Diciembre 2010 Línea curricular Administración Industrial Clave: 5927 Carácter: Teórico/Práctico

Semestre: Agosto-Diciembre 2010 Línea curricular Administración Industrial Clave: 5927 Carácter: Teórico/Práctico ANEXO 3: GUÍA BASE PARA LOS PROGRAMAS ANALÍTICOS Nota importante: Esta guía debe llenarse con base en los lineamientos descritos con amplitud en el Manual para la Formulación de las Propuestas Curriculares

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Ingeniería en Administración. Carrera: ADD-1025

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Ingeniería en Administración. Carrera: ADD-1025 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Investigación de Operaciones Ingeniería en Administración Clave de la asignatura: (Créditos) SATCA 1 ADD-1025 2 3 5 2.- PRESENTACIÓN Caracterización

Más detalles

PROGRAMA. Investigación Operativa. Contador Público Licenciatura en Administración de Empresas. Cr. Ernesto Luis Ferreyra

PROGRAMA. Investigación Operativa. Contador Público Licenciatura en Administración de Empresas. Cr. Ernesto Luis Ferreyra 1 1) Denominación de la Asignatura Investigación Operativa 2) Carrera Contador Público Licenciatura en Administración de Empresas 3) Año 4) Profesor responsable 2011 Cr. Ernesto Luis Ferreyra 5) Ubicación

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Objetivos Generales. Objetivos específicos. Que el estudiante:

Objetivos Generales. Objetivos específicos. Que el estudiante: ASIGNATURA: MÉTODOS NUMPERICOS I (ANÁLISIS Y PROCESAMIENTO DE LOS DATOS EXPERIMENTALES CON INTRODUCCIÓN A LA COMPUTACIÓN) Objetivos Generales Comprender y manejar los conceptos relacionados con el manejo,

Más detalles

SÍLABO DE MÉTODOS CUANTITATIVOS

SÍLABO DE MÉTODOS CUANTITATIVOS SÍLABO DE MÉTODOS CUANTITATIVOS I. DATOS GENERALES 1.1. Carrera Profesional : Administración 1.2. Área Académica : Administración 1.3 Ciclo : V 1.4. Semestre : 2014-I 1.5. Prerrequisito : Estadística 1.6.

Más detalles

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ

UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA RUBEN DARIO GUEVARA, FERNANDO ALONSO VELEZ UNIVERSIDAD DEL TOLIMA FACULTAD DE CIENCIAS PROGRAMA MATEMÁTICAS CON ÉNFASIS EN ESTADÍSTICA 1. IDENTIFICACIÓN ASIGNATURA: SIMULACIÓN ESTADÍSTICA CODIGO: 070110 NIVEL: VI CREDITOS: 3 DESCRIPCIÓN: DOCENTES:

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

UTILIZACIÓN DE SIMULACIONES PARA EVALUAR LOS RIESGOS AGROPECUARIOS

UTILIZACIÓN DE SIMULACIONES PARA EVALUAR LOS RIESGOS AGROPECUARIOS UTILIZACIÓN DE SIMULACIONES PARA EVALUAR LOS RIESGOS AGROPECUARIOS Lic. Marina Pecar 1 1-Análisis Monte Carlo Al proceso utilizado para aproximar soluciones de un modelo mediante la aplicación repetitiva

Más detalles

Generación de Números Pseudo-Aleatorios

Generación de Números Pseudo-Aleatorios Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia

Más detalles

Carrera: LOE-0922 SATCA 1 3-1-4. Fundamentación. La materia de Investigación de Operaciones II para la Ingeniería en Logística:

Carrera: LOE-0922 SATCA 1 3-1-4. Fundamentación. La materia de Investigación de Operaciones II para la Ingeniería en Logística: 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Investigación de Operaciones II Ingeniería en Logística LOE-0922 3-1-4 2.- PRESENTACIÓN Caracterización de la

Más detalles

Introducción al @RISK 5.7

Introducción al @RISK 5.7 Introducción al @RISK 5.7 Javier Ordóñez, PhD Director de Soluciones Personalizadas Riesgo» Riesgo: Un escenario en donde existe una posibilidad de desviación respecto de un resultado deseado o esperado»

Más detalles

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica

SÍLABO. VIII Ciclo 3 Teoría y 2 Práctica SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre Requisito

Más detalles

Generación de Números Aleatorios Uniformes

Generación de Números Aleatorios Uniformes Capítulo 5 Generación de Números Aleatorios Uniformes Vimos en el capítulo sobre repaso de distribuciones de probabilidad, lo que es una distribución uniforme. Pero podemos encontrar un método o experimento

Más detalles

APLICACIÓN DEL FILTRO DE PARTÍCULAS AL SEGUIMIENTO DE OBJETOS EN SECUENCIAS DE IMÁGENES.

APLICACIÓN DEL FILTRO DE PARTÍCULAS AL SEGUIMIENTO DE OBJETOS EN SECUENCIAS DE IMÁGENES. INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS Curso Académico 2002 / 2003 Proyecto de Fin de Carrera APLICACIÓN DEL FILTRO DE PARTÍCULAS AL SEGUIMIENTO DE OBJETOS EN SECUENCIAS DE IMÁGENES. Autor: Eva

Más detalles

Universidad Juárez del Estado de Durango Facultad de Ciencias Forestales

Universidad Juárez del Estado de Durango Facultad de Ciencias Forestales Universidad Juárez del Estado de Durango Facultad de Ciencias Forestales Programa de Unidad de Aprendizaje Con enfoque en Competencias Profesionales Integrales I. DATOS GENERALES DE LA UNIDAD DE APRENDIZAJE

Más detalles

SIMULACIÓN ING. MIGUEL MIRANDA CÁTEDRA INVESTIGACIÓN OPERATIVA

SIMULACIÓN ING. MIGUEL MIRANDA CÁTEDRA INVESTIGACIÓN OPERATIVA SIMULACIÓN ING. MIGUEL MIRANDA CÁTEDRA INVESTIGACIÓN OPERATIVA TEMARIO Pág. I INTRODUCCIÓN II APLICACIONES 4 III DEFINICIONES 6 IV SIMULACIÓN DE PROCESOS 7 V VENTAJAS Y DESVENTAJAS DE LA SIMULACIÓN 0 VI

Más detalles

Lean SEIS SIGMA Área Temática: Logística

Lean SEIS SIGMA Área Temática: Logística Proyecto fin de Master Hito 3 Ejercicio Nº 1 Lean SEIS SIGMA Área Temática: Logística www.formatoedu.com 1 Enunciado Lean Seis Sigma es una metodología eficaz para reducir sistemáticamente todas las deficiencias

Más detalles

ESTADÍSTICA Y DISEÑO EXPERIMENTAL

ESTADÍSTICA Y DISEÑO EXPERIMENTAL SILABO I. DATOS GENERALES 1.1 Nombre de la asignatura : ESTADÍSTICA Y DISEÑO EXPERIMENTAL 1.2 Carácter : Obligatorio 1.3 Carrera Profesional : Administración de Empresas 1.4 Código : AD0502 1.5 Semestre

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS SÍLABO Curso UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA ACADÉMICO PROFESIONAL DE ECONOMÍA INTERNACIONAL Semestre Académico

Más detalles

Carrera: LOE-0921 SATCA 1 3-1-4. Fundamentación. La materia de Investigación de Operaciones I para la Ingeniería en Logística:

Carrera: LOE-0921 SATCA 1 3-1-4. Fundamentación. La materia de Investigación de Operaciones I para la Ingeniería en Logística: 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA 1 Investigación de Operaciones I Ingeniería en Logística LOE-0921 3-1-4 2.- PRESENTACIÓN Caracterización de la

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 7 de abril 2015 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para estudiar procesos mediante la seleccion

Más detalles

Palabras clave: Simulación. Modelos de Inventario. Modelado Visual Interactivo. Didáctica. Educación.

Palabras clave: Simulación. Modelos de Inventario. Modelado Visual Interactivo. Didáctica. Educación. Software de simulación de un modelo de inventario López, María Victoria Departamento de Informática. Facultad de Ciencias Exactas y Naturales y Agrimensura Universidad Nacional del Nordeste. 9 de Julio

Más detalles

Sistemas, modelos y simulación

Sistemas, modelos y simulación Sistemas, modelos y simulación Introducción I Un SISTEMA es una colección de entidades (seres o máquinas) que actúan y se relacionan hacia un fin lógico. Ejemplo: Un banco con: Cajeros [comerciales] [cajas

Más detalles

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

SIMULACION DE MONTECARLO

SIMULACION DE MONTECARLO SIMULACION DE MONTECARLO Concepto de Montecarlo Ciertos problemas complicados en su solución práctica y analítica son frecuentemente resueltos utilizando varias técnicas de probabilidad y muestreo. Estas

Más detalles

Elementos de Investigación Operativa

Elementos de Investigación Operativa Universidad Tecnológica Nacional Facultad Regional San Francisco Tecnicatura Superior en Programación Elementos de Investigación Operativa PLANIFICACIÓN CICLO LECTIVO 2013 ÍNDICE ÍNDICE... 2 PROFESIONAL

Más detalles

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J. Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

MATEMÁTICA NM4 4º EM

MATEMÁTICA NM4 4º EM MATEMÁTICA NM4 4º EM UNIDADES TEMÁTICAS UNIDAD Nº 01: ESTADÍSTICA Y PROBABILIDAD Conceptos generales : Población, muestra, parámetro y estadístico Variables y su clasificación Medición y escalas Organización

Más detalles

Simulación. Carrera: INE-0405 2-2-6. Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Simulación. Carrera: INE-0405 2-2-6. Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Simulación Ingeniería Industrial INE-0405 2-2-6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

ANEXO I RESOLUCION Nº 303/03

ANEXO I RESOLUCION Nº 303/03 ANEXO I RESOLUCION Nº 303/03 Código: 18 Régimen: Teórico-práctico Crédito Horario: 90 horas Año: 3er. Año Cuatrimestre: Segundo cuatrimestre. OBJETIVOS Y CONTENIDOS MINIMOS OBJETIVOS Que el estudiante

Más detalles

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1 Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento

Más detalles

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI)

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) ASIGNATURA DE GRADO: ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) Curso 2015/2016 (Código:7190105-) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura es una introducción a la Modelización probabilística, la Inferencia

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Diana S. García M. con el material de la coordinación [Escriba aquí el nombre] Fecha de Elaboración

Más detalles